Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Kinetic Analysis
2.2. Product Analysis
2.2.1. Fixed Bed Reactor
2.2.2. Fluidized Bed Reactor
3. Materials and Methods
3.1. Materials
3.2. Experimental Methods
3.3. Kinetic Analysis
3.3.1. Differential Method
3.3.2. Integral Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horodyska, O.; Vakdes, F.J.; Fullana, A. Plastic flexible films waste management-A state of art review. Waste Manag. 2018, 22, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Meys, R.; Frick, F.; Westhues, S.; Sternberg, A.; Klankermayer, J.; Bardow, A. Towards a circular economy for plastic packing waste-the environmental potential of chemical recycling. Resour. Conserv. Recycl. 2020, 162, 105010. [Google Scholar] [CrossRef]
- Park, K.B.; Jeong, Y.S.; Guzelciftci, B.; Kim, J.S. Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or bezene, toluene, ethylbenzene, and xylene. Appl. Energy 2020, 259, 114240. [Google Scholar] [CrossRef]
- Mangesh, V.L.; Padmanabhan, S.; Tamizhdural, P.; Ramesh, A. Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. J. Clean. Prod. 2020, 246, 119066. [Google Scholar] [CrossRef]
- Sekar, M.; Ponnusamy, V.K.; Pugazhendhi, A.; Nizetic, S.; Praveenkumar, T.R. Production and utilization of pyrolysis oil from solid plastic wastes: A review on pyrolysis ptocess and influence of reactors design. J. Environ. Manag. 2022, 302 Part B, 114046. [Google Scholar] [CrossRef]
- Signh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1 Effect of temperature, product optimization, and degradation mechanism. J. Environ. Manag. 2019, 239, 395–406. [Google Scholar]
- Kunwar, B.; Cheng, H.N.; Chandrashekaran, S.R.; Sharma, B.K. Plastics to fuel: A review. Renew. Sustain. Energy Rev. 2016, 54, 421–428. [Google Scholar] [CrossRef]
- Nimmegeers, P.; Billen, P. Quantifying the separation complexity of mixed plastic waste streams with statistical entropy: A plastic waste case study in Belgium. ACS Sustain. Chem. Eng. 2021, 9, 9813–9822. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond mechanical recycling: Given new life to plastic waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Conserv. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Jahirul, A.I.; Rasul, M.G.; Schaller, D.; Khan, M.M.K.; Hasan, M.M.; Hazrat, M.A. Transport fuel from waste plastics pyrolysis-A review on technologies challenges and opportunities. Energy Conserv. Manag. 2022, 258, 115451. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Vellaiyan, S. Energy extraction from waste plastics and its optimization study for effective combustion and cleaner exhaust engaging with water and cetane improve: A response surface methodology approach. Environ. Res. 2023, 231 Part 1, 116113. [Google Scholar] [CrossRef]
- Kaimal, V.K.; Vijayabalan, P. A detailed study of combustion characteristics of a DI diesel engine using waste plastic oil and its blends. Energy Conserv. Manag. 2015, 105, 951–956. [Google Scholar] [CrossRef]
- Wathakit, K.; Sukjit, E.; Kaewbuddee, C.; Maithomklang, S.; Klinkaew, N.; Liplap, P.; Arjharn, W.; Srisertpol, J. Characterization and impact of waste plastic oil in a bariable compression ration diesel engine. Energies 2021, 14, 2230. [Google Scholar] [CrossRef]
- Panda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products-A world prospective. Renew. Sustain. Energy Rev. 2010, 14, 223–248. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A.; Ilyas, R.A. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci. Total Environ. 2022, 803, 149911. [Google Scholar] [CrossRef]
- Marcilla, A.; Garcia-Quesada, J.C.; Sanchez, S.; Ruiz, R. Study of the catalytic pyrolysis behaviour of polyethylene–polypropylene mixtures. J. Anal. Appl. Pyrolysis 2005, 74, 387–392. [Google Scholar] [CrossRef]
- Kim, H.T.; Oh, S.C. Kinetic of thermal degradation of waste polypropylene and high-density polyethylene. J. Ind. Eng. Chem. 2005, 11, 648–656. [Google Scholar]
- López, A.; de Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A. Pyrolysis of municipal plastic wastes: Influence of raw material composition. Waste Manag. 2010, 30, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, Y.; Abdelouahed, L.; Hage, R.E.; Samrani, A.E.; Taouk, B. Pyrolysis of common plastics and their mixtures to produce valuable petroleum-like products. Polym. Degrad. Stab. 2022, 195, 109770. [Google Scholar] [CrossRef]
- Tokmurzin, D.; Nam, J.Y.; Lee, T.R.; Park, S.J.; Nam, H.S.; Yoon, S.J.; Mun, T.Y.; Yoon, S.M.; Moon, J.H.; Lee, J.G.; et al. High temperature flash pyrolysis characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effect of temperature and pelletizing. Fuel 2022, 326, 125022. [Google Scholar] [CrossRef]
- Jung, S.-H.; Cho, M.-H.; Kang, B.-S.; Kim, J.-S. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Process. Technol. 2010, 91, 277–284. [Google Scholar] [CrossRef]
- Park, J.W.; Oh, S.C.; Lee, H.P.; Kim, H.T.; Yoo, K.O. Kinetic analysis of thermal decomposition of polymer using a dynamic model. Korean J. Chem. Eng. 2000, 17, 489–496. [Google Scholar] [CrossRef]
- Coats, A.; Redfern, J. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Cooney, J.D.; Day, M.; Wiles, D.M. Thermal degradation of poly(ethylene terephthalate): A kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1983, 28, 2887–2902. [Google Scholar] [CrossRef]
Differential Method | Integral Method | |||
---|---|---|---|---|
Conversion (α) | Activation Energy (kJ/mol) | Heating Rate | Conversion (α) | Activation Energy (kJ/mol) |
0.20 ≤ a < 0.40 | 59.94~116.32 | 20 °C/min | 0.07 ≤ a < 0.28 | 85.41 |
0.28 ≤ a < 0.94 | 92.43 | |||
30 °C/min | 0.10 ≤ a < 0.35 | 41.93 | ||
0.40 ≤ a < 0.85 | 112.47~131.32 | 0.35 ≤ a < 0.92 | 62.30 | |
40 °C/min | 0.11 ≤ a < 0.30 | 44.97 | ||
0.30 ≤ a < 0.92 | 89.75 |
Elements (wt%) | C | 42.17–46.39 |
H | 1.41–2.39 | |
N | 0.90–1.16 | |
O | 4.18–7.63 | |
S | 0 | |
Other | 45.44–51.46 | |
Higher heating (kcal/kg) | 4570.8–5421.2 |
Elements (wt%) | C | 40.40–44.16 |
H | 1.95–3.31 | |
N | 0.94–1.34 | |
O | 6.41–9.75 | |
S | 0 | |
Other | 45.87–46.53 | |
Higher heating (kcal/kg) | 4853.6–5836.6 |
Elements (wt%) | C | 63.1 |
H | 9.8 | |
N | 0.6 | |
O | 16.4 | |
S | 0 | |
Other | 10.1 | |
Volatile (%) | 90.60 | |
Fixed carbon (%) | 6.07 | |
Ash (%) Higher heating value (kcal/kg) | 3.33 8871.7 |
Item | Conditions |
---|---|
Column over temp | 40.0 °C |
Injection temp | 250.0 °C |
Injection mode | Split |
Flow control mode | Linear Velocity |
Pressure | 60.1 kPa |
Total flow | 234.1 mL/min |
Column flow (He) | 1.15 mL/min |
Linear velocity | 38.6 cm/s |
Purge flow | 3.0 mL/min |
Split ratio | 200.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Ko, H.; Oh, S. Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors. Molecules 2023, 28, 7815. https://doi.org/10.3390/molecules28237815
Lee M, Ko H, Oh S. Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors. Molecules. 2023; 28(23):7815. https://doi.org/10.3390/molecules28237815
Chicago/Turabian StyleLee, Myeongjong, Hyeongtak Ko, and Seacheon Oh. 2023. "Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors" Molecules 28, no. 23: 7815. https://doi.org/10.3390/molecules28237815
APA StyleLee, M., Ko, H., & Oh, S. (2023). Pyrolysis of Solid Recovered Fuel Using Fixed and Fluidized Bed Reactors. Molecules, 28(23), 7815. https://doi.org/10.3390/molecules28237815