Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis
Abstract
:1. Introduction
2. Opioid Receptors
3. Evidence on the Peripheral Pharmacology of Opioid Antagonists in Relation to Opioid-Induced Constipation
3.1. Preclinical Studies
3.2. Human Studies
3.3. Safety of Current Opioid Antagonists for OIC Therapy
Co-Formulated Product | Route of Administration | Purpose of the Combination | Reference |
---|---|---|---|
NX + oxycodone | per os | OIC | [109] |
NX + oxycodone (1:2) | per os (prolonged release) | OIC | [90] |
NX + oxycodone (1:2) | per os (prolonged release) | OIC | [91] |
MNTX + opioid analgesics | s.c. + per os | OIC | [110] |
MNTX + morphine, oxycodone, or fentanyl | s.c.(MTNX) (per os) morphine (continuous-release patches) fentanyl, oxycodone | OIC | [111] |
MNTX + morphine | s.c.(MTNX) per os (morphine) | OIC | [84] |
MNTX + morphine | per os | OIC | [85] |
MNTX + morphine | s.c.(MTNX) | OIC | [112] |
MNTX + morphine | s.c.(MTNX) | OIC | [113] |
MNTX + morphine | s.c.(MTNX) | OIC | [114] |
Naloxegol + morphine | per os | OIC | [86] |
Naloxegol + morphine | per os | OIC | [100] |
Naldemedine + morphine | per os | OIC | [87] |
Naldemedine + opioid analgesic | OIC | [115] | |
Naldemedine + morphine | per os | OIC | [88] |
Naldemedine + morphine | per os | OIC | [89] |
4. Opioid Antagonists and the Gut Microbiome
Bacteria | Opioid Treatment | Reference | Note Subject | Constipation | Reference | Note Type of Constipation |
---|---|---|---|---|---|---|
Firmicutes Bacteroidetes | ↑ ↓ | [165] [163] | Sprague Dawley rat (oxycodone 2 mg/kg s.c. twice a day for 5 days) | ↑ ↓ | [166] | Irritable bowel syndrome patients with constipation. |
C57BL/6 mouse (loperamide 9.6 mg/kg p.o., twice a day for 14 days) | ||||||
Bifidobacterium, Lactobacillus | ↓ | [167] | C57BL/6 mouse (escalating doses of morphine from 5 to 40 mg/kg, twice/day for 8 days) | ↓ | [168] | Patients with functional constipation |
Lactobacillus, Bacteroides and Akkermansia | ↓ ↑ | [169] | C57BL/6 mouse (hydromorphone 7.5 mg/kg twice a day for 8 days) | ↓ ↑ | [96] | Mice received fecal microbiota from patients with constipation |
Bacteroidetes, Lactobacillus, and Clostridium | ↓ | [127] | C57BL/6 mouse (25 mg morphine pellet implanted for 3 days) | ↓ | [168,170] | Adult patients with functional constipation |
Ruminococcus, Clostridium spp. | ↑ | [171] | C57BL/6 mouse (intermittent and sustained morphine) | ↑ | [172] | Children with functional constipation |
Roseburia Enterobacteriaceae | ↓ ↑ | [164] | Patients (heroin or prescription opioids) | ↓ ↑ | [173] | Patients with constipated-irritable bowel syndrome |
Roseburia | ↓ | [164] [174] | Patients (heroin or prescription opioids) | ↓ | [175] [176] [177] | Patients with severe chronic constipation Italian subjects with functional constipation |
C57BL/6 pregnant mouse (10 mg/kg hydromorphone i.p. for 3 days, on gestation days G11-G13) | Constipated Women of Reproductive Age |
5. Exploring the Possible Interaction between Food-Derived Opioids or Probiotics and Opioid Analgesics in Microbiome Composition
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnamurti, C.; Rao, S.S.C.C. The isolation of morphine by serturner. Indian J. Anaesth. 2016, 60, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, G.W. The central questions in pain perception may be peripheral. Proc. Natl. Acad. Sci. USA 1998, 95, 10354–10355. [Google Scholar] [CrossRef] [PubMed]
- Balogh, M.; Zádori, Z.S.; Lázár, B.; Karádi, D.; László, S.; Mousa, S.A.; Hosztafi, S.; Zádor, F.; Riba, P.; Schäfer, M. The peripheral versus central antinociception of a novel opioid agonist: Acute inflammatory pain in rats. Neurochem. Res. 2018, 43, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Fürst, S.; Zádori, Z.S.; Zádor, F.; Király, K.; Balogh, M.; László, S.B.; Hutka, B.; Mohammadzadeh, A.; Calabrese, C.; Galambos, A.R. On the role of peripheral sensory and gut mu opioid receptors: Peripheral analgesia and tolerance. Molecules 2020, 25, 2473. [Google Scholar] [CrossRef] [PubMed]
- Khalefa, B.I.; Mousa, S.A.; Shaqura, M.; Lackó, E.; Hosztafi, S.; Riba, P.; Schäfer, M.; Ferdinandy, P.; Fürst, S.; Al-Khrasani, M. Peripheral antinociceptive efficacy and potency of a novel opioid compound 14-O-MeM6SU in comparison to known peptide and non-peptide opioid agonists in a rat model of inflammatory pain. Eur. J. Pharmacol. 2013, 713, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Lackó, E.; Riba, P.; Giricz, Z.; Váradi, A.; Cornic, L.; Balogh, M.; Király, K.; Cseko, K.; Mousa, S.A.; Hosztafi, S. New morphine analogs produce peripheral antinociception within a certain dose range of their systemic administration. J. Pharmacol. Exp. Ther. 2016, 359, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Schmidhammer, H.; Al-Khrasani, M.; Fürst, S.; Spetea, M. Peripheralization Strategies Applied to Morphinans and Implications for Improved Treatment of Pain. Molecules 2023, 28, 4761. [Google Scholar] [CrossRef] [PubMed]
- Tegeder, I.; Meier, S.; Burian, M.; Schmidt, H.; Geisslinger, G.; Lötsch, J.; LoÈtsch, J. Peripheral opioid analgesia in experimental human pain models. Brain 2003, 126, 1092–1102. [Google Scholar] [CrossRef]
- Stein, C.; Clark, J.D.; Oh, U.; Vasko, M.R.; Wilcox, G.L.; Overland, A.C.; Vanderah, T.W.; Spencer, R.H. Peripheral mechanisms of pain and analgesia. Brain Res. Rev. 2009, 60, 90–113. [Google Scholar] [CrossRef]
- Al-Khrasani, M.; Lackó, E.; Riba, P.; Király, K.; Sobor, M.; Timár, J.; Mousa, S.; Schäfer, M.; Fürst, S. The central versus peripheral antinociceptive effects of μ-opioid receptor agonists in the new model of rat visceral pain. Brain Res. Bull. 2012, 87, 238–243. [Google Scholar] [CrossRef]
- Bauer, C.S.; Nieto-Rostro, M.; Rahman, W.; Tran-Van-Minh, A.; Ferron, L.; Douglas, L.; Kadurin, I.; Ranjan, Y.S.; Fernandez-Alacid, L.; Millar, N.S. The increased trafficking of the calcium channel subunit α2δ-l to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin. J. Neurosci. 2009, 29, 4076–4088. [Google Scholar] [CrossRef]
- Balogh, M.; Varga, B.K.; Karádi, D.Á.; Riba, P.; Puskár, Z.; Kozsurek, M.; Al-Khrasani, M.; Király, K.; Martínez-Navarro, M. Maldonado, R.Similarity and dissimilarity in antinociceptive effects of dipeptidyl-peptidase 4 inhibitors, Diprotin A and vildagliptin in rat inflammatory pain models following spinal administration. Eur. J. Pain 2019, 147, 435–454. [Google Scholar]
- Martínez-Navarro, M.; Maldonado, R.; Baños, J. Why mu-opioid agonists have less analgesic efficacy in neuropathic pain? Eur. J. Pain 2019, 23, 435–454. [Google Scholar] [CrossRef] [PubMed]
- DeHaven-Hudkins, D.L.; DeHaven, R.N.; Little, P.J.; Techner, L.M. The involvement of the μ-opioid receptor in gastrointestinal pathophysiology: Therapeutic opportunities for antagonism at this receptor. Pharmacol. Ther. 2008, 117, 162–187. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.R.F.; Correll, C.U.; Weiden, P.J.; Jiang, Y.; Pathak, S.; Di Petrillo, L.; Silverman, B.L.; Ehrich, E.W.; Katsiki, N.; Hatzitolios, A.I. Extraction of neonatal rat myocardium—HHS Public Access. Sci. Rep. 2022, 10, 1–16. [Google Scholar]
- Holzer, P. Opioid receptors in the gastrointestinal tract. Regul. Pept. 2009, 155, 11–17. [Google Scholar] [CrossRef]
- Wang, F.; Meng, J.; Zhang, L.; Johnson, T.; Chen, C.; Roy, S. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Meng, J.; Ban, Y.; Jalodia, R.; Chupikova, I.; Fernandez, I.; Brito, N.; Sharma, U.; Abreu, M.T.; Ramakrishnan, S. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proc. Natl. Acad. Sci. USA 2019, 116, 13523–13532. [Google Scholar] [CrossRef]
- Kang, M.; Mischel, R.A.; Bhave, S.; Komla, E.; Cho, A.; Huang, C.; Dewey, W.L.; Akbarali, H.I. The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci. Rep. 2017, 7, 42658. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Y.; Zhang, P.; Yuan, Y.; Zhang, Y.; Chen, G. Gut microbiota regulates neuropathic pain: Potential mechanisms and therapeutic strategy. J. Headache Pain 2020, 21, 1–16. [Google Scholar] [CrossRef]
- Thomas, K.R.; Watt, J.; Wu, C.M.J.; Akinrinoye, A.; Amjad, S.; Colvin, L.; Cowe, R.; Duncan, S.H.; Russell, W.R.; Forget, P. Pain and Opioid-Induced Gut Microbial Dysbiosis. Biomedicines 2022, 10, 1815. [Google Scholar] [CrossRef] [PubMed]
- Pane, K.; Boccella, S.; Guida, F.; Franzese, M.; Maione, S.; Salvatore, M. Role of gut microbiota in neuropathy and neuropathic pain states: A systematic preclinical review. Neurobiol. Dis. 2022, 170, 105773. [Google Scholar] [CrossRef] [PubMed]
- Zádori, Z.S.; Király, K.; Al-Khrasani, M.; Gyires, K. Interactions between NSAIDs, opioids and the gut microbiota—Future perspectives in the management of inflammation and pain. Pharmacol. Ther. 2023, 241, 108327. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Satoh, M. Molecular biology of the opioid receptors: Structures, functions and distributions. Neurosci. Res. 1995, 23, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.; Schäfer, M.; Machelska, H. Attacking pain at its source: New perspectives on opioids. Nat. Med. 2003, 9, 1003–1008. [Google Scholar] [CrossRef]
- Minami, M. Molecular pharmacology of opioid receptors. Folia Pharmacol. Jpn. 2004, 123, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Leaney, J.L.; Tinker, A. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc. Natl. Acad. Sci. USA 2000, 97, 5651–5656. [Google Scholar] [CrossRef]
- Cox, B.M. Recent developments in the study of opioid receptors. Mol. Pharmacol. 2013, 83, 723–728. [Google Scholar] [CrossRef]
- Wei, L.-N.; Loh, H.H. Regulation of opioid receptor expression. Curr. Opin. Pharmacol. 2002, 2, 69–75. [Google Scholar] [CrossRef]
- Henriksen, G.; Willoch, F. Imaging of opioid receptors in the central nervous system. Brain 2008, 131, 1171–1196. [Google Scholar] [CrossRef]
- Koneru, A.; Satyanarayana, S.; Rizwan, S. Endogenous opioids: Their physiological role and receptors. Glob. J. Pharmacol. 2009, 3, 149–153. [Google Scholar]
- Martyn, J.A.J.; Mao, J.; Bittner, E.A. Opioid Tolerance in Critical Illness. Reply. N. Engl. J. Med. 2019, 380, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Shibasaki, Y.; Matsumoto, K.; Shibasaki, M.; Hasegawa, M.; Wang, E.; Masukawa, D.; Yoshizawa, K.; Horie, S.; Suzuki, T. Mechanisms that underlie μ-opioid receptor agonist-induced constipation: Differential involvement of μ-opioid receptor sites and responsible regions. J. Pharmacol. Exp. Ther. 2013, 347, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Umemoto, H.; Mori, T.; Akatsu, R.; Saito, S.; Tashima, K.; Shibasaki, M.; Kato, S.; Suzuki, T.; Horie, S. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice. Eur. J. Pharmacol. 2016, 771, 220–228. Available online: https://www.sciencedirect.com/science/article/pii/S0014299915304283 (accessed on 19 December 2015). [CrossRef] [PubMed]
- Manara, L.; Bianchetti, A. The Central and Peripheral Influences of Opioids on Gastrointestinal Propulsion. Annu. Rev. Pharmacol. Toxicol. 1985, 25, 249–273. [Google Scholar] [CrossRef]
- Leppert, W. The impact of opioid analgesics on the gastrointestinal tract function and the current management possibilities. Contemp. Oncol. 2012, 16, 125–131. [Google Scholar]
- De Luca, A.; Coupar, I.M. Insights into opioid action in the intestinal tract. Pharmacol. Ther. 1996, 69, 103–115. [Google Scholar] [CrossRef]
- Friedman, J.D.; Dello Buono, F.A. Opioid antagonists in the treatment of opioid-induced constipation and pruritus. Ann. Pharmacother. 2001, 35, 85–91. [Google Scholar] [CrossRef]
- Greenwood-Van Meerveld, B.; Gardner, C.J.; Little, P.J.; Hicks, G.A.; Dehaven-Hudkins, D.L. Preclinical studies of opioids and opioid antagonists on gastrointestinal function. Neurogastroenterol. Motil. 2004, 16, 46–53. [Google Scholar] [CrossRef]
- Zádor, F.; Mohammadzadeh, A.; Balogh, M.; Zádori, Z.S.; Király, K.; Barsi, S.; Galambos, A.R.; László, S.B.; Hutka, B.; Váradi, A. Comparisons of in vivo and in vitro opioid effects of newly synthesized 14-methoxycodeine-6-O-sulfate and codeine-6-O-sulfate. Molecules 2020, 25, 1370. [Google Scholar] [CrossRef]
- Brock, C.; Olesen, S.S.; Olesen, A.E.; Frøkjaer, J.B.; Andresen, T.; Drewes, A.M. Opioid-induced bowel dysfunction: Pathophysiology and management. Drugs 2012, 72, 1847–1865. [Google Scholar] [CrossRef] [PubMed]
- Gillis, A.; Kliewer, A.; Kelly, E.; Henderson, G.; Christie, M.J.; Schulz, S.; Canals, M. Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor. Trends Pharmacol. Sci. 2020, 41, 947–959. [Google Scholar] [CrossRef] [PubMed]
- DeWire, S.M.; Yamashita, D.S.; Rominger, D.H.; Liu, G.; Cowan, C.L.; Graczyk, T.M.; Chen, X.-T.; Pitis, P.M.; Gotchev, D.; Yuan, C. A G Protein-Biased Ligand at the μ—Opioid Receptor Is Potently Analgesic with Reduced Gastrointestinal and Respiratory Dysfunction Compared with Morphine. J. Pharmacol. Exp. Ther. 2013, 344, 708–717. Available online: http://jpet.aspetjournals.org/content/344/3/708.abstract (accessed on 8 January 2013). [CrossRef] [PubMed]
- Conibear, A.E.; Kelly, E. A biased view of μ-Opioid receptors? Mol. Pharmacol. 2019, 96, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, G.W.; Childers, S.R.; Snyder, S.H. Opiate analgesia: Evidence for mediation by a subpopulation of opiate receptors. Science 1980, 208, 514–516. [Google Scholar] [CrossRef]
- Portoghese, P.S. A New Concept on the Mode of Interaction of Narcotic Analgesics with Receptors. J. Med. Chem. 1965, 8, 609–616. [Google Scholar] [CrossRef]
- Wolozin, B.L.; Pasternak, G.W. Classification of multiple morphine and enkephalin binding sites in the central nervous system. Proc. Natl. Acad. Sci. USA 1981, 78, 6181–6185. [Google Scholar] [CrossRef]
- Camilleri, M. Opioid-induced constipation: Challenges and therapeutic opportunities. J. Am. Coll. Gastroenterol. ACG 2011, 106, 835–842. [Google Scholar] [CrossRef]
- Kalso, E.; Edwards, J.E.; Moore, A.R.; McQuay, H.J. Opioids in chronic non-cancer pain: Systematic review of efficacy and safety. Pain 2004, 112, 372–380. [Google Scholar] [CrossRef]
- Bell, T.J.; Panchal, S.J.; Miaskowski, C.; Bolge, S.C.; Milanova, T.; Williamson, R. The prevalence, severity, and impact of opioid-induced bowel dysfunction: Results of a US and European patient survey (PROBE 1). Pain Med. 2009, 10, 35–42. [Google Scholar] [CrossRef]
- Taylor, R., Jr.; Pergolizzi, J.V., Jr.; Porreca, F.; Raffa, R.B. Opioid antagonists for pain. Expert. Opin. Investig. Drugs 2013, 22, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Billings, J.A. Opioid antagonists: A review of their role in palliative care, focusing on use in opioid-related constipation. J. Pain Symptom Manag. 2002, 24, 71–90. [Google Scholar] [CrossRef]
- Greig, S.L.; Keating, G.M. Naltrexone ER/bupropion ER: A review in obesity management. Drugs 2015, 75, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Mouaffak, F.; Hamzaoui, S.; Kebir, O.; Laqueille, X. Kleptomania treated with naltrexone in a patient with intellectual disability. J. Psychiatry Neurosci. 2020, 45, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Sudakin, D. Naltrexone: Not just for opioids anymore. J. Med. Toxicol. 2016, 12, 71–75. [Google Scholar] [CrossRef]
- Anderson, W.S.; Sheth, R.N.; Bencherif, B.; Frost, J.J.; Campbell, J.N. Naloxone increases pain induced by topical capsaicin in healthy human volunteers. Pain 2002, 99, 207–216. [Google Scholar] [CrossRef]
- Brown, D.R.; Goldberg, L.I. The use of quaternary narcotic antagonists in opiate research. Neuropharmacology 1985, 24, 181–191. [Google Scholar] [CrossRef]
- Bates, J.J.; Foss, J.F.; Murphy, D.B. Are peripheral opioid antagonists the solution to opioid side effects? Anesth. Analg. 2004, 98, 116–122. [Google Scholar] [CrossRef]
- Bianchetti, A.; Giudice, A.; Picerno, N.; Carminati, P. Pharmacological actions of levallorphan allyl bromide (CM 32191), a new peripheral narcotic antagonist. Life Sci. 1982, 31, 2261–2264. [Google Scholar] [CrossRef]
- Cannom, R.R.; Mason, R.J. Methylnaltrexone: The answer to opioid-induced constipation? Expert Opin. Pharmacother. 2009, 10, 1039–1045. [Google Scholar] [CrossRef]
- Dragonetti, M.; Bianchetti, A.; Sacilotto, R.; Giudice, A.; Ferrarese, N.; Cattaneo, C.; Manara, L. Levallorphan methyl iodide (SR 58002), a potent narcotic antagonist with peripheral selectivity superior to that of other quaternary compounds. Life Sci. 1983, 33, 477–480. [Google Scholar] [CrossRef]
- Ferreira, S.H.; Lorenzetti, B.B.; Rae, G.A. Is methylnalorphinium the prototype of an ideal peripheral analgesic? Eur. J. Pharmacol. 1984, 99, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Manara, L.; Bianchi, G.; Fiocchi, R.; Notarnicola, A.; Peracchia, F.; Tavani, A. Inhibition of gastrointestinal transit by morphine and FK 33-824 in the rat and comparative narcotic antagonist properties of naloxone and its N-methyl quaternary analog. Life Sci. 1982, 31, 1271–1274. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Landi, M.; Bianchi, G.; Tavani, A. Relative ability of N-methyl nalorphine and N-methyl levallorphan to prevent antinociception and intestinal transit inhibition in morphine treated rats. Life Sci. 1983, 33, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.; Bass, P.; Goldberg, L.I.; Schuster, C.R.; Merz, H. Antagonism of gut, but not central effects of morphine with quaternary narcotic antagonists. Eur. J. Pharmacol. 1982, 78, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.-S.; Foss, J.F.; Moss, J. Effects of methylnaltrexone on morphine-induced inhibition of contraction in isolated guinea-pig ileum and human intestine. Eur. J. Pharmacol. 1995, 276, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Tavani, A.; Bianchi, G.; Manara, L. Morphine no longer blocks gastrointestinal transit but retains antinociceptive action in diallylnormorphine-pretreated rats. Eur. J. Pharmacol. 1979, 59, 151–154. [Google Scholar] [CrossRef]
- Anselmi, L.; Huynh, J.; Vegezzi, G.; Sternini, C. Effects of methylnaltrexone on guinea pig gastrointestinal motility. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2013, 386, 279–286. [Google Scholar] [CrossRef]
- Yuan, Y.; Stevens, D.L.; Braithwaite, A.; Scoggins, K.L.; Bilsky, E.J.; Akbarali, H.I.; Dewey, W.L.; Zhang, Y. 6β-N-heterocyclic substituted naltrexamine derivative NAP as a potential lead to develop peripheral mu opioid receptor selective antagonists. Bioorg. Med. Chem. Lett. 2012, 22, 4731–4734. [Google Scholar] [CrossRef]
- Li, G.; Aschenbach, L.C.; Chen, J.; Cassidy, M.P.; Stevens, D.L.; Gabra, B.H.; Selley, D.E.; Dewey, W.L.; Westkaemper, R.B.; Zhang, Y. Design, synthesis, and biological evaluation of 6alpha- and 6beta-N-heterocyclic substituted naltrexamine derivatives as mu opioid receptor selective antagonists. J. Med. Chem. 2009, 52, 1416–1427. [Google Scholar] [CrossRef]
- Williams, D.A.; Zheng, Y.; David, B.; Yuan, Y.; Zaidi, S.A.; Stevens, D.L.; Scoggins, K.L.; Selley, D.E.; Dewey, W.L.; Akbarali, H.I. 6β-N-Heterocyclic Substituted Naltrexamine Derivative BNAP: A Peripherally Selective Mixed MOR/KOR Ligand. ACS Chem. Neurosci. 2016, 7, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Kanemasa, T.; Koike, K.; Arai, T.; Ono, H.; Horita, N.; Chiba, H.; Nakamura, A.; Morioka, Y.; Kihara, T.; Hasegawa, M. Pharmacologic effects of naldemedine, a peripherally acting μ-opioid receptor antagonist, in in vitro and in vivo models of opioid-induced constipation. Neurogastroenterol. Motil. 2019, 31, e13563. [Google Scholar] [CrossRef] [PubMed]
- Floettmann, E.; Bui, K.; Sostek, M.; Payza, K.; Eldon, M. Pharmacologic profile of naloxegol, a peripherally acting μ-opioid receptor antagonist, for the treatment of opioid-induced constipation. J. Pharmacol. Exp. Ther. 2017, 361, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, D.M.; Gidda, J.S.; Cantrell, B.E.; Schoepp, D.D.; Johnson, B.G.; Leander, J.D. Discovery of a potent, peripherally selective trans-3, 4-dimethyl-4-(3-hydroxyphenyl) piperidine opioid antagonist for the treatment of gastrointestinal motility disorders. J. Med. Chem. 1994, 37, 2262–2265. [Google Scholar] [CrossRef]
- Zimmerman, D.M. LY246736 Dihydrate. m Opioid receptor antagonist. Drugs Future 1994, 19, 1078–1083. [Google Scholar] [CrossRef]
- Spetea, M.; Rief, S.B.; Ben Haddou, T.; Fink, M.; Kristeva, E.; Mittendorfer, H.; Haas, S.; Hummer, N.; Follia, V.; Guerrieri, E. Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14-O-Methyloxymorphone, as Potent μ/δ Opioid Agonists and Peripherally Selective Antinociceptives. J. Med. Chem. 2019, 62, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Zádor, F.; Balogh, M.; Váradi, A.; Zádori, Z.S.; Király, K.; Szűcs, E.; Varga, B.; Lázár, B.; Hosztafi, S.; Riba, P. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity. Eur. J. Pharmacol. 2017, 814, 264–273. [Google Scholar] [CrossRef]
- Yuan, C.S.; Foss, J.F.; Osinski, J.; Toledano, A.; Roizen, M.F.; Moss, J. The safety and efficacy of oral methylnaltrexone in preventing morphine-induced delay in oral-cecal transit time. Clin. Pharmacol. Ther. 1997, 61, 467–475. [Google Scholar] [CrossRef]
- Yuan, C.S.; Foss, J.F.; O’Connor, M.; Toledano, A.; Roizen, M.F.; Moss, J. Methylnaltrexone prevents morphine-induced delay in oral-cecal transit time without affecting analgesia: A double-blind randomized placebo-controlled trial. Clin. Pharmacol. Ther. 1996, 59, 469–475. [Google Scholar] [CrossRef]
- Yuan, C.S.; Foss, J.F.; O’Connor, M.; Osinski, J.; Karrison, T.; Moss, J.; Roizen, M.F. Methylnaltrexone for reversal of constipation due to chronic methadone use: A randomized controlled trial. JAMA 2000, 283, 367–372. [Google Scholar] [CrossRef]
- Viscusi, E.R. Clinical Overview and Considerations for the Management of Opioid-induced Constipation in Patients With Chronic Noncancer Pain. Clin. J. Pain 2019, 35, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Gregorian, T.; Lewis, J.; Tsu, L. Opioid-Induced Constipation: Clinical Guidance and Approved Therapies; Champman University: Orange, CA, USA, 2017. [Google Scholar]
- Diego, L.; Atayee, R.; Helmons, P.; Von Gunten, C.F. Methylnaltrexone: A novel approach for the management of opioid-induced constipation in patients with advanced illness. Expert. Rev. Gastroenterol. Hepatol. 2009, 3, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Michna, E.; Blonsky, E.R.; Schulman, S.; Tzanis, E.; Manley, A.; Zhang, H.; Iyer, S.; Randazzo, B. Subcutaneous methylnaltrexone for treatment of opioid-induced constipation in patients with chronic, nonmalignant pain: A randomized controlled study. J. Pain 2011, 12, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Rauck, R.; Slatkin, N.E.; Stambler, N.; Harper, J.R.; Israel, R.J. Randomized, Double-Blind Trial of Oral Methylnaltrexone for the Treatment of Opioid-Induced Constipation in Patients with Chronic Noncancer Pain. Pain Pract. 2017, 17, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Webster, L.; Sostek, M.; Lappalainen, J.; Barker, P.N.; Tack, J. Naloxegol for Opioid-Induced Constipation in Patients with Noncancer Pain. N. Engl. J. Med. 2014, 370, 2387–2396. [Google Scholar] [CrossRef]
- Hale, M.; Wild, J.; Reddy, J.; Yamada, T.; Arjona Ferreira, J.C. Naldemedine versus placebo for opioid-induced constipation (COMPOSE-1 and COMPOSE-2): Two multicentre, phase 3, double-blind, randomised, parallel-group trials. Lancet Gastroenterol. Hepatol. 2017, 2, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Hale, M.; Morlion, B.; Tack, J.; Webster, L.; Wild, J. Naldemedine improves patient-reported outcomes of opioid-induced constipation in patients with chronic non-cancer pain in the compose phase 3 studies. J. Pain Res. 2021, 14, 2179–2189. [Google Scholar] [CrossRef]
- Katakami, N.; Harada, T.; Murata, T.; Shinozaki, K.; Tsutsumi, M.; Yokota, T.; Narabayashi, M.; Boku, N. Randomized phase III and extension studies of naldemedine in patients with opioid-induced constipation and cancer. J. Clin. Oncol. 2017, 35, 3859–3866. [Google Scholar] [CrossRef]
- Löwenstein, O.; Leyendecker, P.; Lux, E.A.; Blagden, M.; Simpson, K.H.; Hopp, M.; Bosse, B.; Reimer, K. Efficacy and safety of combined prolonged-release oxycodone and naloxone in the management of moderate/severe chronic non-malignant pain: Results of a prospectively designed pooled analysis of two randomised, double-blind clinical trials. BMC Clin. Pharmacol. 2010, 10, 1–9. [Google Scholar] [CrossRef]
- Meissner, W.; Leyendecker, P.; Mueller-Lissner, S.; Nadstawek, J.; Hopp, M.; Ruckes, C.; Wirz, S.; Fleischer, W.; Reimer, K. A randomised controlled trial with prolonged-release oral oxycodone and naloxone to prevent and reverse opioid-induced constipation. Eur. J. Pain 2009, 13, 56–64. [Google Scholar] [CrossRef]
- Callaghan, J.T.; Cerimele, B.; Nowak, T.V.; DeLong, A.; Myhart, E.; Oldham, S. Effect of the opioid antagonist ly 246736 on gastro-intestinal transit in human subjects. Gastroenterology 1998, 114, A730. [Google Scholar] [CrossRef]
- Liu, S.S.; Hodgson, P.S.; Carpenter, R.L.; Fricke, J.R., Jr. ADL 8-2698, a trans-3, 4-dimethyl-4-(3-hydroxyphenyl) piperidine, prevents gastrointestinal effects of intravenous morphine without affecting analgesia. Clin. Pharmacol. Ther. 2001, 69, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.; Jansen, J.P.; Peppin, J.; Lasko, B.; Irving, G.; Morlion, B.; Snidow, J.; Pierce, A.; Mortensen, E.; Kleoudis, C. Alvimopan, a peripherally acting mu-opioid receptor (PAM-OR) antagonist for the treatment of opioid-induced bowel dysfunction: Results from a randomized, double-blind, placebo-controlled, dose-finding study in subjects taking opioids for chronic non-cance. PAIN® 2008, 137, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.P.; Lorch, D.; Langan, J.; Lasko, B.; Hermanns, K.; Kleoudis, C.S.; Snidow, J.W.; Pierce, A.; Wurzelmann, J.; Mortensen, E.R. A randomized, placebo-controlled phase 3 trial (study sb-767905/012) of alvimopan for opioid-induced bowel dysfunction in patients with non-cancer pain. J. Pain 2011, 12, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, X.; An, Y.; Zhou, G.; Liu, Y.; Xu, M.; Dong, W.; Wang, S.; Yan, F.; Jiang, K. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci. Rep. 2017, 7, 10322. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.R.; Michna, E.; Khan, A.; Israel, R.J.; Harper, J.R. Long-Term Safety and Efficacy of Subcutaneous Methylnaltrexone in Patients with Opioid-Induced Constipation and Chronic Noncancer Pain: A Phase 3, Open-Label Trial. Pain. Med. 2017, 18, 1496–1504. [Google Scholar] [CrossRef]
- Rauck, R.L.; Slatkin, N.E.; Stambler, N.; Israel, R.J. Safety of oral methylnaltrexone for opioid-induced constipation in patients with chronic noncancer pain. J. Pain Res. 2018, 12, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Webster, L.; Chey, W.D.; Tack, J.; Lappalainen, J.; Diva, U.; Sostek, M. Randomised clinical trial: The long-term safety and tolerability of naloxegol in patients with pain and opioid-induced constipation. Aliment. Pharmacol. Ther. 2014, 40, 771–779. [Google Scholar] [CrossRef]
- Webster, L.; Dhar, S.; Eldon, M.; Masuoka, L.; Lappalainen, J.; Sostek, M. A phase 2, double-blind, randomized, placebo-controlled, dose-escalation study to evaluate the efficacy, safety, and tolerability of naloxegol in patients with opioid-induced constipation. Pain 2013, 154, 1542–1550. [Google Scholar] [CrossRef]
- Webster, L.R.; Nalamachu, S.; Morlion, B.; Reddy, J.; Baba, Y.; Yamada, T.; Ferreira, J.C.A. Long-term use of naldemedine in the treatment of opioid-induced constipation in patients with chronic noncancer pain: A randomized, double-blind, placebo-controlled phase 3 study. Pain 2018, 159, 987. [Google Scholar] [CrossRef]
- Guerriero, F.; Roberto, A.; Greco, M.T.; Sgarlata, C.; Rollone, M.; Corli, O. Long-term efficacy and safety of oxycodone–naloxone prolonged release in geriatric patients with moderate-to-severe chronic noncancer pain: A 52-week open-label extension phase study. Drug Des. Devel. Ther. 2016, 10, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Siemens, W.; Gaertner, J.; Becker, G. Advances in pharmacotherapy for opioid-induced constipation–a systematic review. Expert. Opin. Pharmacother. 2015, 16, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.M.; Chey, W.D. An evidence-based review of novel and emerging therapies for constipation in patients taking opioid analgesics. Am. J. Gastroenterol. Suppl. 2014, 2, 38. [Google Scholar] [CrossRef]
- Bui, K.; Zhou, D.; Sostek, M.; She, F.; Al-Huniti, N. Effects of CYP3A modulators on the pharmacokinetics of naloxegol. J. Clin. Pharmacol. 2016, 56, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Bui, K.; She, F.; Sostek, M. The effects of renal impairment on the pharmacokinetics, safety, and tolerability of naloxegol. J. Clin. Pharmacol. 2014, 54, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, A.; Tong, Z.; Li, H.; Erve, J.C.L.; DeMaio, W.; Goljer, I.; McConnell, O.; Rotshteyn, Y.; Hultin, T.; Talaat, R. Metabolism of intravenous methylnaltrexone in mice, rats, dogs, and humans. Drug Metab. Dispos. 2010, 38, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Rotshteyn, Y.; Boyd, T.A.; Yuan, C.-S. Methylnaltrexone bromide: Research update of pharmacokinetics following parenteral administration. Expert. Opin. Drug Metab. Toxicol. 2011, 7, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Lissner, S. Fixed combination of oxycodone with naloxone: A new way to prevent and treat opioid-induced constipation. Adv. Ther. 2010, 27, 581–590. [Google Scholar] [CrossRef]
- Thomas, J. Opioid-Induced Bowel Dysfunction. J. Pain Symptom Manag. 2008, 35, 103–113. [Google Scholar] [CrossRef]
- Neefjes, E.C.W.; Van Der Wijngaart, H.; Van Der Vorst, M.J.D.L.; Ten Oever, D.; Van Der Vliet, H.J.; Beeker, A.; Rhodius, C.A.; Van Den Berg, H.P.; Berkhof, J.; Verheul, H.M.W. Optimal treatment of opioid induced constipation in daily clinical practice—An observational study. BMC Palliat. Care. 2019, 18, 1–9. [Google Scholar] [CrossRef]
- Chamberlain, B.H.; Rhiner, M.; Slatkin, N.E.; Stambler, N.; Israel, R.J. Subcutaneous methylnaltrexone for treatment of opioid-induced constipation in cancer versus noncancer patients: An analysis of efficacy and safety variables from two studies. J. Pain Res. 2021, 14, 2687–2697. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Ji, Y.; Kumar, S.; Ashikaga, T.; Ades, S. Phase II trial of subcutaneous methylnaltrexone in the treatment of severe opioid-induced constipation (OIC) in cancer patients: An exploratory study. Int. J. Clin. Oncol. 2017, 22, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Nalamachu, S.R.; Pergolizzi, J.; Taylor, R.; Slatkin, N.E.; Barrett, A.C.; Yu, J.; Bortey, E.; Paterson, C.; Forbes, W.P. Efficacy and Tolerability of Subcutaneous Methylnaltrexone in Patients with Advanced Illness and Opioid-Induced Constipation: A Responder Analysis of 2 Randomized, Placebo-Controlled Trials. Pain Pract. 2015, 15, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Michl, P.; Witt, H.; Scholz, M.; Fe, C.; Biology, C.; Medicine, N.; Munich, H.C. UEG Week 2017 Oral Presentations. United Eur. Gastroenterol. J. 2017, 5, 1–160. [Google Scholar]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Luca, M.; Chattipakorn, S.C.; Sriwichaiin, S.; Luca, A. Cognitive-behavioural correlates of dysbiosis: A review. Int. J. Mol. Sci. 2020, 21, 4834. [Google Scholar] [CrossRef]
- Guo, R.; Chen, L.H.; Xing, C.; Liu, T. Pain regulation by gut microbiota: Molecular mechanisms and therapeutic potential. Br. J. Anaesth. 2019, 123, 637–654. [Google Scholar] [CrossRef]
- Dworsky-Fried, Z.; Kerr, B.J.; Taylor, A.M.W. Microbes, microglia, and pain. Neurobiol. Pain 2020, 7, 100045. [Google Scholar] [CrossRef]
- Ustianowska, K.; Ustianowski, Ł.; Machaj, F.; Gorący, A.; Rosik, J.; Szostak, B.; Szostak, J.; Pawlik, A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int. J. Mol. Sci. 2022, 23, 13267. [Google Scholar] [CrossRef]
- Moriarty, O.; Ruane, N.; O’Gorman, D.; Maharaj, C.H.; Mitchell, C.; Sarma, K.M.; Finn, D.P.; McGuire, B.E. Cognitive Impairment in Patients with Chronic Neuropathic or Radicular Pain: An Interaction of Pain and Age. Front. Behav. Neurosci. 2017, 11, 100. [Google Scholar] [CrossRef]
- Khera, T.; Rangasamy, V. Cognition and Pain: A Review. Front. Psychol. 2021, 12, 673962. [Google Scholar] [CrossRef]
- Akbarali, H.I.; Inkisar, A.; Dewey, W.L. Site and mechanism of morphine tolerance in the gastrointestinal tract. Neurogastroenterol. Motil. 2014, 26, 1361–1367. [Google Scholar] [CrossRef]
- Nelson, A.D.; Camilleri, M. Opioid-induced constipation: Advances and clinical guidance. Ther. Adv. Chronic. Dis. 2016, 7, 121–134. [Google Scholar] [CrossRef]
- Ross, G.R.; Gabra, B.H.; Dewey, W.L.; Akbarali, H.I. Morphine tolerance in the mouse ileum and colon. J. Pharmacol. Exp. Ther. 2008, 327, 561–572. [Google Scholar] [CrossRef]
- Galligan, J.J.; Sternini, C. Insights into the role of opioid receptors in the GI tract: Experimental evidence and therapeutic relevance. Gastrointest. Pharmacol. 2017, 239, 363–378. [Google Scholar]
- Banerjee, S.; Sindberg, G.; Wang, F.; Meng, J.; Sharma, U.; Zhang, L.; Dauer, P.; Chen, C.; Dalluge, J.; Johnson, T. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal. Immunol. 2016, 9, 1418–1428. [Google Scholar] [CrossRef]
- Meng, J.; Banerjee, S.; Li, D.; Sindberg, G.M.; Wang, F.; Ma, J.; Roy, S. Opioid exacerbation of gram-positive sepsis, induced by gut microbial modulation, is rescued by IL-17A neutralization. Sci. Rep. 2015, 5, 1–17. [Google Scholar] [CrossRef]
- Breslow, J.M.; Monroy, M.A.; Daly, J.M.; Meissler, J.J.; Gaughan, J.; Adler, M.W.; Eisenstein, T.K. Morphine, but not trauma, sensitizes to systemic acinetobacter baumannii infection. J. Neuroimmune Pharmacol. 2011, 6, 551–565. [Google Scholar] [CrossRef]
- Meng, J.; Sindberg, G.M.; Roy, S. Disruption of Gut Homeostasis by Opioids Accelerates HIV Disease Progression. Front. Microbiol. 2015, 6, 643. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2015.00643 (accessed on 26 June 2015). [CrossRef]
- Meng, J.; Yu, H.; Ma, J.; Wang, J.; Banerjee, S.; Charboneau, R.; Barke, R.A.; Roy, S. Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS ONE 2013, 8, e54040. [Google Scholar] [CrossRef]
- Zhuang, M.; Shang, W.; Ma, Q.; Strappe, P.; Zhou, Z. Abundance of Probiotics and Butyrate-Production Microbiome Manages Constipation via Short-Chain Fatty Acids Production and Hormones Secretion. Mol. Nutr. Food Res. 2019, 63, e1801187. [Google Scholar] [CrossRef] [PubMed]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
- Biddle, A.; Stewart, L.; Blanchard, J.; Leschine, S. Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities. Diversity 2013, 5, 627–640. [Google Scholar] [CrossRef]
- Lang-Illievich, K.; Bornemann-Cimenti, H. Opioid-induced constipation: A narrative review of therapeutic options in clinical management. Korean J. Pain 2019, 32, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Morlion, B.J.; Mueller-Lissner, S.A.; Vellucci, R.; Leppert, W.; Coffin, B.C.; Dickerson, S.L.; O’Brien, T. Oral Prolonged-Release Oxycodone/Naloxone for Managing Pain and Opioid-Induced Constipation: A Review of the Evidence. Pain Pract. 2018, 18, 647–665. [Google Scholar] [CrossRef]
- Kim, J.E.; Kang, M.J.; Choi, J.Y.; Park, J.J.; Lee, M.R.; Song, B.R.; Kim, H.R.; Park, J.W.; Choi, H.J.; Bae, S.J. Regulation of gastrointestinal hormones during laxative activity of gallotannin-enriched extract isolated from Galla Rhois in loperamide-induced constipation of SD rats. Lab. Anim. Res. 2018, 34, 223–231. [Google Scholar] [CrossRef]
- Preston, D.M.; Adrian, T.E.; Christofides, N.D.; Lennard-Jones, J.E.; Bloom, S.R. Positive correlation between symptoms and circulating motilin, pancreatic polypeptide and gastrin concentrations in functional bowel disorders. Gut 1985, 26, 1059–1064. [Google Scholar] [CrossRef]
- Davis, M.P. The opioid bowel syndrome: A review of pathophysiology and treatment. J. Opioid Manag. 2005, 1, 153–161. [Google Scholar] [CrossRef]
- Jones, A.K.P.; Watabe, H.; Cunningham, V.J.; Jones, T. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C] diprenorphine binding and PET. Eur. J. Pain 2004, 8, 479–485. [Google Scholar] [CrossRef]
- Maarrawi, J.; Peyron, R.; Mertens, P.; Costes, N.; Magnin, M.; Sindou, M.; Laurent, B.; Garcia-Larrea, L. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 2007, 127, 183–194. [Google Scholar] [CrossRef]
- Obara, I.; Parkitna, J.R.; Korostynski, M.; Makuch, W.; Kaminska, D.; Przewlocka, B.; Przewlocki, R. Local peripheral opioid effects and expression of opioid genes in the spinal cord and dorsal root ganglia in neuropathic and inflammatory pain. PAIN® 2009, 141, 283–291. [Google Scholar] [CrossRef]
- Shaqura, M.; Khalefa, B.I.; Shakibaei, M.; Winkler, J.; Al-Khrasani, M.; Fürst, S.; Mousa, S.A.; Schäfer, M. Reduced number, G protein coupling, and antinociceptive efficacy of spinal mu-opioid receptors in diabetic rats are reversed by nerve growth factor. J. Pain 2013, 14, 720–730. [Google Scholar] [CrossRef]
- Akbarali, H.I.; Dewey, W.L. Gastrointestinal motility, dysbiosis and opioid-induced tolerance: Is there a link? Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 323–324. [Google Scholar] [CrossRef]
- Al-Khrasani, M.; Spetea, M.; Friedmann, T.; Riba, P.; Király, K.; Schmidhammer, H.; Furst, S. DAMGO and 6β-glycine substituted 14-O-methyloxymorphone but not morphine show peripheral, preemptive antinociception after systemic administration in a mouse visceral pain model and high intrinsic efficacy in the isolated rat vas deferens. Brain Res. Bull. 2007, 74, 369–375. Available online: https://www.sciencedirect.com/science/article/pii/S036192300700216X (accessed on 26 May 2020). [CrossRef]
- Fürst, S.; Riba, P.; Friedmann, T.; Tímar, J.; Al-Khrasani, M.; Obara, I.; Makuch, W.; Spetea, M.; Schütz, J.; Przewlocki, R. Peripheral versus Central Antinociceptive Actions of 6-Amino Acid-Substituted Derivatives of 14-O-Methyloxymorphone in Acute and Inflammatory Pain in the Rat. J. Pharmacol. Exp. Ther. 2005, 312, 609–618. Available online: http://jpet.aspetjournals.org/content/312/2/609.abstract (accessed on 21 September 2004). [CrossRef]
- Khalefa, B.I.; Shaqura, M.; Al-Khrasani, M.; Fürst, S.; Mousa, S.A.; Schäfer, M. Relative contributions of peripheral versus supraspinal or spinal opioid receptors to the antinociception of systemic opioids. Eur. J. Pain 2012, 16, 690–705. [Google Scholar] [CrossRef]
- Azevedo Neto, J.; Costanzini, A.; De Giorgio, R.; Lambert, D.G.; Ruzza, C.; Calò, G. Biased versus Partial Agonism in the Search for Safer Opioid Analgesics. Molecules 2020, 25, 3870. [Google Scholar] [CrossRef]
- Eor, J.Y.; Tan, P.L.; Lim, S.M.; Choi, D.H.; Yoon, S.M.; Yang, S.Y.; Kim, S.H. Laxative effect of probiotic chocolate on loperamide-induced constipation in rats. Food Res. Int. 2019, 116, 1173–1182. [Google Scholar] [CrossRef]
- Kim, M.G.; Jo, K.; Chang, Y.B.; Suh, H.J.; Hong, K.B. Changes in the gut microbiome after galactooligosaccharide administration in loperamideinduced constipation. J. Pers. Med. 2020, 10, 161. [Google Scholar] [CrossRef]
- Inatomi, T.; Honma, M. Effects of probiotics on loperamide-induced constipation in rats. Sci. Rep. 2021, 11, 24098. [Google Scholar] [CrossRef]
- Hao, M.; Song, J.; Zhai, X.; Cheng, N.; Xu, C.; Gui, S.; Chen, J. Improvement of loperamide-hydrochloride-induced intestinal motility disturbance by Platycodon grandiflorum polysaccharides through effects on gut microbes and colonic serotonin. Front. Cell Infect. Microbiol. 2023, 13, 1105272. [Google Scholar] [CrossRef]
- Kim, J.-E.; Choi, Y.-J.; Lee, S.-J.; Gong, J.-E.; Jin, Y.-J.; Park, S.-H.; Lee, H.-S.; Choi, Y.-W.; Hong, J.-T.; Hwang, D.-Y. Laxative Effects of Phlorotannins Derived from Ecklonia cava on Loperamide-Induced Constipation in SD Rats. Molecules 2021, 26, 7209. [Google Scholar] [CrossRef]
- Kashyap, P.C.; Marcobal, A.; Ursell, L.K.; Larauche, M.; Duboc, H.; Earle, K.A.; Sonnenburg, E.D.; Ferreyra, J.A.; Higginbottom, S.K.; Million, M. Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice. Gastroenterology 2013, 144, 967–977. Available online: https://www.sciencedirect.com/science/article/pii/S0016508513001042 (accessed on 1 February 2013). [CrossRef]
- Touw, K.; Ringus, D.L.; Hubert, N.; Wang, Y.; Leone, V.A.; Nadimpalli, A.; Theriault, B.R.; Huang, Y.E.; Tune, J.D.; Herring, P.B. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models. Physiol. Rep. 2017, 5, e13182. [Google Scholar] [CrossRef]
- Hwang, N.; Eom, T.; Gupta, S.K.; Jeong, S.-Y.; Jeong, D.-Y.; Kim, Y.S.; Lee, J.-H.; Sadowsky, M.J.; Tatsuya Unno, T. Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide. Genes 2017, 8, 350. [Google Scholar] [CrossRef]
- Deng, Y.; Li, M.; Mei, L.; Cong, L.M.; Liu, Y.; Zhang, B.B.; He, C.Y.; Zheng, P.Y.; Yuan, J.L. Manipulation of intestinal dysbiosis by a bacterial mixture ameliorates loperamide-induced constipation in rats. Benef. Microbes. 2018, 9, 453–464. [Google Scholar] [CrossRef]
- Li, Y.; Long, S.; Liu, Q.; Ma, H.; Li, J.; Xiaoqing, W.; Yuan, J.; Li, M.; Hou, B. Gut microbiota is involved in the alleviation of loperamide-induced constipation by honey supplementation in mice. Food Sci. Nutr. 2020, 8, 4388–4398. [Google Scholar] [CrossRef]
- Kim, M.G.; Jo, K.; Cho, K.; Park, S.S.; Suh, H.J.; Hong, K.-B. Prebiotics/Probiotics Mixture Induced Changes in Cecal Microbiome and Intestinal Morphology Alleviated the Loperamide-Induced Constipation in Rat. Food Sci. Anim. Resour. 2021, 41, 527–541. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Y.; Wen, P.; Chen, Y.; Ouyang, D.; Wang, D.; Zhang, B.; Deng, J.; Chen, Y.; Sun, Y. The Anti-Constipation Effects of Raffino-Oligosaccharide on Gut Function in Mice Using Neurotransmitter Analyses, 16S rRNA Sequencing and Targeted Screening. Molecules 2022, 27, 2235. [Google Scholar] [CrossRef]
- Makizaki, Y.; Uemoto, T.; Yokota, H.; Yamamoto, M.; Tanaka, Y.; Ohno, H. Improvement of loperamide-induced slow transit constipation by Bifidobacterium bifidum G9-1 is mediated by the correction of butyrate production and neurotransmitter profile due to improvement in dysbiosis. PLoS ONE 2021, 16, e0248584. [Google Scholar] [CrossRef]
- Wang, F.; Meng, J.; Zhang, L.; Roy, S. Opioid use potentiates the virulence of hospital-acquired infection, increases systemic bacterial dissemination and exacerbates gut dysbiosis in a murine model of Citrobacter rodentium infection. Gut Microbes 2020, 11, 172–190. [Google Scholar] [CrossRef]
- Lin, X.; Liu, Y.; Ma, L.; Ma, X.; Shen, L.; Ma, X.; Chen, Z.; Chen, H.; Li, D.; Su, Z. Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice. J. Transl. Med. 2021, 19, 317. [Google Scholar] [CrossRef]
- Gicquelais, R.E.; Bohnert, A.S.B.; Thomas, L.; Foxman, B. Opioid agonist and antagonist use and the gut microbiota: Associations among people in addiction treatment. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Simpson, S.; Kimbrough, A.; Boomhower, B.; McLellan, R.; Hughes, M.; Shankar, K.; de Guglielmo, G.; George, O. Depletion of the Microbiome Alters the Recruitment of Neuronal Ensembles of Oxycodone Intoxication and Withdrawal. eNeuro 2020, 7, 19471. [Google Scholar] [CrossRef]
- Rajilić-Stojanović, M.; Biagi, E.; Heilig, H.G.H.J.; Kajander, K.; Kekkonen, R.A.; Tims, S.; de Vos, W.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011, 141, 1792–1801. [Google Scholar] [CrossRef]
- Zhang, L.; Han, R.; Zhang, X.; Fang, G.; Chen, J.; Li, J.; Xu, S.; Qian, L.; Chen, W.; Pan, F. Fecal microbiota in patients with ankylosing spondylitis: Correlation with dietary factors and disease activity. Clin. Chim. Acta 2019, 497, 189–196. Available online: https://www.sciencedirect.com/science/article/pii/S0009898119319886 (accessed on 1 August 2019). [CrossRef]
- Khalif, I.L.; Quigley, E.M.M.M.; Konovitch, E.A.; Maximova, I.D. Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig. Liver Dis. 2005, 37, 838–849. [Google Scholar] [CrossRef]
- Sharma, U.; Olson, R.K.; Erhart, F.N.; Zhang, L.; Meng, J.; Segura, B.; Banerjee, S.; Sharma, M.; Saluja, A.K.; Ramakrishnan, S.; et al. Prescription Opioids induce Gut Dysbiosis and Exacerbate Colitis in a Murine Model of Inflammatory Bowel Disease. J. Crohns Colitis. 2020, 14, 801–817. [Google Scholar] [CrossRef]
- Kim, S.-E.; Choi, S.C.; Park, K.S.; Park, M.I.; Shin, J.E.; Lee, T.H.; Jung, K.W.; Koo, H.S.; Myung, S.-J. Change of Fecal Flora and Effectiveness of the Short-term VSL#3 Probiotic Treatment in Patients With Functional Constipation. J. Neurogastroenterol. Motil. 2015, 21, 111–120. [Google Scholar]
- Lee, K.; Vuong, H.E.; Nusbaum, D.J.; Hsiao, E.Y.; Evans, C.J.; Taylor, A.M.W. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology 2018, 43, 2606–2614. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.D.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structural changes in the gut microbiome of constipated patients. Physiol. Genom. 2014, 46, 679–686. [Google Scholar] [CrossRef]
- Chassard, C.; Dapoigny, M.; Scott, K.P.; Crouzet, L.; Del’homme, C.; Marquet, P.; Martin, J.C.; Pickering, G.; Ardid, D.; Eschalier, A. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment. Pharmacol. Ther. 2012, 35, 828–838. [Google Scholar] [CrossRef]
- Abu, Y.; Tao, J.; Dutta, R.; Yan, Y.; Vitari, N.; Kolli, U.; Roy, S. Brief Hydromorphone Exposure During Pregnancy Sufficient to Induce Maternal and Neonatal Microbial Dysbiosis. J. Neuroimmune Pharmacol. 2022, 17, 367–375. [Google Scholar] [CrossRef]
- Yarullina, D.R.; Shafigullin, M.U.; Sakulin, K.A.; Arzamastseva, A.A.; Shaidullov, I.F.; Markelova, M.I.; Grigoryeva, T.V.; Karpukhin, O.Y.; Sitdikova, G.F. Characterization of gut contractility and microbiota in patients with severe chronic constipation. PLoS ONE 2020, 15, e0235985. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.; Meschi, T.; van Sinderen, D. Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci. Rep. 2017, 7, 9879. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Ren, X.; Yang, C.; Liu, S.; Bai, X.; Shan, S.; Dong, X. Gut Microbiota Composition Changes in Constipated Women of Reproductive Age. Front. Cell Infect. Microbiol. 2021, 10, 557515. [Google Scholar] [CrossRef]
- Brantl, V.; Teschemacher, H.; Bläsig, J.; Henschen, A.; Lottspeich, F. Opioid activities of β-casomorphins. Life Sci. 1981, 28, 1903–1909. [Google Scholar] [CrossRef]
- De Vasconcelos, M.L.; Oliveira, L.M.F.S.; Hill, J.P.; Vidal, A.M.C. Difficulties in Establishing the Adverse Effects of β-Casomorphin-7 Released from β-Casein Variants—A Review. Foods 2023, 12, 3151. [Google Scholar] [CrossRef]
- Odamaki, T.; Sugahara, H.; Yonezawa, S.; Yaeshima, T.; Iwatsuki, K.; Tanabe, S.; Tominaga, T.; Togashi, H.; Benno, Y.; Xiao, J. Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. Anaerobe 2012, 18, 14–18. [Google Scholar] [CrossRef]
- Odamaki, T.; Kato, K.; Sugahara, H.; Xiao, J.Z.; Abe, F.; Benno, Y. Effect of probiotic yoghurt on animal-based diet-induced change in gut microbiota: An open, randomised, parallel-group study. Benef. Microbes. 2016, 7, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Link-Amster, H.; Rochat, F.; Saudan, K.Y.; Mignot, O.; Aeschlimann, J.M. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 1994, 10, 55–63. [Google Scholar] [CrossRef]
- Yılmaz, İ.; Dolar, M.E.; Özpınar, H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk. J. Gastroenterol. 2019, 30, 242–253. [Google Scholar] [CrossRef]
- Nagpal, R.; Behare, P.; Rana, R.; Kumar, A.; Kumar, M.; Arora, S.; Morotta, F.; Jain, S.; Yadav, H. Bioactive peptides derived from milk proteins and their health beneficial potentials: An update. Food Funct. 2011, 2, 18–27. [Google Scholar] [CrossRef]
- Ojha, S.; Patil, N.; Jain, M.; Kole, C.; Kaushik, P. Probiotics for Neurodegenerative Diseases: A Systemic Review. Microorganisms 2023, 11, 1083. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. Microorganisms 2022, 10, 2268. [Google Scholar] [CrossRef]
- Rezaei Asl, Z.; Sepehri, G.; Salami, M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease. Behav. Brain Res. 2019, 376, 112183. Available online: https://www.sciencedirect.com/science/article/pii/S0166432819306928 (accessed on 28 August 2019). [CrossRef]
- O’Hagan, C.; Li, J.V.; Marchesi, J.R.; Plummer, S.; Garaiova, I.; Good, M.A. Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats. Neurobiol. Learn Mem. 2017, 144, 36–47. Available online: https://www.sciencedirect.com/science/article/pii/S1074742716303653 (accessed on 6 June 2017). [CrossRef]
- Agahi, A.; Hamidi, G.A.; Daneshvar, R.; Hamdieh, M.; Soheili, M.; Alinaghipour, A.; Esmaeili Taba, S.M.; Salami, M. Does Severity of Alzheimer’s Disease Contribute to Its Responsiveness to Modifying Gut Microbiota? A Double Blind Clinical Trial. Front. Neurol. 2018, 9, 662. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Liu, W.-H.; Wu, C.-C.; Juan, Y.-C.; Wu, Y.-C.; Tsai, H.-P.; Wang, S.; Tsai, Y.-C. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res. 2016, 1631, 1–12. Available online: https://www.sciencedirect.com/science/article/pii/S0006899315008628 (accessed on 24 November 2015). [CrossRef] [PubMed]
- Ding, Y.; Bu, F.; Chen, T.; Shi, G.; Yuan, X.; Feng, Z.; Duan, Z.; Wang, R.; Zhang, S.; Wang, Q. A next-generation probiotic: Akkermansia muciniphila ameliorates chronic stress-induced depressive-like behavior in mice by regulating gut microbiota and metabolites. Appl. Microbiol. Biotechnol. 2021, 105, 8411–8426. [Google Scholar] [CrossRef] [PubMed]
- Miyaoka, T.; Kanayama, M.; Wake, R.; Hashioka, S.; Hayashida, M.; Nagahama, M.; Okazaki, S.; Yamashita, S.; Miura, S.; Miki, H. Clostridium butyricum MIYAIRI 588 as Adjunctive Therapy for Treatment-Resistant Major Depressive Disorder: A Prospective Open-Label Trial. Clin. Neuropharmacol. 2018, 41, 151–155. Available online: https://journals.lww.com/clinicalneuropharm/fulltext/2018/09000/clostridium_butyricum_miyairi_588_as_adjunctive.1.aspx (accessed on 1 September 2018). [CrossRef] [PubMed]
- Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.-P.; Cominetti, O.; Welsh, C.; Rieder, A. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients with Irritable Bowel Syndrome. Gastroenterology 2017, 153, 448–459.e8. [Google Scholar] [CrossRef] [PubMed]
- Romijn, A.R.; Rucklidge, J.J.; Kuijer, R.G.; Frampton, C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust. N. Z. J. Psychiatry 2017, 51, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Akkol, S.; Doğan, M.C.; Esenkar, D.; Doğan, H.; Karamahmutoğlu, T.; Onat, F. Effects of Probiotic Consumption on Absence Seizures. Epilepsi J. Turk. Epilepsi Soc. 2017, 23, 51–56. [Google Scholar] [CrossRef]
- Bagheri, S.; Heydari, A.; Alinaghipour, A.; Salami, M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav. 2019, 95, 43–50. [Google Scholar] [CrossRef]
- Aygun, H.; Akin, A.T.; Kızılaslan, N.; Sumbul, O.; Karabulut, D. Probiotic supplementation alleviates absence seizures and anxiety-and depression-like behavior in WAG/Rij rat by increasing neurotrophic factors and decreasing proinflammatory cytokines. Epilepsy Behav. 2022, 128, 108588. [Google Scholar] [CrossRef]
- Wang, X.; Ma, R.; Liu, X.; Zhang, Y. Effects of long-term supplementation of probiotics on cognitive function and emotion in temporal lobe epilepsy. Front. Neurol. 2022, 13, 948599. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Kuo, C.-W.; Hsieh, K.-H.; Shieh, M.-J.; Peng, C.-W.; Chen, Y.-C.; Chang, Y.-L.; Huang, Y.-Z.; Chen, C.-C.; Chang, P.-K. Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson’s disease. Brain Sci. 2020, 10, 206. [Google Scholar] [CrossRef]
- Barichella, M.; Pacchetti, C.; Bolliri, C.; Cassani, E.; Iorio, L.; Pusani, C.; Pinelli, G.; Privitera, G.; Cesari, I.; Faierman, S.A.; et al. Probiotics prebiotic fiber for constipation associated with Parkinson disease: An, RCT. Neurology 2016, 87, 1274–1280. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Taghizadeh, M.; Kakhaki, R.D.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 1031–1035. [Google Scholar] [CrossRef]
- Cuozzo, M.; Castelli, V.; Avagliano, C.; Cimini, A.; d’Angelo, M.; Cristiano, C.; Russo, R. Effects of chronic oral probiotic treatment in paclitaxel-induced neuropathic pain. Biomedicines 2021, 9, 346. [Google Scholar] [CrossRef]
- Martami, F.; Togha, M.; Seifishahpar, M.; Ghorbani, Z.; Ansari, H.; Karimi, T.; Jahromi, S.R. The effects of a multispecies probiotic supplement on inflammatory markers and episodic and chronic migraine characteristics: A randomized double-blind controlled trial. Cephalalgia 2019, 39, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Salehipour, Z.; Haghmorad, D.; Sankian, M.; Rastin, M.; Nosratabadi, R.; Dallal, M.M.S.; Tabasi, N.; Khazaee, M.; Nasiraii, L.R.; Mahmoudi, M. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed. Pharmacother. 2017, 95, 1535–1548. [Google Scholar] [CrossRef] [PubMed]
- Tankou, S.K.; Regev, K.; Healy, B.C.; Cox, L.M.; Tjon, E.; Kivisakk, P.; Vanande, I.P.; Cook, S.; Gandhi, R.; Glanz, B. Investigation of probiotics in multiple sclerosis. Mult. Scler. J. 2018, 24, 58–63. [Google Scholar] [CrossRef]
- Orikasa, S.; Nabeshima, K.; Iwabuchi, N.; Xiao, J.-Z. Effect of repeated oral administration of Bifidobacterium longum BB536 on apomorphine-induced rearing behavior in mice. Biosci. Microbiota. Food Health 2016, 35, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Okubo, R.; Koga, M.; Katsumata, N.; Odamaki, T.; Matsuyama, S.; Oka, M.; Narita, H.; Hashimoto, N.; Kusumi, I.; Xiao, J. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J. Affect. Disord. 2019, 245, 377–385. [Google Scholar] [CrossRef]
- Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.-A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry 2019, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, F.B.; Stallings, C.; Origoni, A.; Katsafanas, E.; Savage, C.L.G.; Schweinfurth, L.A.B.; Goga, J.; Khushalani, S.; Yolken, R.H. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: A randomized, placebo-controlled trial. Prim. Care Companion CNS Disord. 2014, 16, 26294. [Google Scholar] [CrossRef]
- Thomaz, A.C.; Iyer, V.; Woodward, T.J.; Hohmann, A.G. Fecal microbiota transplantation and antibiotic treatment attenuate naloxone-precipitated opioid withdrawal in morphine-dependent mice. Exp. Neurol. 2021, 343, 113787. [Google Scholar] [CrossRef]
- Jeong, J.-J.; Ganesan, R.; Jin, Y.-J.; Park, H.J.; Min, B.H.; Jeong, M.K.; Yoon, S.J.; Choi, M.R.; Choi, J.; Moon, J.H. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats. Front. Microbiol. 2023, 14, 1174968. [Google Scholar] [CrossRef]
- Mitelmão, F.C.R.; Häckel, K.; de Cássia Bergamaschi, C.; Gerenutti, M.; Silva, M.T.; Balcão, V.M.; Vila, M.M.D.C. The effect of probiotics on functional constipation in adults: A randomized, double-blind controlled trial. Medicine 2022, 101, e31185. [Google Scholar] [CrossRef] [PubMed]
Disease | Probiotics | Subject | Outcomes | +/− | Reference |
---|---|---|---|---|---|
Alzheimer’s disease | Lactobacillus and Bifidobacterium species | Rats | Restoration of synaptic plasticity in the hippocampus of the brain after 56 days of probiotic supplementation. | + | [187] |
Rats | Enhances brain signal transmission by normalizing long-term potentiation, decreases the activation of microglial markers, and increases the expression of BDNF and synapsin. Improvement in cognitive function and spatial learning. | + | [188] | ||
Multispecies probiotics containing different stains and species of the genera Lactobacillus and Bifidobacterium. | Human | Patients did not respond positively to a blend of six probiotic strains. | − | [189] | |
Major depressive disorder | Lactobacillus plantarum PS128 | Mice | Probiotic reduced depression and anxiety in mice, with increased dopamine and serotonin levels. | + | [190] |
Akkermansia muciniphila | Mice | Probiotics alleviated depressive-like symptoms in mice by reversing abnormalities in the gut microbiota. | + | [191] | |
Clostridium butyricum (CBM588) as an adjunctive therapy to the antidepressant drugs | Human | A significant improvement in depression scores. | + | [192] | |
Bifidobacterium longum NCC3001 | Human | Probiotics reduced depression, although not anxiety, in IBS patients and improved their quality of life. | + | [193] | |
L. helveticus R0052 and B. longum R0175 | Human | Probiotics did not alleviate depressive symptoms in individuals with low mood who were not on psychotropic medications. | − | [194] | |
Epilepsy | a mixture of pro/prebiotics and vitamins for one month | Rats | Probiotics did not significantly affect the duration and number of spike-and-wave discharges. | − | [195] |
Lactobacillus rhamnosus, Lactobacillus reuteri, and Bifidobacterium infantis for three weeks | Rats | Probiotics reduced oxidative stress, increased antioxidant capacity in the brain, raised inhibitory GABA levels, and improved spatial learning and memory. | + | [196] | |
VSL#3 for a month | Rats | A decrease in the frequency and duration of spike–wave discharges, probiotics exhibited anti-inflammatory properties by reducing the levels of SOX2 and neurotrophic factors while increasing the levels of inflammatory factors, alleviating the concurrent anxious and depressive-like behaviors. | + | [197] | |
B. longum, L. acidophilus, and E. faecalis | Human | Probiotics reduced seizures, with no notable differences in cognitive function, including measures of intelligence and memory. Probiotics decrease anxiety and depression while improving the quality of life. | + | [198] | |
Parkinson’s disease | 6 strains (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus rhamnosis, Lactobacillus rhamnosus GG, rhamnosus GG, Lactobacillus plantarum LP28, and Lactococcus lactis subsp. Lactis) | Mice | Probiotics induced better motor performance (gait, balance, and coordination) in animals, from week 16 until the end of the experiment at week 24 and mitigated the degeneration of nigral dopaminergic neurons. | + | [199] |
A fermented milk containing probiotics and prebiotics | Human | Fermented milk containing probiotics and prebiotics significantly enhanced bowel movements in individuals with severe constipation linked to parkinson’s disease. | + | [200] | |
Bifidobacterium bifidum, Lactobacillus acidophilus, Lactobacillus fermentum, and Lactobacillus reuteri over a 12-week period | Human | Probiotics improved the symptoms of patients with Parkinson’s disease measured using total MDS-UPDRS scores. | + | [201] | |
Pain | Mixed probiotic formulation SLAB51 | Mice | Probiotics improved paclitaxel-induced mechanical and cold hypersensitivity and increased the levels of opioid and cannabinoid receptors in the spinal cord. | + | [202] |
14-strainprobiotic mixture for 8 weeks in chronic and 10 weeks in episodic migraines | Human | Improvements in the frequency and severity of migraines and reduction in the consumption of abortive medications despite no significant changes in serum levels of selected inflammatory biomarkers | + | [203] | |
Multiple sclerosis | Lactobacillus plantarum A7, Bifidobacterium animalis PTCC 1631 or a mixture of both strains for 22 days beginning simultaneous with induction EAE | Mice | Probiotics ameliorated experimental autoimmune encephalomyelitis, in an animal model of multiple sclerosis, through inhibiting disease-associated cytokines while increasing anti-inflammatory cytokines. | + | [204] |
VSL3 probiotic mixture, which includes Lactobacillus, Bifidobacterium, and Streptococcus | Human | Probiotics resulted in a shift in their gut microbiota that helps to modulate the anti-inflammatory response of the peripheral innate immune system by regulating the intermediate monocytes. | + | [205] | |
Schizophrenia | Bifidobacterium longum for 2 weeks | Mice | Probiotics showed promise in alleviating schizophrenia symptoms by reducing apomorphine-induced rearing behavior, lowering plasma corticosterone levels, and decreasing the kynurenine-to-tryptophan ratio. | + | [206] |
Bifidobacterium breve A-1 for four weeks | Human | Probiotics improved positive and negative syndrome scale (PANSS) scores, reduced anxiety and depression, and increased IFN-g, IL-1R1, IL-10, and IL-22 levels while decreasing TNF-a levels. | + | [207] | |
Lactobacilli and Bifidobacterium bifidum was given with vitamin D | Human | Improvement in the general and total PANSS scores, decreased circulating CRP levels and enhanced total antioxidant capacity of plasma, indicating symptomatic improvement and reduced inflammation. | + | [208] | |
Lactobacillus rhamnosus and Bifidobacterium lactis Bb12 for 14 weeks | Human | Probiotics did not change PANSS scores over the course of the 14-week trial though increased plasma BDNF. | − | [209] | |
Opioid use disorders | VSL#3 | Mice | Morphine-tolerant mice displayed a reduction in Bifidobacteriaceae and Lactobacillaceae at the family level and Bifidobacterium and Lactobacillus at the genus level. The probiotic VSL#3 pre-treatment prevented morphine-induced dysbiosis and so attenuated morphine tolerance in both tail flick and hot plate assays. | + | [18] |
Bifidobacterium longum subspecies longum 35624™ or Lactobacillus rhamnosus GG | Mice | Probiotic treatment does not alter naloxone-precipitated withdrawal in morphine-dependent mice. | − | [210] | |
Constipation | probiotic chocolate containing Streptococcus thermophilus MG510 and Lactobacillus plantarum LRCC5193 | Rats | Loperamide-induced constipation was associated with a relative increase in the abundance of the family Enterobacteriaceae and a decrease in the genera Bifidobacterium and Lactobacillus, the Clostridium group (cluster IV) as well as F. prausnitzii. Probiotic administration could modulate the gut microbiota. | + | [149] |
Multi-strain probiotics containing a mixture of (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp05, Lactobacillus acidophilus DDS-1, and Streptococcus thermophilus CKDB027 | Rats | Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae, and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. | + | [211] | |
two probiotic cocktails (One formulation with Lactobacillus acidophilus, Bifidobacterium bifidum and Lactobacillus rhamnosus; and another with Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus rhamnosus, Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium lactis, Lactobacillus casei, Bifidobacterium animallis) | Human | Functional constipation symptoms improved with the two probiotic cocktails, which increased weekly evacuation and stool quality. | + | [212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essmat, N.; Karádi, D.Á.; Zádor, F.; Király, K.; Fürst, S.; Al-Khrasani, M. Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis. Molecules 2023, 28, 7766. https://doi.org/10.3390/molecules28237766
Essmat N, Karádi DÁ, Zádor F, Király K, Fürst S, Al-Khrasani M. Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis. Molecules. 2023; 28(23):7766. https://doi.org/10.3390/molecules28237766
Chicago/Turabian StyleEssmat, Nariman, Dávid Árpád Karádi, Ferenc Zádor, Kornél Király, Susanna Fürst, and Mahmoud Al-Khrasani. 2023. "Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis" Molecules 28, no. 23: 7766. https://doi.org/10.3390/molecules28237766
APA StyleEssmat, N., Karádi, D. Á., Zádor, F., Király, K., Fürst, S., & Al-Khrasani, M. (2023). Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis. Molecules, 28(23), 7766. https://doi.org/10.3390/molecules28237766