Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase
Abstract
:1. Introduction
2. Results
2.1. Construction and Validation of the NEST Models
2.2. The NEST Active Site Structures
2.3. Binding of Aging and Non-Aging Inhibitors with NEST
3. Materials and Method
3.1. Modeling of NEST
3.2. Molecular Docking
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kienesberger, P.C.; Oberer, M.; Lass, A.; Zechner, R. Mammalian patatin domain containing proteins: A family with diverse lipolytic activities involved in multiple biological functions. J. Lipid Res. 2009, 50, S63–S68. [Google Scholar] [CrossRef]
- UniProt. UniProtKB—Q8IY17 (PLPL6_HUMAN). 2019. Available online: http://www.uniprot.org/uniprot/Q8IY17 (accessed on 26 November 2019).
- Glynn, P. Neuronal phospholipid deacylation is essential for axonal and synaptic integrity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2013, 1831, 633–641. [Google Scholar] [CrossRef]
- Van Tienhoven, M.; Atkins, J.; Li, Y.; Glynn, P. Human Neuropathy Target Esterase Catalyzes Hydrolysis of Membrane Lipids. J. Biol. Chem. 2002, 277, 20942–20948. [Google Scholar] [CrossRef] [PubMed]
- Zaccheo, O.; Dinsdale, D.; Meacock, P.A.; Glynn, P. Neuropathy Target Esterase and Its Yeast Homologue Degrade Phosphatidylcholine to Glycerophosphocholine in Living Cells. J. Biol. Chem. 2004, 279, 24024–24033. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.J.; Fink, J.K.; Glynn, P.; Hufnagel, R.B.; Makhaeva, G.F.; Wijeyesakere, S.J. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). In Advances in Neurotoxicology; Academic Press: Cambridge, MA, USA, 2020; Volume 4, pp. 1–78. [Google Scholar] [CrossRef]
- Davis, C.S.; Richardson, R.J. Neurotoxic esterase: Characterization of the solubilized enzyme and the conditions for its solubilization from chicken brain microsomal membranes with ionic, zwitterionic, or nonionic detergents. Biochem. Pharmacol. 1987, 36, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.N.; Padilla, S. Modulation of neurotoxic esterase activity in vitro by phospholipids. Toxicol. Appl. Pharmacol. 1989, 97, 272–278. [Google Scholar] [CrossRef]
- Atkins, J.; Luthjens, L.H.; Hom, M.L.; Glynn, P. Monomers of the catalytic domain of human neuropathy target esterase are active in the presence of phospholipid. Biochem. J. 2002, 361, 119–123. [Google Scholar] [CrossRef]
- Moser, M.; Li, Y.; Vaupel, K.; Kretzschmar, D.; Kluge, R.; Glynn, P.; Buettner, R. Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice. Mol. Cell. Biol. 2004, 24, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Read, D.J.; Li, Y.; Chao, M.V.; Cavanagh, J.B.; Glynn, P. Neuropathy Target Esterase Is Required for Adult Vertebrate Axon Maintenance. J. Neurosci. 2009, 29, 11594–11600. [Google Scholar] [CrossRef]
- Richardson, R.J.; Hein, N.D.; Wijeyesakere, S.J.; Fink, J.K.; Makhaeva, G.F. Neuropathy target esterase (NTE): Overview and future. Chem.-Biol. Interact. 2013, 203, 238–244. [Google Scholar] [CrossRef]
- Davis, C.S.; Richardson, R.J. Organophosphorus compounds. Exp. Clin. Neurotoxicol. 1980, 527–544. [Google Scholar]
- Johnson, M.K. Structure-activity relationships for substrates and inhibitors of hen brain neurotoxic esterase. Biochem. Pharmacol. 1975, 24, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.K. Organophosphorus esters causing delayed neurotoxic effects: Mechanism of action and structure activity studies. Arch. Toxicol. 1975, 34, 259–288. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.K. Sensitivity and selectivity of compounds interacting with neuropathy target esterase. Further structure–activity studies. Biochem. Pharmacol. 1975, 37, 4095–4104. [Google Scholar] [CrossRef]
- Johnson, M.K.; Henschler, D. The Delayed Neuropathy Caused by Some Organophosphorus Esters: Mechanism and Challenge. CRC Crit. Rev. Toxicol. 1975, 3, 289–316. [Google Scholar] [CrossRef] [PubMed]
- Clothier, B.; Johnson, M.K. Rapid aging of neurotoxic esterase after inhibition by di-isopropyl phosphorofluoridate. Biochem. J. 1979, 177, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Clothier, B.; Johnson, M.K. Reactivation and aging of neurotoxic esterase inhibited by a variety of organophosphorus esters. Biochem. J. 1980, 185, 739–747. [Google Scholar] [CrossRef]
- Kropp, T.J.; Glynn, P.; Richardson, R.J. The mipafox-inhibited catalytic domain of human neuropathy target esterase ages by reversible proton loss. Biochemistry 2004, 43, 3716–3722. [Google Scholar] [CrossRef]
- Carrington, C.D.; Abou-Donia, M.B. The time course of protection from delayed neurotoxicity induced by tri-o-cresyl phosphate and O, O-diisopropyl phosphorofluoridate by phenyl methyl sulfonyl fluoride in chickens. Toxicol. Lett. 1983, 18, 251–256. [Google Scholar] [CrossRef]
- Baker, T.; Lowndes, H.E.; Johnson, M.K.; Sandborg, I.C. The effects of phenylmethanesulfonyl fluoride on delayed organophosphorus neuropathy. Arch. Toxicol. 1980, 46, 305–311. [Google Scholar] [CrossRef]
- Drakontides, A.B.; Baker, T. An electrophysiologic and ultrastructural study of the phenylmethanesulfonyl fluoride protection against a delayed organophosphorus neuropathy. Toxicol. Appl. Pharmacol. 1983, 70, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Caroldi, S.; Lotti, M.; Masutti, A. Intra-arterial injection of diisopropylfluorophosphate or phenylmethanesulphonyl fluoride produces unilateral neuropathy or protection, respectively, in hens. Biochem. Pharmacol. 1984, 33, 3213–3217. [Google Scholar] [CrossRef] [PubMed]
- Wijeyesakere, S.J.; Richardson, R.J.; Stuckey, J.A. Modeling the tertiary structure of the patatin domain of neuropathy target esterase. Protein J. 2007, 26, 165–172. [Google Scholar] [CrossRef]
- Atkins, J.; Glynn, P. Membrane Association of and Critical Residues in the Catalytic Domain of Human Neuropathy Target Esterase. J. Biol. Chem. 2000, 275, 24477–24483. [Google Scholar] [CrossRef] [PubMed]
- Lotti, M.; Johnson, M.K. Neurotoxicity of organophosphorus pesticides: Predictions can be based on in vitro studies with hen and human enzymes. Arch. Toxicol. 1978, 41, 215–221. [Google Scholar] [CrossRef]
- Shen, M.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Dessen, A.; Tang, J.; Schmidt, H.; Stahl, M.; Clark, J.D.; Seehra, J.; Somers, W.S. Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell 1999, 97, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.N.; Padilla, S. Potentiation of organophosphorus-induced delayed neurotoxicity by phenylmethylsulfonyl fluoride. J. Toxicol. Environ. Health 1990, 31, 261–273. [Google Scholar] [CrossRef]
Ligand | Ligand Type | CDOCKER Energy (kcal/mol) |
---|---|---|
CBDP | Aging inhibitors | −30.8 |
PV | Substrate | −29.5 |
Mipafox | Aging inhibitors | −29.2 |
Phosphinic acid | Non-aging inhibitors | −25.6 |
DFP | Aging inhibitors | −21.7 |
PMSF | Non-aging inhibitors | −19.9 |
Regions in NEST | Residues | Aging NTE Inhibitors | Non-Aging NTE Inhibitors | Substrate | |||
---|---|---|---|---|---|---|---|
Mipafox | DPF | CBDP | PMSF | Phosphinic Acid | PV | ||
Catalytic dyad | Ser1014 | + | + | + | + | + | + |
Asp1134 | + | − | + | − | + | − | |
Oxyanion holes | Gly986 | + | − | + | − | + | + |
Gly987 | + | + | + | + | + | + | |
Arg989 | − | − | − | − | + | − | |
Hydrophobic pockets | Phe1066 | − | − | − | + | + | + |
Met1114 | − | + | + | + | + | − | |
Leu1116 | − | + | + | − | + | − | |
Others | Ile1015 | − | + | + | + | − | + |
Gly985 | − | − | − | − | + | + | |
Trp1039 | − | − | − | − | + | − |
Ligands | Aging NTE Inhibitors | Non-Aging NTE Inhibitors | Substrate | |||
---|---|---|---|---|---|---|
Mipafox | DPF | CBDP | PMSF | Phosphinic Acid | PV | |
Distance (Å) | 6.0 | 6.2 | 5.7 | 4.8 | 4.7 | 4.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Wang, P. Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase. Molecules 2023, 28, 7747. https://doi.org/10.3390/molecules28237747
Wu W, Wang P. Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase. Molecules. 2023; 28(23):7747. https://doi.org/10.3390/molecules28237747
Chicago/Turabian StyleWu, Wenxiong, and Pan Wang. 2023. "Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase" Molecules 28, no. 23: 7747. https://doi.org/10.3390/molecules28237747
APA StyleWu, W., & Wang, P. (2023). Computational Modeling Study of the Binding of Aging and Non-Aging Inhibitors with Neuropathy Target Esterase. Molecules, 28(23), 7747. https://doi.org/10.3390/molecules28237747