A New Strategy of Chemical Photo Grafting Metal Organic Framework to Construct NH2-UiO-66/BiOBr/PVDF Photocatalytic Membrane for Synergistic Separation and Self-Cleaning Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characteristics and Chemical Properties
2.2. Membrane Performance Evaluation
2.2.1. Hydrophilicity and Permeability
2.2.2. Separation Performance
2.2.3. Light Self-Cleaning Cycle Test
3. Experimental Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of NH2-UiO-66
3.2.2. Synthesis of Benzophenone Functionalized NH2-UiO-66(BP-UiO)
3.2.3. Preparation of Functional NH2-UiO-66/BiOBr/PVDF Membrane
3.3. Characterization of Membranes
3.4. Performance Evaluation of Membranes
3.4.1. Hydrophilicity and Permeability
3.4.2. Separation Performance
3.4.3. Evaluation of Flow Cycle Photocatalytic Performance
3.4.4. Evaluation of the Photocatalytic Activity of the Fabricated Membranes
3.4.5. Long-Term and Light Self-Cleaning Performance
3.4.6. Antifouling Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, G.; Ye, Z.; He, Y.; Yang, X.; Ma, J.; Shi, H.; Feng, Z. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chem. Eng. J. 2017, 323, 572–583. [Google Scholar] [CrossRef]
- Chen, H.; Wu, S.; Jia, X.; Xiong, S.; Wang, Y. Atomic layer deposition fabricating of ceramic nanofiltration membranes for efficient separation of dyes from water. AIChE J. 2018, 64, 2670–2678. [Google Scholar] [CrossRef]
- Deng, W.; Zhao, H.; Pan, F.; Feng, X.; Jung, B.; Abdel-Wahab, A.; Batchelor, B.; Li, Y. Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition. Environ. Sci. Technol. 2017, 51, 13372–13379. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Geng, Y.; Jia, Z.; Yang, Y.; Huang, H.; Men, Y.; Hou, L.A. In situ syntheses of NH2-MIL-53/PVDF composite membranes for dyes separation. Sep. Purif. Technol. 2021, 269, 118760. [Google Scholar] [CrossRef]
- Abdulhamid, M.A.; Muzamil, K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. Chemosphere 2023, 310, 136886. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.-d.; Cao, Y.-m. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Sun, Z.; Li, L.; Wu, Q.; Zhang, Z.; Yang, L.; Jiang, G.; Gao, C.; Xue, L. Nano-filtration performance and temperature dependency of thin film composite polyamide membranes embedded with thermal responsive zwitterionic nanocapsules. J. Membr. Sci. 2022, 656, 120609. [Google Scholar] [CrossRef]
- Nor, N.A.M.; Jaafar, J.; Ismail, A.F.; Mohamed, M.A.; Rahman, M.A.; Othman, M.H.D.; Lau, W.J.; Yusof, N. Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalination 2016, 391, 89–97. [Google Scholar] [CrossRef]
- Rao, L.; You, X.; Chen, B.; Shen, L.; Xu, Y.; Zhang, M.; Hong, H.; Li, R.; Lin, H. A novel composite membrane for simultaneous separation and catalytic degradation of oil/water emulsion with high performance. Chemosphere 2022, 288, 132490. [Google Scholar] [CrossRef]
- Ren, G.; Li, R.; Zhao, M.; Hou, Q.; Rao, T.; Zhou, M.; Ma, X. Membrane electrodes for electrochemical advanced oxidation processes: Preparation, self-cleaning mechanisms and prospects. Chem. Eng. J. 2023, 451, 138907. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Zhang, Y.; Zhao, F.; Xie, J.; Liu, Z.; Zhuang, J.; Zhang, N.; Ren, W.; Ye, Z.-G. Design and fabrication of flexible strain sensor based on ZnO-decorated PVDF via atomic layer deposition. Appl. Surf. Sci. 2021, 562, 150126. [Google Scholar] [CrossRef]
- Jeong, E.; Byun, J.; Bayarkhuu, B.; Hong, S.W. Hydrophilic photocatalytic membrane via grafting conjugated polyelectrolyte for visible-light-driven biofouling control. Appl. Catal. B Environ. 2021, 282, 119587. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Kumoro, A.C.; Aryanti, N.; Kurniawan, T.A.; Dalanta, F.; Alias, N.H. Photocatalytic polysulfone membrane incorporated by ZnO-MnO2@SiO2 composite under UV light irradiation for the reliable treatment of natural rubber-laden wastewater. Chem. Eng. J. 2023, 451, 138593. [Google Scholar] [CrossRef]
- Molinari, R.; Limonti, C.; Lavorato, C.; Siciliano, A.; Argurio, P. Upgrade of a slurry photocatalytic membrane reactor based on a vertical filter and an external membrane and testing in the photodegradation of a model pollutant in water. Chem. Eng. J. 2023, 451, 138577. [Google Scholar] [CrossRef]
- Ali, G.; Jazib Abbas Zaidi, S.; Abdul Basit, M.; Park, T.J. Synergetic performance of systematically designed g-C3N4/rGO/SnO2 nanocomposite for photodegradation of Rhodamine-B dye. Appl. Surf. Sci. 2021, 570, 151140. [Google Scholar] [CrossRef]
- Lee, S.L.; Thomas, J.; Liu, C.-L.; Tung, K.-L. A greener approach to design Janus PVDF membrane with polyphenols using one-pot fabrication for emulsion separation. J. Membr. Sci. 2022, 656, 120616. [Google Scholar] [CrossRef]
- Liu, S.; Tong, X.; Liu, S.; An, D.; Yan, J.; Chen, Y.; Crittenden, J. Multi-functional tannic acid (TA)-Ferric complex coating for forward osmosis membrane with enhanced micropollutant removal and antifouling property. J. Membr. Sci. 2021, 626, 119171. [Google Scholar] [CrossRef]
- Jing, L.; Yang, P.; Lu, X.; Tian, H.; Mao, J.; Li, J.; Ma, F.; Zhang, Z. Photochemical-initiated hydrophobic surface modification by benzophenone derivatives and its application on oil-water separation. Appl. Surf. Sci. 2023, 608, 155125. [Google Scholar] [CrossRef]
- Prabhu, N.S.; Yun, H. Comparative analysis of polyspecificity of the endogenous tRNA synthetase of different expression host towards photocrosslinking amino acids using an in silico approach. J. Mol. Graph. Model. 2017, 75, 375–382. [Google Scholar] [CrossRef]
- Dorman, G.; Nakamura, H.; Pulsipher, A.; Prestwich, G.D. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem. Rev. 2016, 116, 15284–15398. [Google Scholar] [CrossRef]
- Kaneda, M.; Lu, X.; Cheng, W.; Zhou, X.; Bernstein, R.; Zhang, W.; Kimura, K.; Elimelech, M. Photografting Graphene Oxide to Inert Membrane Materials to Impart Antibacterial Activity. Environ. Sci. Technol. Lett. 2019, 6, 141–147. [Google Scholar] [CrossRef]
- Qiu, J.; Feng, Y.; Zhang, X.; Jia, M.; Yao, J. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. J. Colloid Interface Sci. 2017, 499, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Shin, S.S.; Jo, J.H.; Jung, C.H.; Park, H.; Park, Y.I.; Kim, H.J.; Lee, J.H. Tannic acid-assisted in-situ interfacial formation of Prussian blue-assembled adsorptive membranes for radioactive cesium removal. J. Hazard. Mater. 2023, 442, 129967. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Y.; Chi, Z.-T.; Yang, W.; Deng, Y.; Xie, W.-F. Synthesis of Bi2O2CO3/In(OH)3·xH2O nanocomposites for isopropanol sensor with excellent performances at low temperature. Sens. Actuators B Chem. 2022, 361, 131715. [Google Scholar] [CrossRef]
- Gan, C.; Xu, C.; Wang, H.; Zhang, N.; Zhang, J.; Fang, Y. Facile synthesis of rGO@In2S3@UiO-66 ternary composite with enhanced visible-light photodegradation activity for methyl orange. J. Photochem. Photobiol. A Chem. 2019, 384, 112025. [Google Scholar] [CrossRef]
- Dai, R.; Han, H.; Wang, T.; Li, X.; Wang, Z. Enhanced removal of hydrophobic endocrine disrupting compounds from wastewater by nanofiltration membranes intercalated with hydrophilic MoS2 nanosheets: Role of surface properties and internal nanochannels. J. Membr. Sci. 2021, 628, 119267. [Google Scholar] [CrossRef]
- Tong, Y.; Huang, L.; Zuo, C.; Li, W.; Xing, W. Novel PVDF-g-NMA Copolymer for Fabricating the Hydrophilic Ultrafiltration Membrane with Good Antifouling Property. Ind. Eng. Chem. Res. 2020, 60, 541–550. [Google Scholar] [CrossRef]
- Deng, W.; Li, Y. Novel superhydrophilic antifouling PVDF-BiOCl nanocomposite membranes fabricated via a modified blending-phase inversion method. Sep. Purif. Technol. 2021, 254, 117656. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, C.; Wang, Q.; Hu, W.; Cao, J.; Yao, J.; Jiang, L.; Wu, Z. Modification of poly(vinylidene fluoride) membranes with aluminum oxide nanowires and graphene oxide nanosheets for oil-water separation. J. Appl. Polym. Sci. 2019, 136, 47493. [Google Scholar] [CrossRef]
- Hahn, B.R.; Herrmann-Schönherr, O.; Wendorff, J.H. Evidence for a crystal-amorphous interphase in PVDF and PVDF/PMMA blends. Polymer 1987, 28, 201–208. [Google Scholar] [CrossRef]
- Abbrent, S.; Plestil, J.; Hlavata, D.; Lindgren, J.; Tegenfeldt, J.; Wendsjö, Å. Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 2001, 42, 1407–1416. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Abbasi, A.; Masteri-Farahani, M. Decoration of NH2-UiO-66 with FeOOH quantum dots for improving photo-degradation of organic dyes upon visible light irradiation. Appl. Surf. Sci. 2022, 604, 154514. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, J.; Zhu, J.; Peng, D.; Zhang, Y.; Zhang, Y. Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal. J. Membr. Sci. 2020, 610, 118219. [Google Scholar] [CrossRef]
- Al-Gharabli, S.; Flanc, Z.; Pianka, K.; Terzyk, A.P.; Kujawski, W.; Kujawa, J. Porcupine quills-like-structures containing smart PVDF/chitosan hybrids for anti-fouling membrane applications and removal of hazardous VOCs. Chem. Eng. J. 2023, 452, 139281. [Google Scholar] [CrossRef]
- Chen, B.; Xie, H.; Shen, L.; Xu, Y.; Zhang, M.; Yu, H.; Li, R.; Lin, H. Electroless Ni–Sn–P plating to fabricate nickel alloy coated polypropylene membrane with enhanced performance. J. Membr. Sci. 2021, 640, 119820. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, D.; Li, Z.; Shen, L.; Li, R.; Zhang, M.; Jiao, Y.; Xu, Y.; Lin, H. A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in-situ grown Ag nanoparticles. Sep. Purif. Technol. 2022, 280, 119866. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, B.; Zhu, T.; Shi, J.; Xu, Z.; Hu, C.; Wang, J. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 2015, 5, 7880–7889. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Wang, L.; Zhao, B.; Zhang, Z.; Xia, X.; Yang, H.; Xue, Y.; Chang, N. Enhancement of hydrophilicity and the resistance for irreversible fouling of polysulfone (PSF) membrane immobilized with graphene oxide (GO) through chloromethylated and quaternized reaction. Chem. Eng. J. 2018, 334, 2068–2078. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, M.; Mi, B. Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. J. Membr. Sci. 2014, 455, 349–356. [Google Scholar] [CrossRef]
- Ouyang, Q.; Gui, Q.; Liu, C.; Zhang, J.; Chen, X. A novel strategy for making adsorptive membranes with high-capacity and excellent antifouling performance. Chem. Eng. J. 2023, 451, 138596. [Google Scholar] [CrossRef]
- Ganose, A.M.; Cuff, M.; Butler, K.T.; Walsh, A.; Scanlon, D.O. Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 2016, 28, 1980–1984. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, Y.; Li, Y.; Han, Q.; Zhang, T.; Zeng, K.; Zhao, C. Preparation of polyvinylidene fluoride modified membrane by tannin and halloysite nanotubes for dyes and antibiotics removal. J. Mater. Sci. 2021, 56, 10218–10230. [Google Scholar] [CrossRef]
- Luo, H.; Yan, M.; Wu, Y.; Lin, X.; Yan, Y. Facile synthesis of PVDF photocatalytic membrane based on NCQDs/BiOBr/TiO2 heterojunction for effective removal of tetracycline. Mater. Sci. Eng. B 2021, 265, 114996. [Google Scholar] [CrossRef]
- Perreault, F.; Tousley, M.E.; Elimelech, M. Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets. Environ. Sci. Technol. Lett. 2013, 1, 71–76. [Google Scholar] [CrossRef]
- Kang, S.; Herzberg, M.; Rodrigues, D.F.; Elimelech, M. Antibacterial Effects of Carbon Nanotubes Size Does Matter. Langmuir 2008, 24, 6409–6413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yang, Z.; Hu, Z.; Zhao, C.; Zeng, K.; Yu, J.; Cai, L.; Chen, Z.; Jiang, J. Modification of PVDF membranes using BiOBr precursor in-situ deposition and tannic acid self-assembly for effectively removing organic pollutants. Appl. Surf. Sci. 2022, 599, 153888. [Google Scholar] [CrossRef]
- Huang, Z.; Zeng, Q.; Liu, Y.; Xu, Y.; Li, R.; Hong, H.; Shen, L.; Lin, H. Facile synthesis of 2D TiO2@MXene composite membrane with enhanced separation and antifouling performance. J. Membr. Sci. 2021, 640, 119854. [Google Scholar] [CrossRef]
- Tian, M.; Zhu, J.; Yuan, S.; Zhang, Y.; Van der Bruggen, B. A co-casting route enables the formation of skinless, hydrophobic poly(vinylidene fluoride) membranes for DCMD. J. Membr. Sci. 2021, 630, 119299. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, X.; Sun, Y.; Bai, R. Anticorrosion Performance of PVDF Membranes Modified by Blending PTFE Nanoemulsion and Prepared through Usual Non-Solvent-Induced Phase Inversion Method. Membranes 2021, 11, 420. [Google Scholar] [CrossRef]
- Li, N.; Chen, H.-d.; Lu, Y.-z.; Zhu, M.-c.; Hu, Z.-x.; Chen, S.-w.; Zeng, R.J. Nanoscale zero-valent iron-modified PVDF membrane prepared by a simple filter-press coating method can robustly remove 2-chlorophenol from wastewater. Chem. Eng. J. 2021, 416, 127701. [Google Scholar] [CrossRef]
- Zhang, R.; Han, Q.; Li, Y.; Zhang, T.; Liu, Y.; Zeng, K.; Zhao, C. Solvothermal synthesis of a peony flower-like dual Z-scheme PANI/BiOBr/ZnFe2O4 photocatalyst with excellent photocatalytic redox activity for organic pollutant under visible-light. Sep. Purif. Technol. 2020, 234, 116098. [Google Scholar] [CrossRef]
Membrane | Elemental Composition (wt%) | |||||
---|---|---|---|---|---|---|
C | F | Bi | O | Br | Zr | |
MB | 46.38 | 24.37 | 19.00 | 3.64 | 5.96 | 0 |
MUB | 61.83 | 23.02 | 8.75 | 4.01 | 1.33 | 1.05 |
Membrane | First Cycle | Second Cycle | Third Cycle | |||
---|---|---|---|---|---|---|
FRR | RFR | FRR | RFR | FRR | RFR | |
M0 | 85.3% | 32.2% | 83.4% | 33.8% | 79.2% | 35.9% |
MB | 92.4% | 24.9% | 91.6% | 25.1% | 90.0% | 26.5% |
MUB | 99.2% | 20.2% | 97.4% | 22.0% | 96.7% | 23.5% |
MU0 | 86.6% | 26.7% | 85.4% | 27.4% | 82.3% | 29.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Shu, Y.; Jiang, L.; Liu, W.; Zhao, G.; Zhang, R. A New Strategy of Chemical Photo Grafting Metal Organic Framework to Construct NH2-UiO-66/BiOBr/PVDF Photocatalytic Membrane for Synergistic Separation and Self-Cleaning Dyes. Molecules 2023, 28, 7667. https://doi.org/10.3390/molecules28227667
Peng L, Shu Y, Jiang L, Liu W, Zhao G, Zhang R. A New Strategy of Chemical Photo Grafting Metal Organic Framework to Construct NH2-UiO-66/BiOBr/PVDF Photocatalytic Membrane for Synergistic Separation and Self-Cleaning Dyes. Molecules. 2023; 28(22):7667. https://doi.org/10.3390/molecules28227667
Chicago/Turabian StylePeng, Lin, Yong Shu, Luming Jiang, Weidong Liu, Guixiang Zhao, and Rui Zhang. 2023. "A New Strategy of Chemical Photo Grafting Metal Organic Framework to Construct NH2-UiO-66/BiOBr/PVDF Photocatalytic Membrane for Synergistic Separation and Self-Cleaning Dyes" Molecules 28, no. 22: 7667. https://doi.org/10.3390/molecules28227667
APA StylePeng, L., Shu, Y., Jiang, L., Liu, W., Zhao, G., & Zhang, R. (2023). A New Strategy of Chemical Photo Grafting Metal Organic Framework to Construct NH2-UiO-66/BiOBr/PVDF Photocatalytic Membrane for Synergistic Separation and Self-Cleaning Dyes. Molecules, 28(22), 7667. https://doi.org/10.3390/molecules28227667