Transient Conformations Leading to Peptide Fragment Ion [c + 2H]+ via Intramolecular Hydrogen Bonding Using MALDI In-source Decay Mass Spectrometry of Serine-, Threonine-, and/or Cysteine-Containing Peptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. The [c + 2H]+ Ion Formation of a Ser-Based Peptide in Oxidative ISD with a Hydrogen-Abstracting Oxidative Matrix
2.2. Influence of Cys Residue on the [c + 2H]+ Ion Formation
2.3. Intramolecular Hydrogen Bonding of the Models of Ser, Thr, and Cys Residues
3. Materials and Methods
3.1. Reagents and Sample Preparation
- LRASer14 (LRALEALEALEALSALEALEALEAL, Mr 2623.0);
- LRAGly14 (LRALEALEALEALGALEALEALEAL, Mr 2593.0);
- LRAGlu14 (LRALEALEALEALEALEALEALEAL, Mr 2665.1);
- RAGThr8Ser10Cys12 (RAGFLAGTASACAALAALFL, Mr 1895.2); and
- RAGThr8Ser10 (RAGFLAGTASALAALAALFL, Mr 1905.3).
3.2. Mass Spectrometry
3.3. Calculations
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turro, N.J. Modern Molecular Photochemistry; The Benjamin/Cummings Publishing Company: Menlo Park, CA, USA, 1978. [Google Scholar]
- Capaldo, L.; Ravelli, D. Hydrogen atom transfer (HAT): A versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem. 2017, 2017, 2056–2071. [Google Scholar] [CrossRef] [PubMed]
- Barath, E. Hydrogen transfer reactions of carbonyls, alkynes, and alkenes with noble metals in the presence of alcohols/ethers and amines as hydrogen donors. Catalysts 2018, 8, 671. [Google Scholar] [CrossRef]
- Capaldo, L.; Ravelli, D.; Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C-H bonds elaboration. Chem. Rev. 2022, 122, 1875–1924. [Google Scholar] [CrossRef]
- Kingston, D.G.I.; Bursey, J.T.; Bursey, M.M. Intramolecular hydrogen transfer in mass spectra. II. The McLafferty rearrangement and related reactions. Chem. Rev. 1974, 74, 215–242. [Google Scholar] [CrossRef]
- McLafferty, F.W.; Turecek, F. Interpretation of Mass Spectra, 4th ed.; University Science Books: Sausalito, CA, USA, 1993. [Google Scholar]
- Brown, R.S.; Lennon, J.J. Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. Anal. Chem. 1995, 67, 3990–3999. [Google Scholar] [CrossRef]
- Hardouin, J. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom. Rev. 2007, 26, 672–682. [Google Scholar] [CrossRef]
- Takayama, M. N-Cα bond cleavage of the peptide backbone via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 2001, 12, 1044–1049. [Google Scholar] [CrossRef]
- Koecher, T.; Engstroem, A.; Zubarev, A. Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals. Anal. Chem. 2005, 77, 172–177. [Google Scholar] [CrossRef]
- Demeure, K.; Quinton, L.; Gabelica, V.; De Pauw, E. Rational selection of the optimum MALDI matrix for top-down proteomics by in-source decay. Anal. Chem. 2007, 79, 8678–8685. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, Y.; Iwamoto, S.; Tanaka, K. Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. J. Mass Spectrom. 2006, 41, 191–201. [Google Scholar] [CrossRef]
- Asakawa, D. 5-Nitorsalicylic acid as a novel matrix for in-source decay in matrix-assisted laser desorption/ionization mass spectrometry. Mass Spectrom. 2013, 2, A0019. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, D. General mechanism of Cα-C bond peptide backbone bond cleavage in matrix-assisted laser desorption/ionization in-source decay mediated by hydrogen abstraction. J. Am. Soc. Mass Spectrom. 2019, 30, 1491–1502. [Google Scholar] [CrossRef]
- Scott, C.T.J.; Kosmidis, C.; Jia, W.J.; Ledingham, K.W.D.; Singhal, R.P. Formation of atomic hydrogen in matrix-assisted laser desorption ionization. Rapid Commun. Mass Spectrom. 1994, 8, 829–832. [Google Scholar]
- Strupat, K.; Karas, M.; Hillenkamp, F. 2,5-Dihydroxybenzoic acid: A new matrix for laser desorption-ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1991, 111, 89–102. [Google Scholar] [CrossRef]
- Zenobi, R.; Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 1998, 17, 337–366. [Google Scholar] [CrossRef]
- Moon, J.H.; Yoon, S.; Bae, Y.J.; Kim, M.S. Formation of gas-phase peptide ions and their dissociation in MALDI: Insights from kinetic and ion yield studies. Mass Spectrom. Rev. 2015, 34, 94–115. [Google Scholar] [CrossRef] [PubMed]
- Chu, I.K.; Siu, J.C.-K.; Lau, J.K.-C.; Tang, W.K.; Mu, X.; Lai, C.-K.; Guo, X.; Wang, X.; Li, N.; Xia, Y.; et al. Proposed nomenclature for peptide ion fragmentation. Int. J. Mass Spectrom. 2015, 390, 24–27. [Google Scholar] [CrossRef]
- Thomas, D.A.; Sohn, C.H.; Gao, J.; Beauchamp, J.L. Hydrogen bonding constrains free radical reaction dynamics at serine and threonine residues in peptides. J. Phys. Chem. A 2014, 118, 8380–8392. [Google Scholar] [CrossRef]
- Mueller, C.; Merten, C. Solvation of serine-based model peptides and role of the intramolecular OH·O hydrogen bond in interpreting VCD spectra. Phys. Chem. Chem. Phys. 2023, 25, 19462. [Google Scholar] [CrossRef]
- Takayama, M. Complete and selective nitration of tyrosine residue in peptides caused by ultraviolet matrix-assisted laser desorption/ionization. Photochem. Photobiol. Sci. 2023, 22, 687–692. [Google Scholar] [CrossRef]
- Nagoshi, K.; Yamakoshi, M.; Sakamoto, K.; Takayama, M. Specific Cα-C bond cleavage of b-carbon-centered radical peptides produced by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 1473–1483. [Google Scholar] [CrossRef]
- Fukuyama, Y.; Izumi, S.; Tanaka, K. 3-Hydroxy-4-nitorbenzoic acid as a MALDI matrix for in-source decay. Anal. Chem. 2016, 88, 8058–8063. [Google Scholar] [CrossRef]
- Demeure, K.; Gabelica, V.; De Pauw, A.D. New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. J. Am. Soc. Mass Spectrom. 2010, 21, 1906–1917. [Google Scholar] [CrossRef]
- Kagoshima, A.; Sekimoto, K.; Takayama, M. Intramolecular hydrogen transfer from the alpha-carbon (Cα) and backbone amide nitrogen (Nb) to form c- and y-ions in negative-ion CID of peptides. J. Am. Soc. Mass Spectrom. 2019, 30, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Lakbub, J.C.; Shipman, J.T.; Desaire, H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal. Bioanal. Chem. 2018, 410, 2467–2484. [Google Scholar] [CrossRef] [PubMed]
- Desligniere, E.; Botzanowski, T.; Diemar, H.; Cooper-Shepherd, D.A.; Wagner-Rousset, E.; Colas, O.; Bechade, G.; Giles, K.; Hernandez-Alaba, O.; Beck, A.; et al. High-resolution IMS-MS to assign additional disulfide bridge pairing in complementarity-determining regions of an IgG4 monoclonal antibody. J. Am. Soc. Mass Spectrom. 2021, 32, 2505–2512. [Google Scholar] [CrossRef]
- Miyazawa, K.; Takayama, M. Matrix-dependent a/x pair and over degraded w/y/z ions generated by radical-directed dissociation of peptide radical cations [M]+ in matrix-assisted laser desorption/ionization in-source decay. J. Mass Spectrom. 2020, 55, e4668. [Google Scholar] [CrossRef] [PubMed]
- Rusinska-Roszak, D. Energy of intramolecular hydrogen bonding in ortho-hydroxybenzaldehydes, phenones and quinones. Transfer of aromaticity from ipso-benzene ring to the enol system(s). Molecules 2017, 22, 481. [Google Scholar] [CrossRef]
- Yang, G.; Chen, K.; Wang, G.; Yang, D. TDDFT investigation on electronically excited-state hydrogen-bonding properties and ESIPT mechanism for the 2-(1H-imidazol-2-yl)-phenol compound. Struct. Chem. 2021, 32, 997–1003. [Google Scholar] [CrossRef]
- Elroby, S.A.; Aloufi, K.H.; Aziz, S.G.; Jedidi, A.; Hassan, W.I.; Osman, O.I. Substituent effect on the intramolecular hydrogen bond and the proton transfer process in pyrimidine azo dye: A computational study. Results Chem. 2023, 6, 101034. [Google Scholar] [CrossRef]
- Mazmanian, K.; Sargsyan, K.; Grauffel, C.; Dudev, T.; Lim, C. Preferred hydrogen-bonding partners of cysteine: Implications for regulating Cys functions. J. Phys. Chem. B 2016, 120, 10288–10296. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, UK; New York, NY, USA, 1997. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account 2008, 120, 215–241. [Google Scholar]
wo-HB | w-HB | ΔE (kJ/mol) | |
---|---|---|---|
Ser | −402.145672 | −402.153207 | −19.78 |
Thr | −441.426390 | −441.434413 | −21.06 |
Cys | −725.117970 | −725.124771 | −17.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takayama, M. Transient Conformations Leading to Peptide Fragment Ion [c + 2H]+ via Intramolecular Hydrogen Bonding Using MALDI In-source Decay Mass Spectrometry of Serine-, Threonine-, and/or Cysteine-Containing Peptides. Molecules 2023, 28, 7700. https://doi.org/10.3390/molecules28237700
Takayama M. Transient Conformations Leading to Peptide Fragment Ion [c + 2H]+ via Intramolecular Hydrogen Bonding Using MALDI In-source Decay Mass Spectrometry of Serine-, Threonine-, and/or Cysteine-Containing Peptides. Molecules. 2023; 28(23):7700. https://doi.org/10.3390/molecules28237700
Chicago/Turabian StyleTakayama, Mitsuo. 2023. "Transient Conformations Leading to Peptide Fragment Ion [c + 2H]+ via Intramolecular Hydrogen Bonding Using MALDI In-source Decay Mass Spectrometry of Serine-, Threonine-, and/or Cysteine-Containing Peptides" Molecules 28, no. 23: 7700. https://doi.org/10.3390/molecules28237700
APA StyleTakayama, M. (2023). Transient Conformations Leading to Peptide Fragment Ion [c + 2H]+ via Intramolecular Hydrogen Bonding Using MALDI In-source Decay Mass Spectrometry of Serine-, Threonine-, and/or Cysteine-Containing Peptides. Molecules, 28(23), 7700. https://doi.org/10.3390/molecules28237700