Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus
Abstract
:1. Introduction
2. Methodology
3. Bioactive Compounds from Plant Endophytic Fungi
3.1. Cytochalasans
3.2. Diketopiperazine Alkaloids
Fungus | Host Plant(s) | Compounds Isolated | Biological Target | Biological Activity | Reference |
---|---|---|---|---|---|
A. fumigatus | Erythrophloeum fordii Oliv. (Leguminosae) | Spirotryprostatin K (23) | Inhibitory activity on NO production | IC50 > 10 μM | [29] |
Erythrophloeum fordii Oliv. (Leguminosae)/Melia azedarach L. | Spiro[5H,10H-dipyrrolo[1,2-a:1′,2′-d]pyrazine-2(3H),2′-[2H]-indole]-3′,5,10(1′H) trione (24) | Antifeedant activity against armyworm larvae | AFI of 5.0% | [29,31], | |
A. fumigatus/A. fumigatus D/A. fumigatus LN-4/A.fumigatus M580 | Erythrophloeum fordii Oliv. (Leguminosae)/Edgeworthia chrysantha Lindl./Melia azedarach L./sea cucumber | 6-Methoxyspirotryprostatin B (25) | Inhibitory activity against E. coli, S. aureus, and C. albicans | MIC, 12.5, >25, 0.39 μg/mL | [29,30,31,49], |
A. fumigatus D/A. fumigatus M580 | Edgeworthia chrysantha Lindl./sea cucumber | Bisdethiobis(methylthio)gliotoxin (26) | Inhibitory activity against E. Coli, S. aureus, C. albicans; Toxicities against Brine Shrimps | MIC, >25, 0.78, 0.39 μg/mL; LC50 of 50%; | [30,49] |
A. fumigatus D | Edgeworthia chrysantha Lindl. | Gliotoxin (27) | Inhibitory activity against E. Coli, S. aureus, C. albicans; | MIC, 0.78, 6.25, >25 μg/mL | [30] |
A. fumigatus D/A. fumigatus LN-4/Aspergillus sp. 87 | Edgeworthia chrysantha Lindl./Melia azedarach L/mangrove | Spirotryprostatin A (28) | MIC, 0.39, 0.39, 0.78 μg/mL | [30,31,47] | |
A. fumigatus LN-4 | Melia azedarach L | Tryprostatin A (29) | Allelopathic activity against lettuce (Lactuca sativa) with response index (RI) of germination rates, root and shoot elongation at 200 ppm; Toxicities against brine shrimps with median lethal concentration (LC50); | RI of 0.82 ± 0.06, −0.13 ± 0.00 and −0.17 ± 0.13, respectively; LC50 of 44.8 μg/mL | [31,47,48,49] |
A. fumigatus LN-4/Aspergillus sp. 87/Aspergillus sp. 16-5c/A. fumigatus M580 | Melia azedarach L/mangrove/Mangrove/Sea cucumber | Brevianamide F (30) | RI of 0.54 ± 0.08, −0.91 ± 0.01, and −0.88 ± 0.02, respectively LC50 of 83.7 μg/mL | ||
A. fumigatus LN-4 | Melia azedarach L. | Fumitremorgin B (31) | Allelopathic activity against lettuce (Lactuca sativa) with response index (RI) of germination rates, root and shoot elongation at 200 ppm; Toxicities against brine shrimps with median lethal concentration (LC50); | RI of 0.63 ± 0.06, −0.32 ± 0.02, −0.36 ± 0.07, respectively; LC50 of 13.6 μg/mL | [31] |
Verruculogen (32) | RI of 0.79 ± 0.08, 0.08 ± 0.03, 0.41 ± 0.01, respectively; LC50 of 15.8 μg/mL | ||||
Cyclotryprostatin B (33) | RI of 0.74 ± 0.06, −0.33 ± 0.02, 0.00 ± 0.00, respectively; LC50 of 37.9 μg/mL | ||||
Cyclotryprostatin A (34) | RI of 0.74 ± 0.06, 0.03 ± 0.02, and −0.21 ± 0.07, respectively; LC50 > 100 μg/mL | ||||
Verruculogen TR-2 (35) | RI of 0.85 ± 0.06, −0.25 ± 0.01, 0.21 ± 0.02, respectively; LC50 of 26.9 μg/mL | ||||
12β-Hydroxy-13α-methoxyverruculogen TR-2 (36) | RI of 0.85 ± 0.06, 0.04 ± 0.01, 0.19 ± 0.03, respectively; LC50 of 60.7 μg/mL | ||||
12β-Hydroxyverruculogen TR-2 (37) | RI of 0.78 ± 0.00, −0.21 ± 0.01, −0.05 ± 0.01, respectively; LC50 of 73.2 μg/mL | ||||
Fumitremorgin C (38) | LC50 of 40.5 μg/mL | ||||
Terezine D (39) | LC50 > 100 μg/mL | ||||
Cyclo-(Pro-Gly) (40) | LC50 > 100 μg/mL | ||||
Cyclo-(Pro-Ala) (41) | LC50 > 100 μg/mL | ||||
Cyclo(D-Pro-L-Ala) (42) | LC50 > 100 μg/mL | ||||
Cyclo-(Pro-Ser) (43) | LC50 > 100 μg/mL | ||||
Cyclo-(Ser-trans-4-OH-Pro) (44) | LC50 > 100 μg/mL | ||||
Cyclo-(Leu-4-OH-Pro) (45) | LC50 > 100 μg/mL | ||||
Cyclo-(Ala-trans-4-OH-Pro) (46) | LC50 of 66.1 μg/mL | ||||
Cyclo-(Cis−OH-D-Pro-L-Phe) (47) | LC50 > 100 μg/mL | ||||
Cyclo-(Gly-Phe) (48) | LC50 > 100 μg/mL | ||||
Cyclo-(Pro-trans-4-OH-Pro) (49) | LC50 > 100 μg/mL | ||||
Cyclo-(Gly-Ala) (50) | LC50 > 100 μg/mL | ||||
12α-Fumitremorgin C (51) | RI: 0.63 ± 0.06, 0.03 ±0.01, 0.20 ± 0.02, respectively | ||||
18-Oxotryprostatin A (52) | RI: 0.82 ± 0.06, −0.06 ± 0.02, −0.34 ± 0.09, respectively | ||||
A. fumigatus | Heteroscyphus tener (Steph.)Schiffn | Asperfumigatin (53) | Cytotoxicity against PC3, PC3D, A549, and NCI-H460 | IC50, 30.6 ± 0.2, >40, >40, >40 μM | [33] |
Demethoxyfumitremorgin C (54) | IC50, 32.0 ± 0.5, >40, >40, >40 μM | ||||
Cyclotryprostatin C (55) | IC50, 33.9 ± 0.2, >40, >40, >40 μM | ||||
A. fumigatus/A. fumigatus M580 | Heteroscyphus tener (Steph.)Schiffn/sea cucumber | 12,13-Dihydroxyfumitremorgin C (56) | IC50, 36.2 ± 0.4, 39.6 ± 1.0, >40, >40 μM | [33,49] | |
A. fumigatus | Heteroscyphus tener (Steph.)Schiffn | 20-Hydroxycyclotryprostatin B (57) | IC50, 32.5 ± 0.8, >40, >40, >40 μM | [33] | |
A. fumigatus/Aspergillus sp. 87 | Heteroscyphus tener (Steph.)Schiffn/mangrove | Spirotryprostatin B (58) | IC50, 35.2 ± 0.5, >40, >40, >40 μM | [33,47] | |
A. fumigatus | Heteroscyphus tener (Steph.)Schiffn | 3-Dehydroxycyclotryprostatin C (59) | IC50, 35.9 ± 0.6, 39.9 ± 1.3, >40, >40 μM | [34] | |
A. fumigatus | Diphylleia sinensis | Fumitremorgin D (60) | Cytotoxicity on HepG2 | IC50, 47.5 μM | |
Aspergillus sp. TPXq | Saussurea medusa | 3-Isobutypyrrolopiperazine-2,5-dione (61) | Cytotoxicities against A549 and MCF-7 cell lines | IC50 > 50 μg/mL | [35] |
3-Isopropyl-pyrrolopiperazine-2,5-dione (62) | |||||
3-Seco-butyl-pyrrolopiperazine-2,5-dione (63) | |||||
3-Benzyl-pyrrolopiperrazine-2,5-dione (64) | |||||
3-Benzyl-6-(p-hydroxy benzyl) piperazine-2,5-dione (65) | |||||
3,6-Dimethylpiperazine-2,5-dione (66) | |||||
3-Isobutyl-6-isopropylpiperazine-2,5-dione (67) | |||||
A. aculeatus | Carica papaya | Okaramine A (68) | Cytotoxity against L5178Y mouse lymphoma cell line | IC50 > 50 μg/mL | [36] |
JBIR 75 (69) | |||||
Aspergillus sp. SK-28 | Kandelia candel | (−)-Asperginulin A (70) | Antifouling activity against the barnacle Balanus reticulatus | Inactive | [37] |
(+)-Asperginulin A (71) | Antifouling activity | ||||
Aspergillus sp. SK-28/Aspergillus sp. Y-2/A. versicolor | Kandelia candel/Abies beshanzuensis/Nicotiana tabacum | Deoxybrevianamide E (72) | Antifouling activity against the barnacle Balanus reticulatus; Anti-TMV activities | Antifouling activity; IC50 of 38.7 µM | [37,45,46] |
Aspergillus sp. SK-28 | Kandelia candel | Brevianamide V (73) | Antifouling activity against the barnacle Balanus reticulatus | Inactive | [37] |
Brevianamide K (74) | |||||
A. amstelodami | Marine white beans | Echinulin (75) | Inhibition of melanin production in B16 cells | IC50 of 98.0 ± 1.16 µM | [38] |
Tardioxopiperazine B (76) | IC50 of 30.8 ± 5.57 µM | ||||
Arestrictin A (77) | - | ||||
Neochinulin D (78) | IC50 of 112.0 ± 0.22 µM | ||||
Variecolorin O (79) | IC50 of 38.5 ± 6.08 µM | ||||
Aspergillus sp. GZWMJZ-258 | Garcinia multiflora (Guttiferae) | Gartryprostatin A (80) | Inhibitory activity against MV4-11 cells | IC50 of 7.2 μM | [39] |
Gartryprostatin B (81) | IC50 of 10.0 μM | ||||
Gartryprostatin C (82) | IC50 of 0.22 μM | ||||
Aspergillus sp. (w-6) | Acanthus ilicifolius | Acetylaranotin (83) | - | - | [40] |
Aspergillus sp. (w-6)/A. terreus IFB-E030 | Acanthus ilicifolius/Artemisia annua | Acetylapoaranotin (84) | Cytotoxic activity against KB and HSC-T6 cell lines; AChE inhibition | IC50 of 71.4 ± 15.6, 144.2 ± 11.9 μM IC50 of 127.4 ± 17.3 μM | [26,40] |
A. ochraceus/Aspergillus sp/Aspergillus sp. Y-2 | Sargassum kjellmanianum/moss/Abies beshanzuensis | Notoamide B (85) | Inhibition on LPS-induced NO production in RAW 264.7; Antimicrobial activity of Staphylococcus aureus, Escherichia coli, and A. niger | IC50 of 49.85 μM; Inactive | [41,44,45] |
A. ochraceus | Sargassum kjellmanianum | Selerotiamide (86) | antimicrobial activity of Staphylococcus aureus, Escherichia coli, and A. niger | Inactive | [41] |
A. versicolor F210 | Lycoris radiate | 21-Epi-taichunamide D (87) | Cytotoxicity against HL60 and A549 | IC50 of 26.8 and 36.5 μM | [42] |
Dehydronotoamide C (88) | Cytotoxicity against HL60, SMMC7721, A549, MCF7, SW480, and NCM460 | IC50 > 40 μM | [42] | ||
A. versicolor F210/Aspergillus sp. Y-2 | Lycoris radiate/Abies beshanzuensis | Notoamide E (89) | [42,45] | ||
A. versicolor F210 | Lycoris radiate | Notoamide Q (90) | Cytotoxicity against HL60 and SW480 with | IC50 of 19.2 and 25.5 μM, respectively | [42] |
A. versicolor F210/Aspergillus sp. Y-2 | Lycoris radiate/Abies beshanzuensis | (+)-Stephacidine A (91) | Cytotoxicity against A549 and the human cervical carcinoma HeLa cells | IC50 > 50 μM | [42,45] |
A. cristatus | Pinellia ternate | Aspergilline A (92) | Inhibition against Bacillus subtilis and Staphylococcus aureus | Inactive | [43] |
Aspergilline B (93) | |||||
Aspergilline C (94) | |||||
Aspergillus sp. | Moss | Versicolamide B (95) | Inhibition on LPS-induced NO production in RAW 264.7; Anti-TMV activities | Inactive; IC50 of 40.2 μM | [44,46] |
Taichunamide E (96) | Inhibition on LPS-induced NO production in RAW 264.7 | Inactive; | [44] | ||
Notoamide C (97) | Inhibition on LPS-induced NO production in RAW 264.7; Anti-TMV activities | Inactive; IC50 of 36.4μM | [44,46] | ||
Aspergillus sp. Y-2 | Abies beshanzuensis | Beshanzuamide A (98) | Cytotoxicity against A549 and the human cervical carcinoma HeLa cells | IC50 > 50 μM | [45] |
Asperochramide A (99) | |||||
A. versicolor | Nicotiana tabacum | Notoamide D (100) | Anti-TMV activities | IC50 of 33.6 μM | [46] |
Notoamide M (101) | IC50 of 22.8 μM | ||||
Cyclo (D-Pro-L-Trp) (102) | IC50 of 45.6 μM | ||||
Aspergillus sp. 87 | Mangrove | Cyclo(L- Pro- L- tyr) (103) | Antibacterial activities against Escherichia coli, Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa | Inactive | [47] |
Cyclo-trans-4-OH-(L)-Pro-(L)-Phe (104) | |||||
Aspergillus sp. 16-5c | Mangrove | Aspergiamide A (105) | Inhibitory activities against α-glucosidase (IC50); PTP1B Inhibition Ratio (%) | IC50 of 18.2 μM; Inhibition Ratio of 20% at 100 μg/mL | [48] |
Aspergiamide B (106) | IC50 of 130.7 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Aspergiamide C (107) | IC50 of 83.9 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Aspergiamide D (108) | IC50 of 144.2 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Aspergiamide E (109) | IC50 of 1093.5 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Brevianamide Q (110) | IC50 of 198.2 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Brevianamide R (111) | IC50 of 364.3 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Brevianamide K (112) | IC50 of 7.6 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Brevianamide W (113) | IC50 of 40.7 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
N-Prenyl-cyclo-L-tryptophyl-L-proline (114) | IC50 of 353.2 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Epi-deoxybrevianamide E (115) | IC50 of 480.5 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
Cyclo-(tryptophyl-phenylalanyl) (116) | IC50 of 353.2 μM; Inhibition Ratio, <10% at 100 μg/mL | ||||
A. fumigatus M580 | Sea cucumber | Tryprostatin B (117) | Inhibition on Enterococcus faecalis | MIC of 64 µg/Ml; | [49] |
Cyclo(L-prolinyl-L-phenylalanine) (118) | α-Glucosidase inhibition | Inhibiting rate of 10.3 ± 0.8% at 100 μg/Ml; | |||
Cyclo(Lprolinyl-L-valine) (119) | Antimicrobial activity | Inactive | |||
Aspergillus sp. HAB10R12 | Garcinia scortechinii | Aspergillinine A (120) | Cytotoxicity against HepG2 and A549 cells | IC50 > 30 μM | [50] |
Aspergillinine C (121) | |||||
Aspergillinine D (122) | |||||
Aspergillus sp. | Melia azedarach L. | Aspertryptanthrin A (123) | Cytotoxicity against U-2OS, MCF-7, HepG2 and HeLa cells | IC50 > 50 μM | [51] |
Aspertryptanthrin C (124) | |||||
Aspertryptanthrin D (125) |
3.3. Quinazoline Alkaloids
Fungus | Host Plant(s) | Compounds Isolated | Biological Target | Biological Activity | Reference |
---|---|---|---|---|---|
A. flavipes DZ-3 | Eucommia ulmoides Oliver | Asperflaloid A (126) | α-Glucosidase inhibitory and antioxidant activities | Inactive | [52] |
2-(4-Hydroxybenzyl)quinazolin-4(3H)one (127) | α-Glucosidase inhibition | IC50 of 750.8 µM | |||
Aspergillus sp. | Moss | Versicomide E (128) | Anti-inflammatory activity to suppress NO production in RAW 264.7 cells stimulated by LPS | Inactive | [44] |
Aspergillus sp. 87/A. fumigatus | Mangrove/Heteroscyphus tener (Steph.)Schiffn.s | Isochaetominine (129) | Antibacterial activities against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Escherichia coli; Cytotoxicity against PC3; | MIC > 100µM; IC50 of 32.2 ± 0.5 µM | [35,47,53] |
Aspergillus sp. TPXq/A. fumigatus/A. fumigatus Y0107 | Saussurea medusa/Heteroscyphus tener (Steph.)Schiffn.s/Crocus sativus Linn (saffron) | Chaetominine (130) | Cytotoxicity against A549, MCF-7 and PC3 | IC50 of 0.18 μg/mL, 0.89 μg/mL, 30.1 ± 0.7 µM, respectively | [33,35,53,58] |
A. fumigatus/A. fumigatus HQD24/A. fumigatus Y0107 | Heteroscyphus tener (Steph.)Schiffn.s/mangrove/Crocus sativus Linn (saffron) | Fumiquinazoline J (131) | Immunosuppression on ConA-induced T-cell proliferation and LPS-induced B-cell proliferation | IC50 of 29.38 ± 0.21 and 162.58 ± 2.39 μM, respectively | [33,53,59] |
Cytotoxicity against Huh7, HT29, NCI-H460 cells | IC50 of 9.7 ± 0.9, 10.3 ± 0.9, and 26.9 ± 0.6 μM, respectively | ||||
A. fumigatus/A. fumigatus M580 | Heteroscyphus tener (Steph.)Schiffn.s/cucumber | Fumiquinazoline C (132) | Cytotoxicity against PC3, and NCI-H460 | IC50 of 27.8 ± 0.4, and 33.4 ± 0.7 μM, respectively | [33,49] |
Antimicrobial activity against Enterococcus faecalis | MIC of 32 µg/mL | ||||
A. fumigatus/A. fumigatus M580/A. fumigatus LN-4 | Heteroscyphus tener (Steph.)Schiffn.s/cucumber/Melia azedarach | Fumiquinazoline D (133) | Antimicrobial activity against Enterococcus faecalis | MIC of 32 µg/mL | [31,49] |
α-Glucosidase inhibition ratio | Inhibition ratio 13.6% at 100 μg/mL | ||||
Inhibitory activity against armyworm larvae | AFI of 10% | ||||
A. nidulans MA-143/A. versicolor MA-229 | Rhizophora stylosa/Lumnitzera racemosa | Aniquinazoline A (134) | Brine shrimp lethality activity | LD50 of 1.27 μΜ | [54,55] |
Aniquinazoline B (135) | LD50 of 2.11 μΜ | ||||
A. nidulans MA-143 | Rhizophora stylosa | Aniquinazoline C (136) | LD50 of 4.95 μΜ | [54] | |
A. nidulans MA-143/A. versicolor MA-229 | Rhizophora stylosa/Lumnitzera racemosa | Aniquinazoline D (137) | LD50 of 3.42 μΜ | [54,55] | |
A. versicolor MA-229 | Lumnitzera racemosa | 14-Epi-isochaetominine C (138) | Inhibiting effect on Fusarium graminearum | MIC of 16 μg/mL | [55] |
A. fumigatus LN-4 | Melia azedarach | Fumiquinazoline F (139) | Inhibitory activity against armyworm larvae | AFI of 30% | [31] |
Lethality toward brine shrimps | LC50 of 55.3 μΜ | ||||
Fumiquinazoline G (140) | Lethality toward brine shrimps | LC50 of 78.8 μΜ | |||
Fumiquinazoline A (141) | Inhibitory activity against armyworm larvae | AFI of 40% | |||
Lethality toward brine shrimps | LC50 of 39.7 μΜ | ||||
Tryptoquivaline O (142) | Lethality toward brine shrimps | LC50 of 72.8 μΜ | |||
3-Hydroxyfumiquinazoline A (143) | Inhibitory activity against armyworm larvae | AFI of 7.5% | |||
Lethality toward brine shrimps | LC50 of 80.8 μΜ | ||||
Aspergillus sp. HS02 | Sonneratia hainanensis | Quinadoline C (144) | Anti-fungi activity with mango and rubber anthracnose fungus | Inactive | [56] |
A. fumigatus SAl12 | Mangrove | Fumigatoside G (145) | - | - | [57] |
Fumigatoside H (146) | |||||
A. fumigatus Y0107 | Crocus sativus Linn (saffron) | 18-Epi-fumiquinazolin C (147) | Antimicrobial activity against A. Tumefaciens, P. agglomerans, R. solanacearum, Erwinia sp. | Inhibition on Erwinia sp. with MIC of 100 μg/mL; others MIC > 100 μg/mL | [58] |
Fumigatoside F (148) | MIC > 100 μg/mL | ||||
2′-Epi-fumiquinazoline D (149) | |||||
Oxoglyantrypine (150) | |||||
A. creber EN-602 | Marine red algal | 3-Hydroxyprotuboxepin K (151) | ACE inhibition | IC50 of 11.2 μM | [59] |
3,15-D K (152) | Aquatic bacteria inhibition | MIC values from 8 to 64 μg/mL | |||
Versiamide A (153) | MIC values from 16 to 64 μg/mL | ||||
Brevianamide P (154) | ACE inhibition | IC50 of 16.0 μM | |||
Protuboxepin J (155) | IC50 of 22.4 μM | ||||
156 | - | - | |||
Aspergillus sp. 16-5c | Mangrove | Aspergiamide F (157) | α-Glucosidase inhibition | IC50 of 267.3 μM | [48] |
Brevianamide M (158) | IC50 of 67.8 μM | ||||
Brevianamide N (159) | IC50 of 362.6 μM | ||||
A. versicolor | Nicotiana tabacum | Isoaspergilline B (153) | TMV inhibitory activities | IC50 of 34.8 μM | [48] |
Isoaspergilline C (160) | IC50 of 37.9 μM | ||||
Isoaspergilline D (161) | IC50 of 32.2 μM | ||||
Isoaspergilline E (162) | IC50 of 42.4 μM | ||||
(1R,4S)-4-Benzyl-1-isopropyl-2,4-dihydro-1H-pyrazino-[2,1-b]quinazoline-3,6-dione (163) | IC50 of 39.5 μM | ||||
Protuboxepin K (164) | IC50 of 35.2 μM | ||||
A. ochraceus | Sargassum kjellmanianum | 2-Hydroxycircumdatin C (165) | DPPH inhibition | IC50 of 9.9 μM; | [41] |
Antibacterial activity | Inactive | ||||
Circumdatin F (166) | Antibacterial activity | Inactive | |||
Circumdatin C (167) | |||||
A. terreus IFB-E030/A. fumigatus SPS-02 | Artemisia annua | 16α-Hydroxy-5N-acetylardeemin (168) | AChE inhibitory activity | IC50 of 58.3 µM | [26,60] |
Cytotoxicity against KB cells and HSC-T6 cells | IC50 of 149.6 and 69.2 µM | ||||
Reverse multidrug resistancce (MDR) in K562/DOX and A549/DDP cell lines | Improving 5.2 ± 0.18-fold, and 8.2 ± 0.23-fold at 5 μM | ||||
5N-acetylardeemin (169) | AChE inhibitory activity | IC50 of 149.4 µM | |||
Cytotoxicity against KB cells | IC50 of 106.7 µM | ||||
15b-β-Hydroxy-5N-acetylardeemin (170) | AChE inhibitory activity | IC50 of 116.9 µM | |||
Cytotoxicity against KB and HSC-T6 cells | IC50 of 61.4 and 67.3 µM | ||||
Improving anti-SK-OV-S/DDP cell line activity | Improving 10.8 ± 0.28-fold | ||||
A. fumigatus SPS-02 | Artemisia annua L. | 5-N-acetyl15b-didehydroardeemin (171) | Improving anti-SK-OV-S/DDP cell line activity | Improving 8.7 ± 0.21-fold | [60] |
3.4. Quinoline Alkaloids
Fungus | Host Plant(s) | Compounds Isolated | Biological Target | Biological Activity | Reference |
---|---|---|---|---|---|
A. versicolor MA-229 | Lumnitzera racemosa | 22-Epi-aflaquinolone B (172) | Anti-gaeumannomyces graminis activity | MIC of 32 μg/mL | [55] |
Brine shrimp lethality of Artemia salina | LD50 of 1.73 μM | ||||
A. versicolor MA-229/A. nidulans MA-143 | Lumnitzera racemose/Rhizophora stylosa | Aflaquinolone A (173) | Brine shrimp lethality of Artemia salina | LD50 of 5.5 μM | [55,61] |
Isoaflaquinolone E (174) | Antibacterial activity against Vibrio harveyi | MIC of 64 μg/mL | |||
A. versicolor MA-229/A. creber EN-602/A. nidulans MA-143 | Lumnitzera racemose/marine red algal/Rhizophora stylosa | 6-Deoxyaflaquinolone E (175) | Antibacterial activity against Vibrio anguillarum | MIC of 64 μg/mL | [55,59,61] |
A. versicolor MA-229 | Lumnitzera racemosa | Aflaquinolone G (176) | |||
A. creber EN-602 | Marine red algal | 9-Hydroxy-3-methoxyviridicatin (177) | ACE inhibitory activity | Inactive | [59] |
Aflaquinolone F (178) | |||||
Aflaquinolone E (179) | |||||
A. nidulans MA-143 | Rhizophora stylosa | Aniduquinolone A (180) | Brine shrimp lethality of Artemia salina | Inactive | [61] |
Aniduquinolone B (181) | LD50 value of 7.1 μM | ||||
Aniduquinolone C (182) | LD50 value of 4.5 μM | ||||
14-Hydroxyaflaquinolone F (183) | Inactive | ||||
Aspergillus sp | Moss | 6-Hydroxy-3-methoxyviridicatin (184) | Inhibition on LPS-induced NO production in RAW 264.7 cells | IC50 of 22.14 μM | [44] |
3-O-methylviridicatol (185) | IC50 of 46.02 μM | ||||
A. fumigatus CY018 | Cynodon dactylon | Asperfumoid (186) | Antimicrobial activity against Candida albicans | MIC of 75 μg/mL | [62] |
3.5. Indole Alkaloids
3.6. Pyrrolidine Alkaloids
3.7. Other Alkaloids
4. Summary and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
AFI | Antifeedant indexes |
CPA | Cyclopiazonic acid |
ConA | Concanavalin A |
IC50 | Half maximal inhibitory concentration |
LC50 | Median lethal concentration |
LD50 | Median lethal dose |
LPS | Lipopolysaccharide |
MCF7/DOX | Doxorubicin resistant human breast cancer |
MDR | Multidrug resistance |
MIC | Minimum inhibitory concentration |
MRSA | Methicillin-resistant Staphylococcus aureus |
NO | Nitric oxide |
OSMAC | One strain many compounds |
PDA | Potato dextrose agar |
PTP1B | Protein tyrosine phosphatase 1B |
RI | Response index |
TMV | Tobacco mosaic virus |
Cell lines in the review | |
786-0 | Renal cell adenocarcinoma |
A549 | Lung epithelial cell line |
A549/DDP | Human lung adenocarcinoma cis-platin resistant |
Bel-7402 | Papillomavirus endocervical adenocarcinoma |
BV2 | Microglia |
B16 | Melanoma cells |
HepG2 | Hepatocellular carcinoma |
Hep3B | Hepatocellular carcinoma |
HL-60 | Promyelocytic leukemia |
HSC-T6 | Rat hepatic stellate |
HeLa | Human epithelial carcinoma |
HT29 | Colorectal cancer |
Huh7 | Hepatoma |
HaCat | Human keratinocyte |
K562 | Myelogenous leukemia |
K562/DOX | Leukemia doxorubicin resistant cell |
KB | Papilloma epithelial carcinoma |
L5178Y | Mouse lymphoblast |
MCF-7 | Breast ductal carcinoma |
MDA-MB-231 | Breast epithelial carcinoma |
MV4-11 | Human acute myeloid leukemi |
NCI-H460 | Lung giant cell carcinoma |
NCM460 | Normal colonic epithelial |
NB4 | Human acute promyelocytic leukemia |
PC-3 | Prostate adenocarcinoma |
PC12 | Rat pheochromocytoma |
RBL-2H3 | Rat basophilic leukemia |
RAW 264.7 | Murine macrophage |
SHSY5Y | Neuroblastoma |
SMMC-7721 | Hepatocarcinoma |
SW-480 | Colorectal adenocarcinoma |
U-2OS | Human osteosarcoma |
References
- Tiwari, P.; Bae, H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Okyere, S.K.; Wang, S.; Wang, J.; Xie, L.; Ran, Y.; Hu, Y. Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. J. Fungi 2022, 8, 205. [Google Scholar] [CrossRef]
- Ancheeva, E.; Daletos, G.; Proksch, P. Bioactive Secondary Metabolites from Endophytic Fungi. Curr. Med. Chem. 2020, 27, 1836–1854. [Google Scholar] [CrossRef]
- Sanchez, J.F.; Somoza, A.D.; Keller, N.P.; Wang, C.C. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat. Prod. Rep. 2012, 29, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Jun, S.C.; Han, K.H.; Hong, S.B.; Yu, J.H. Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. Adv. Appl. Microbiol. 2017, 100, 161–202. [Google Scholar] [CrossRef] [PubMed]
- Hagag, A.; Abdelwahab, M.F.; Abd El-Kader, A.M.; Fouad, M.A. The endophytic Aspergillus strains: A bountiful source of natural products. J. Appl. Microbiol. 2022, 132, 4150–4169. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.B.; Hubka, V.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef]
- Huang, X.; Men, P.; Tang, S.; Lu, X. Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr. Opin. Biotechnol. 2021, 69, 273–280. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Han, T.; Ming, Q.L.; Wu, L.S.; Rahmanc, K.; Qin, L.Q. Alkaloids Produced by Endophytic Fungi: A Review. Nat. Prod. Commun. 2012, 7, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef] [PubMed]
- Palem, P.P.; Kuriakose, G.C.; Jayabaskaran, C. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death. PLoS ONE 2015, 10, e0144476. [Google Scholar] [CrossRef]
- Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Uma Shaanker, R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 2010, 71, 117–122. [Google Scholar] [CrossRef]
- Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 2005, 68, 1717–1719. [Google Scholar] [CrossRef] [PubMed]
- Daley, S.K.; Cordell, G.A. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. J. Nat. Prod. 2021, 84, 871–897. [Google Scholar] [CrossRef] [PubMed]
- Akaberi, T.; Shourgashti, K.; Emami, S.A.; Akaberi, M. Phytochemistry and pharmacology of alkaloids from Glaucium spp. Phytochemistry 2021, 191, 112923. [Google Scholar] [CrossRef] [PubMed]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.R.; Tay, K.C.; Su, Y.X.; Wong, C.K.; Tan, W.N.; Khaw, K.Y. Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases. Molecules 2021, 26, 728. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Wang, K.; Bao, X.; Liu, Y.; Zhou, S.; Liu, H.; Qiu, Y.; Wang, T.; Yu, H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed. Pharmacother. 2019, 120, 109543. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Conte-Junior, C.A.; Dominguez, R.; Nawaz, A.; Walayat, N.; Movilla Fierro, E.; Lorenzo, J.M. Marine Alkaloids: Compounds with In Vivo Activity and Chemical Synthesis. Mar. Drugs 2021, 19, 374. [Google Scholar] [CrossRef]
- Shang, X.F.; Yang, C.J.; Morris-Natschke, S.L.; Li, J.C.; Yin, X.D.; Liu, Y.Q.; Guo, X.; Peng, J.W.; Goto, M.; Zhang, J.Y.; et al. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev. 2020, 40, 2212–2289. [Google Scholar] [CrossRef]
- Vrabec, R.; Blunden, G.; Cahlikova, L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4399. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Yuan, X.L.; Li, C.; Li, A.X. Recent Discovery of Heterocyclic Alkaloids from Marine-Derived Aspergillus Species. Mar. Drugs 2020, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Youssef, F.S.; Alshammari, E.; Ashour, M.L. Bioactive Alkaloids from Genus Aspergillus: Mechanistic Interpretation of Their Antimicrobial and Potential SARS-CoV-2 Inhibitory Activity Using Molecular Modelling. Int. J. Mol. Sci. 2021, 22, 1866. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, X.; Anbari, W.H.A.; Zhou, Q.; Zhou, P.; Zhang, M.; Zeng, F.; Chen, C.; Tong, Q.; Wang, J.; et al. Cysteine Residue Containing Merocytochalasans and 17,18-seco-Aspochalasins from Aspergillus micronesiensis. J. Nat. Prod. 2019, 82, 2653–2658. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.-Q.; Chen, Y.; Zhang, H.; Li, Y.; Yang, M.H.; Kong, L.-Y. Cytotoxic seco-cytochalasins from an endophytic Aspergillus sp. harbored in Pinellia ternata tubers. Fitoterapia 2019, 132, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.M.; Peng, H.; Guo, Z.K.; Cui, J.T.; Song, Y.C.; Tan, R.X. Bioactive Alkaloids from the Plant Endophytic Fungus Aspergillus terreus. Planta Med. 2010, 76, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, J.; Huang, J.P.; Li, J.; Luo, J.; Yan, Y.; Huang, S.X. Bisaspochalasins A-C: Three Cytochalasan Homodimers with Highly Fused Ring System from an Endophytic Aspergillus flavipes. Org. Lett. 2020, 22, 7930–7935. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yu, Z.; Guo, X.; Huang, J.P.; Yan, Y.; Huang, S.X.; Yang, J. Bisaspochalasins D and E: Two Heterocycle-Fused Cytochalasan Homodimers from an Endophytic Aspergillus flavipes. J. Org. Chem. 2021, 86, 11198–11205. [Google Scholar] [CrossRef]
- Shi, Y.S.; Zhang, Y.; Chen, X.Z.; Zhang, N.; Liu, Y.B. Metabolites Produced by the Endophytic Fungus Aspergillus fumigatus from the Stem of Erythrophloeum fordii Oliv. Molecules 2015, 20, 10793–10799. [Google Scholar] [CrossRef]
- Zhang, H.; Ruan, C.; Bai, X.; Chen, J.; Wang, H. Heterocyclic Alkaloids as Antimicrobial Agents of Aspergillus fumigatus D Endophytic on Edgeworthia chrysantha. Chem. Nat. Compd. 2018, 54, 411–414. [Google Scholar] [CrossRef]
- Li, X.J.; Zhang, Q.; Zhang, A.L.; Gao, J.M. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J. Agric. Food Chem. 2012, 60, 3424–3431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, S.Q.; Tang, H.Y.; Li, X.J.; Zhang, L.; Xiao, J.; Gao, Y.Q.; Zhang, A.L.; Gao, J.M. Potential allelopathic indole diketopiperazines produced by the plant endophytic Aspergillus fumigatus using the one strain-many compounds method. J. Agric. Food Chem. 2013, 61, 11447–11452. [Google Scholar] [CrossRef]
- Xie, F.; Li, X.B.; Zhou, J.C.; Xu, Q.Q.; Wang, X.N.; Yuan, H.Q.; Lou, H.X. Secondary Metabolites from Aspergillus fumigatus, an Endophytic Fungus from the Liverwort Heteroscyphus tener (Steph.) Schiffn. Chem. Biodivers. 2015, 12, 1312–1321, Erratum in Chem. Biodivers. 2015, 12, 1954. [Google Scholar]
- Liang, Z.; Zhang, T.; Zhang, X.; Zhang, J.; Zhao, C. An alkaloid and a steroid from the endophytic fungus Aspergillus fumigatus. Molecules 2015, 20, 1424–1433. [Google Scholar] [CrossRef]
- Tong, Y.C.; HE, L.; Fan, J.J.; Liu, Y.R.; Sun, Y. Secondary metabolites from the Endophyte fungus Aspergillus so. Tpxq. Tpxq. J. Nanjing Univ. Tradit. Chin. Med. 2016, 32, 367–370. [Google Scholar]
- Wang, H.; Eze, P.M.; Hofert, S.P.; Janiak, C.; Hartmann, R.; Okoye, F.B.C.; Esimone, C.O.; Orfali, R.S.; Dai, H.; Liu, Z.; et al. Substituted l-tryptophan-l-phenyllactic acid conjugates produced by an endophytic fungus Aspergillus aculeatus using an OSMAC approach. RSC Adv. 2018, 8, 7863–7872. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Jiang, H.; Xiao, Z.; Cao, W.; Yan, T.; Liu, Z.; Lin, S.; Long, Y.; She, Z. (-)- and (+)-Asperginulin A, a Pair of Indole Diketopiperazine Alkaloid Dimers with a 6/5/4/5/6 Pentacyclic Skeleton from the Mangrove Endophytic Fungus Aspergillus sp. SK-28. Org. Lett. 2019, 21, 9633–9636. [Google Scholar] [CrossRef] [PubMed]
- Elsbaey, M.; Sallam, A.; El-Metwally, M.; Nagata, M.; Tanaka, C.; Shimizu, K.; Miyamoto, T. Melanogenesis Inhibitors from the Endophytic Fungus Aspergillus amstelodami. Chem. Biodivers. 2019, 16, e1900237. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Xu, Y.; Fu, P.; Zuo, M.; Liu, W.; Jiang, Y.; Wang, L.; Zhu, W. Cytotoxic Indolyl Diketopiperazines from the Aspergillus sp. GZWMJZ-258, Endophytic with the Medicinal and Edible Plant Garcinia multiflora. J. Agric. Food Chem. 2019, 67, 10660–10666. [Google Scholar] [CrossRef]
- Lin, Z.; Zhu, T.; Fang, Y.; Gu, Q. 1H and 13C NMR assignments of two new indolic enamide diastereomers from a mangrove endophytic fungus Aspergillus sp. Magn. Reson. Chem. 2008, 46, 1212–1216. [Google Scholar] [CrossRef]
- Cui, C.M.; Li, X.M.; Li, C.S.; Sun, H.F.; Gao, S.S.; Wang, B.G. Benzodiazepine Alkaloids from Marine-Derived Endophytic Fungus Aspergillus ochraceus. Helv. Chim. Acta 2009, 92, 1366–1370. [Google Scholar] [CrossRef]
- Li, H.; Xu, Q.; Sun, W.; Zhang, R.; Wang, J.; Lai, Y.; Hu, Z.; Zhang, Y. 21-Epi-taichunamide D and (±)-versicaline A, three unusual alkaloids from the endophytic Aspergillus versicolor F210. Tetra Lett. 2020, 61, 152219. [Google Scholar] [CrossRef]
- Wang, M.L.; Chen, R.; Sun, F.J.; Cao, P.-R.; Chen, X.R.; Yang, M.H. Three alkaloids and one polyketide from Aspergillus cristatus harbored in Pinellia ternate tubers. Tetra Lett. 2021, 68, 152914. [Google Scholar] [CrossRef]
- Wang, N.N.; Liu, C.Y.; Wang, T.; Li, Y.L.; Xu, K.; Lou, H.X. Two New Quinazoline Derivatives from the Moss Endophytic Fungus Aspergillus sp. and Their Anti-inflammatory Activity. Nat. Prod. Bioprospect. 2021, 11, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Ding, W.; Hu, J.F.; Xiong, J.; Li, J. Beshanzuamide A, an unprecedented prenylated indole alkaloid produced by Aspergillus sp. Y-2 from the critically endangered conifer Abies beshanzuensis. RSC Adv. 2022, 12, 10534–10539. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.M.; Mi, Q.L.; Li, X.M.; Gang, D.; Yang, G.Y.; Zhang, J.D.; Wang, J.; Li, Y.K.; Yang, H.Y.; Miao, D.; et al. The anti-TMV potency of the tobacco-derived fungus Aspergillus versicolor and its active alkaloids, as anti-TMV activity inhibitors. Phytochemistry 2023, 205, 113485. [Google Scholar] [CrossRef]
- Luo, G.; Lang, J.; She, Z.; Yan, S.; Tian, G.; Li, J.; Liu, L. Nitrogen-Containing Compounds From Mangrove-Derived Fungus Aspergillus sp. 87. Nat. Prod. Commun. 2020, 15, 1–4. [Google Scholar] [CrossRef]
- Ye, G.; Huang, C.; Li, J.; Chen, T.; Tang, J.; Liu, W.; Long, Y. Isolation, Structural Characterization and Antidiabetic Activity of New Diketopiperazine Alkaloids from Mangrove Endophytic Fungus Aspergillus sp. 16-5c. Mar. Drugs 2021, 19, 402. [Google Scholar] [CrossRef]
- Tuan, C.D.; Minh, L.T.H.; Lien, H.T.H.; Chae, J.W.; Yun, H.Y.; Kim, Y.H.; Cuong, P.V.; Huong, D.T.M.; Hung, N.V. A New Indole Glucoside and Other Constituents from the Sea Cucumber-Derived Aspergillus fumigatus M580 and Their Antimicrobial, Cytotoxic, and Inhibitory α-Glucosidase Activities. Rec. Nat. Prod. 2022, 16, 633–638. [Google Scholar] [CrossRef]
- Al-Khdhairawi, A.A.Q.; Loo, J.S.E.; Abd Mutalib, N.; Abd Latip, N.; Manshoor, N.; Abu Bakar, H.; Babu Shivanagere Nagojappa, N.; Weber, J.F. Diketopiperazine and isoindolinone alkaloids from the endophytic fungus Aspergillus sp. HAB10R12. Phytochemistry 2023, 211, 113685. [Google Scholar] [CrossRef]
- Lhamo, S.; Wang, X.B.; Li, T.X.; Wang, Y.; Li, Z.R.; Shi, Y.M.; Yang, M.H.; Kong, L.-Y. Three unusual indole diketopiperazine alkaloids from a terrestrial-derived endophytic fungus, Aspergillus sp. Tetra Lett. 2015, 56, 2823–2826. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Yang, F.; Han, S.; Zhang, J.; Yang, H.; Cheng, Z.; Li, Q. Asperflaloids A and B from Aspergillus flavipes DZ-3, an Endophytic Fungus of Eucommia ulmoides Oliver. Molecules 2021, 26, 3514. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Y.; Zhang, X.X.; Ma, J.K.; Yang, Y.; Zhou, J.; Xu, J. Secondary metabolites produced by mangrove endophytic fungus Aspergillus fumigatus HQD24 with immunosuppressive activity. Biochem. Syst. Ecol. 2020, 93, 104166. [Google Scholar] [CrossRef]
- An, C.Y.; Li, X.M.; Li, C.S.; Wang, M.H.; Xu, G.M.; Wang, B.G. Aniquinazolines A-D, four new quinazolinone alkaloids from marine-derived endophytic fungus Aspergillus nidulans. Mar. Drugs 2013, 11, 2682–2694. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Li, X.D.; Li, X.M.; Liu, Y.; Meng, L.H.; Wang, B.G. Secondary metabolites from Aspergillus versicolor MA-229, an endophytic fungus isolated from the mangrove plant Lumnitzera racemosa. Chin. J. Antibiot. 2017, 42, S14–S20. [Google Scholar] [CrossRef]
- Guo, Z.K.; Gai, C.J.; Cai, C.H.; Zeng, Y.B.; Yuan, J.Z.; Men, W.L.; Dai, H.F. Quinadoline C, a new alkaloid from mangrove Sonneratia hainanensis-associated Aspergillus sp. J. Shenzhen Univ. Sci. Eng. 2018, 35, 335–338. [Google Scholar] [CrossRef]
- Guo, S.; Zhou, H.; Huang, X.; Peng, S.; Li, J.; Ding, B.; Tao, Y.; Huang, H. New glucosidated indole-quinazoline alkaloids from mangrove endophytic fungus Aspergillus fumigatus SAl12. Nat. Prod. Res. 2023, 8, 1–6. [Google Scholar] [CrossRef]
- Jiang, Y.; Tong, Y.; Wang, P.; Jiang, C.; Zhou, Q. A New Alkaloid from the Endophytic Fungus of Crocus sativus L., Aspergillus fumigatus Y0107. Rec. Nat. Prod. 2022, 16, 463–470. [Google Scholar] [CrossRef]
- Li, H.L.; Yang, S.Q.; Li, X.M.; Li, X.; Wang, B.G. Structurally diverse alkaloids produced by Aspergillus creber EN-602, an endophytic fungus obtained from the marine red alga Rhodomela confervoides. Bioorg. Chem. 2021, 110, 104822. [Google Scholar] [CrossRef]
- Zhang, H.W.; Ying, C.; Tang, Y.F. Four ardeemin analogs from endophytic Aspergillus fumigatus SPS-02 and their reversal effects on multidrug-resistant tumor cells. Chem. Biodivers. 2014, 11, 85–91. [Google Scholar] [CrossRef]
- An, C.Y.; Li, X.M.; Luo, H.; Li, C.S.; Wang, M.H.; Xu, G.M.; Wang, B.G. 4-Phenyl-3,4-dihydroquinolone derivatives from Aspergillus nidulans MA-143, an endophytic fungus isolated from the mangrove plant Rhizophora stylosa. J. Nat. Prod. 2013, 76, 1896–1901. [Google Scholar] [CrossRef]
- Liu, J.Y.; Song, Y.C.; Zhang, Z.; Wang, L.; Guo, Z.J.; Zou, W.X.; Tan, R.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol. 2004, 114, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Wei, C.; Zhang, X.; Zhou, D.; Xu, J. Alkaloids from endophytic fungus Aspergillus fumigatus HQD24 isolated from the Chinese mangrove plant Rhizophora mucronata. Nat. Prod. Res. 2022, 36, 5069–5073. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Y.; Dai, J.M.; Mi, Q.L.; Li, Z.J.; Li, X.M.; Zhang, J.D.; Wang, J.; Li, Y.K.; Wang, W.G.; Zhou, M.; et al. Cyclopiazonic acid type indole alkaloids from Nicotiana tabacum-derived fungus Aspergillus versicolor and their anti-tobacco mosaic virus activities. Phytochemistry 2022, 198, 113137. [Google Scholar] [CrossRef]
- Ge, H.M.; Yu, Z.G.; Zhang, J.; Wu, J.H.; Tan, R.X. Bioactive alkaloids from endophytic Aspergillus fumigatus. J. Nat. Prod. 2009, 72, 753–755. [Google Scholar] [CrossRef]
- Pinheiro, E.A.; Carvalho, J.M.; dos Santos, D.C.; Feitosa Ade, O.; Marinho, P.S.; Guilhon, G.M.; de Souza, A.D.; da Silva, F.M.; Marinho, A.M. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat. Prod. Res. 2013, 27, 1633–1638. [Google Scholar] [CrossRef]
- Xu, J.; Song, Y.C.; Guo, Y.; Mei, Y.N.; Tan, R.X. Fumigaclavines D-H, new ergot alkaloids from endophytic Aspergillus fumigatus. Planta Med. 2014, 80, 1131–1137. [Google Scholar] [CrossRef]
- He, W.; Xu, Y.; Wu, D.; Wang, D.; Gao, H.; Wang, L.; Zhu, W. New alkaloids from the diversity-enhanced extracts of an endophytic fungus Aspergillus flavus GZWMJZ-288. Bioorg. Chem. 2021, 107, 104623. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Miao, M.M.; Du, G.; Li, X.N.; Shang, S.Z.; Zhao, W.; Liu, Z.H.; Yang, G.Y.; Che, C.T.; Hu, Q.F.; et al. Aspergillines A-E, highly oxygenated hexacyclic indole-tetrahydrofuran-tetramic acid derivatives from Aspergillus versicolor. Org. Lett. 2014, 16, 5016–5019. [Google Scholar] [CrossRef] [PubMed]
- Gubiani, J.R.; Oliveira, M.C.S.; Neponuceno, R.A.R.; Camargo, M.J.; Garcez, W.S.; Biz, A.R.; Soares, M.A.; Araujo, A.R.; Bolzani, V.d.S.; Lisboa, H.C.F.; et al. Cytotoxic prenylated indole alkaloid produced by the endophytic fungus Aspergillus terreus P63. Phytochem. Lett. 2019, 32, 162–167. [Google Scholar] [CrossRef]
- Qiao, Y.; Xu, Q.; Feng, W.; Tao, L.; Li, X.N.; Liu, J.; Zhu, H.; Lu, Y.; Wang, J.; Qi, C.; et al. Asperpyridone A: An Unusual Pyridone Alkaloid Exerts Hypoglycemic Activity through the Insulin Signaling Pathway. J. Nat. Prod. 2019, 82, 2925–2930. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Li, L.Y.; Shang, H.; Liu, Y.; Yu, M.; Ding, G.; Zou, Z.M. Trematosphones A and B, Two Unique Dimeric Structures from the Desert Plant Endophytic Fungus Trematosphaeria terricola. Org. Lett. 2019, 21, 2139–2142. [Google Scholar] [CrossRef] [PubMed]
Fungus | Host Plant(s) | Compounds Isolated | Biological Target | Biological Activity | Reference |
---|---|---|---|---|---|
A. micronesiensis | Phyllanthus glaucus | Cytochalasin A (1) | Antimicrobial activities against methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, and Candida albicans; Cytotoxicities against HL60, human lung cancer A549, Hep3B, MCF-7 and SW480 | MIC from 10.6 ± 0.1 to 94.7 ± 1.3 μg/mL; IC50 from 3.0 to 19.9 μM | [24] |
Cytochalasin B (2) | |||||
Secochalasin A (3) | Inactive | ||||
Secochalasin B (4) | |||||
Aspergillus sp. | Pinellia ternata | Seco-cytochalasin A (5) | Cytotoxic activity against A549 | IC50 of 55.5 ± 1.87 μM | [25] |
Seco-cytochalasin B (6) | IC50 of 54.2 ± 1.22 μM | ||||
Seco-cytochalasin C (7) | IC50 of 47.2 ± 0.92 μM | ||||
Seco-cytochalasin D (8) | IC50 of 40.6 ± 1.30 μM | ||||
Seco-cytochalasin E (9) | IC50 of 55.2 ± 1.85 μM | ||||
Seco-cytochalasin F (10) | IC50 of 70.2 ± 1.76 μM | ||||
Cytochalasin Z17 (11) | IC50 of 58.4 ± 1.78 μM | ||||
Aspergillus sp./A. terreus IFB-E030 | Pinellia ternate/Artemisia annua | Cytochalasin E (12) | AChE inhibitory activity; Cytotoxic activity against KB, HSC-T6 and A549 cells | IC50 of 146.1 ± 6.5 μM; | [25,26] |
IC50 of 113.1 ± 8.3, 47.3 ± 9.9, and 7.8 ± 0.92 μM, respectively | |||||
Rosellichalasin (13) | IC50 > 200 μM | ||||
IC50 of 158.3 ± 8.9, >200, and 18.5 ± 1.03 μM, respectively | |||||
A. terreus IFB-E030 | Artemisia annua | 5,6-Dehydro-7-hydroxy Cytochalasin E (14) | AChE inhibitory activity; Cytotoxic activity against KB and HSC-T6 cells | IC50 of 176.0 ± 11.5 μM | [26] |
IC50 of 152.9 ± 14.4, >200 μM, respectively | |||||
Δ6,12-Isomer of 5,6-dehydro-7-hydroxy cytochalasin E (15) | IC50 of 110.9 ± 13.7 μM; | ||||
IC50 of >200 μM and 166.3 ± 13.9 μM, respectively | |||||
A. flavipes KIB-536 | Hevea brasiliensis | Bisaspochalasin A (16) | Inhibitory activity against human T cell proliferation | IC50 of 15.8 μM | [27] |
Bisaspochalasin B (17) | Inactive | ||||
Bisaspochalasin C (18) | |||||
A. flavipes KIB-392 | Hevea brasiliensis | Aspochalasin D (19) | _ | _ | [28] |
Aspochalasin B (20) | |||||
Bisaspochalasin D (21) | Cytotoxic activities against HL-60, SMMC-7721, A-549, MCF-7, and SW-480 | IC50 from 4.45 to 22.99 μM | |||
Bisaspochalasin E (22) | Inactive |
Fungus | Host Plant(s) | Compounds Isolated | Biological Target | Biological Activity | Reference |
---|---|---|---|---|---|
A. amstelodami | White beans | Claudine A (187) | - | - | [38] |
A. fumigatus | Erythrophloeum fordii Oliv. (Leguminosae) | N-β-lacetyltryptamine (188) | Inhibitory activity of NO production | Inactive | [29] |
A. fumigatus M580 | Cucumber | 6-Methoxyindole-3-carboxylic acid O-β-D-glucopyranosyl ester (189) | Inhibition on Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Salmonella enterica, and Escherichia coli | Inactive | [49] |
Aspergillus sp. (w-6) | Acanthus ilicifolius | Terpeptin A (190) | Cytotoxic activity against A549 cells | IC50 of 23.3 µM | [40] |
Terpeptin B (191) | IC50 of 28.0 µM | ||||
192 | IC50 of 15.0 µM | ||||
A. fumigatus HQD24 | Rhizophora mucronata | 1-Acetyl-b-carboline (193) | Inhibitory activity against HepG2 and conA-induced T cell proliferation | Inactive at 10 mg/mL | [63] |
A. versicolor | Nicotiana tabacum | Isoaspergilline A (194) | Anti-TMV activitiy | IC50 of 20.0 μM | [46,64] |
Aspergilline F (195) | - | - | |||
Aspergilline G (196) | Anti-TMV activitiy | Inhibition rate of 41.2% at 20 μM | |||
Aspergilline H (197) | - | - | |||
Aspergilline I (198) | |||||
Aspergilline J (199) | Anti-TMV activitiy | Inhibition rate of 56.8% at 20 μM | |||
Aspergilline A (200) | - | - | |||
Aspergilline C (201) | |||||
Cyclopiamide E (202) | |||||
A. fumigatus LN-4 | Melia azedarach | Fumigaclavine B (203) | Inhibition on brine shrimps | Inactive | [31] |
A. fumigatus | Cynodon dactylon | 9-Deacetylfumigaclavine C (204) | - | - | [65] |
9-Deacetoxyfumigaclavine C (205) | |||||
A. fumigatus/Aspergillus sp. EJC08/A. fumigatus/Aspergillus sp. 87/A. fumigatus HQD24/A. fumigatus | Cynodon dactylon/Bauhinia guianen/Heteroscyphus tener (Steph.) Schiffn/mangrove/mangrove/Cynodon dactylon (Poaceae) | Fumigaclavine C (206) | Cytotoxicity for K562 and PC3 | IC50 of 3.1 and 26.6 ± 0.7 µM, respectively | [33,47,53,65,66,67] |
Immunosuppressive activities against conA-induced T-cell proliferation | IC50 of 52.13 ± 0.13 μM | ||||
A. fumigatus | Veillonella parvula | Fumigaclavine D (207) | Antimicrobial activity against Peptostreptococcus anaerobius, Bacteroides diatasonis, Veillonella parvula, Actinomyces israelii, Bacteroides vulgatus and Streptococcus anaerobius | MIC of 64, 64, 32, 64, 128, 128 µg/mL, respectively | [67] |
Fumigaclavine E (208) | MIC > 128 µg/mL | ||||
Fumigaclavine F (209) | MIC of 32, 32, 16, 32, 64, 32 µg/mL, respectively | ||||
Fumigaclavine G (210) | MIC > 128 µg/mL, respectively | ||||
Fumigaclavine H (211) | MIC of 32, 32, 16, 32, >128, 32 µg/mL, respectively | ||||
Festuclavine (212) | MIC of 64, 32, 32, 32, 64, 32 µg/mL, respectively | ||||
Fumigaclavine A (213) | MIC of 128, 128, 64, 128, 128, 128 µg/mL, respectively | ||||
A. flavus GZWMJZ-288 | Garcinia multiflora | 19-Amino-19-dehydroxy 5-Epi-α-cyclopiazonic acid (214/215) | Inhibiting α-glucosidase activity | IC50 of 41.97 ± 0.97 μM | [68] |
19-Amino-19-dehydroxy α-Cyclopiazonic acid (216/217) | IC50 of 232.57 ± 11.45 μM | ||||
α-Cyclopiazonic acid (218) | IC50 of 243.95 ± 3.36 μM | ||||
A. flavipes DZ-3/A. aculeatus | Eucommia ulmoides Olive/Carica papaya | Oxaline (219) | Antioxidant and α-glucosidase inhibitory activities | Inactive | [36] |
A. vesicolor | Paris polyphylla var. yunnanensis | Aspergilline A (220) | Anti-TMV activity; Cytotoxic activity of NB4, A549, SHSY5Y, PC3, and MCF7 | IC50 of 15.2, 3.8, 1.2, 3.4, 2.6, 1.5 μM, respectively | [69] |
Aspergilline B (221) | IC50, 22.8, 7.2, >10, 5.4, 2.6, 4.5 μM | ||||
Aspergilline C (222) | IC50 of 41.3, 1.2, 2.8, 1.5, 2.8, 3.6 μM, respectively | ||||
Aspergilline D (223) | IC50 of 37.5, 2.2, 1.5, 3.6, 4.2, 2.9 μM, respectively | ||||
Aspergilline E (224) | IC50, 48.6, 4.7, 2.8, 8.2, >10, 6.5 μM | ||||
A. terreus P63 | Axonopus leptostachyus | Giluterrin (225) | Inhibitory activity on 786-0, HaCat and PC-3 | IC50 of 22.93 ± 8.67, 49.79 ± 10.74 and 48.55 ± 8.06 μM, respectively | [70] |
A. aculeatus | Carica papaya | Aculeatine A (226) | Cytotoxicity against the L5178Y | Inactive at 10 mg/mL | [36] |
Aculeatine B (227) | |||||
Aculeatine C (228) | |||||
Aculeatine D (229) | |||||
Aculeatine E (230) | |||||
Aculeatine F (231) | |||||
Aculeatine G (232) | |||||
Aculeatine H (233) | |||||
Aculeatine I (234) | |||||
Aculeatine J (235) | |||||
N-[(2S)-2-hydroxy-1-oxo-3-phenylpropyl]-L-tryptophan methyl ester (236) | |||||
N-[(2S)-2hydroxy-1-oxo-3-phenylpropyl]-L-tryptophan (237) | |||||
Acudioxomorpholine (238) | |||||
Emindole SB (239) | |||||
Aspergillus sp. HAB10R12 | Garcinia scortechinii | Aspergillinine B (240) | Cytotoxicity against HepG2 and A549 cells | Inactive | [50] |
Fungus | Host Plant(s) | Compounds Isolated | Biological Target | Biological Activity | Reference |
---|---|---|---|---|---|
A. aculeatus | Carica papaya | (11aS)-2,3-dihydro-7-methoxy-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione (241) | Antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Aspergillus niger | Inactive | [36] |
16-Keto-aspergillimide (242) | [36] | ||||
A. fumigatus | Cynodon dactylon | 14-Norpseurotin (243) | Activity of promoting neurite outgrowth | Promoting PC12 cells neurite outgrowth at 10.0 µM | [65] |
A. fumigatus/Aspergillus sp. EJC08/A. fumigatus/A. fumigatus/A. fumigatus D/Aspergillus sp. 87/A. fumigatus LN-4 | Cynodon dactylon/Bauhinia guianensis/Erythrophloeum fordii Oliv/Heteroscyphus tener (Steph.) Schiffn/Edgeworthia chrysantha Lindl/mangrove/Melia azedarach | Pseurotin A (244) | Antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli | Antimicrobial activity with MICs of 15.62, 31.25, 31.25, and 15.62 μg/mL, respectively | [29,30,31,33,47,65,66] |
Anti-inflammatory activity induced by lipopolysaccharide in BV2 cells | Anti-inflammatory activity with IC50 of 5.20 µM | ||||
A. fumigatus LN-4 | Melia azedarach | Pseurotin A1 (245) | Toxicity toward brine shrimps | Inactive | [31] |
A. fumigatus Y0107 | Crocus sativus Linn (saffron) | 11-Acetyl-pseurotin A2 (246) | Antimicrobial activity against P. agglomerans, A. tumefaciens, Erwinia sp., and R. solanacearum | Inactive | [58] |
11-O-methylpseurotin A (247) |
Fungus | Host Plant(s) | Compounds Isolated | Biological Target | Biological Activity | Reference |
---|---|---|---|---|---|
A. amstelodami/A. fumigatus LN-4 | White beans/Melia azedarach | 248 | Inhibitory activity on melanin production in B16 melanoma cells | IC50 of 144.7 ± 2.35 µM | [31,38] |
A. amstelodami | White beans | Thymine (249) | - | - | |
Adenine (250) | Inhibitory activity on melanin production in B16 melanoma cells | IC50 of 100.4 ± 3.05 µM | |||
A. fumigatus | Erythrophloeum fordii Oliv. (Leguminosae) | Lumichrome (251) | Inhibitory activity of NO production | Inactive | [29] |
Aspergillus sp. TJ23 | Hypericum perforatum (St. John’s Wort) | Asperpyridone A (252) | Activity of glucose uptake in HepG2 cells | Improving glucose uptake in HepG2 cells at 50 μM | [71] |
A. flavus GZWMJZ-288 | Garcinia multiflora | 2-Hydroxymethyl-5-(3-oxobutan-2-yl)aminopyran-4(4H)-one (253) | Inhibitory activity against gram positive Staphylococcus aureus ATCC6538, S. aureus ATCC25923 and MRSA, gram-negative Pseudomonas aeruginosa ATCC10145 and Escherichia coli ATCC11775, the pathogenic fungi Candida albicans ATCC10231 and C. glabrata ATCC2001 | Inactive at 100 μg/mL | [68] |
4-Amino-2-hydroxymethylpyridin-5-ol (254) | |||||
5-Hydroxy-2-hydroxymethylpyridine-4(1H)-one (255) | |||||
A. creber EN-602 | Rhodomela confervoides | Benzodiazeinedione (256) | ACE inhibitory activity | Inactive | [59] |
Cyclopeptine (257) | |||||
Trans-3-(3′-hydroxybenzylidene)-3,4-dihydro-4-methyl-1H-1,4-benzodiazepin2,5-dione (258) | |||||
A. flavipes DZ-3 | Eucommia ulmoides Oliver | Asperflaloid B (259) | Antioxidant and α-glucosidase inhibitory activity | Inactive | [52] |
Penipanoid A (260) | |||||
Fuscoatramide (261) | |||||
Aspergillus sp. 87 | Mangrove | Aspergilamide A (262) | - | - | [47] |
A. fumigatus HQD24 | Mangrove | N,N’-((1Z,3Z)-1-(4-hydroxy-phenyl)-4-(4-methoxyphenyl)buta-1,3-diene-2,3-diyl)diformamide (263) | Inhibition on splenic lymphocyte growth | Inactive | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Song, L.; Shen, S.; Fu, W.; Zhu, Y.; Liu, L. Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus. Molecules 2023, 28, 7789. https://doi.org/10.3390/molecules28237789
Zhu J, Song L, Shen S, Fu W, Zhu Y, Liu L. Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus. Molecules. 2023; 28(23):7789. https://doi.org/10.3390/molecules28237789
Chicago/Turabian StyleZhu, Juntai, Lixia Song, Shengnan Shen, Wanxin Fu, Yaying Zhu, and Li Liu. 2023. "Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus" Molecules 28, no. 23: 7789. https://doi.org/10.3390/molecules28237789
APA StyleZhu, J., Song, L., Shen, S., Fu, W., Zhu, Y., & Liu, L. (2023). Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus. Molecules, 28(23), 7789. https://doi.org/10.3390/molecules28237789