On the Nature of the Rotational Energy Barrier of Atropisomeric Hydrazides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conformational Search
2.2. Ground Potential Analysis
2.3. Transition State Optimizations
2.4. Energy Barriers from Experimental Data
2.5. Energy Barrier Values at Different Temperatures for Samples 3 and 6: Eyring Plots
2.6. Comparison Analysis
3. Methods and Materials
3.1. Computational Methods
- part0 cheap prescreening: b97-d3 [29]/def2-SV(P)//GFN2-xTB (Input geometry)
- part2 optimization: r2scan-3c + C-PCM[hexane] + GmRRHO(GFN2[ALPB]-bhess)//r2scan-3c[SMD]
3.2. Synthesis and Experimental Part
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Centonze, G.; Portolani, C.; Righi, P.; Bencivenni, G. Enantioselective Strategies for The Synthesis of N-N Atropisomers. Angew. Chem. 2023, 135, e202303966. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Jennings, B. Rotation-Inversion Barriers in Hydrazines. J. Am. Chem. Soc. 1969, 91, 3655–3656. [Google Scholar] [CrossRef]
- Verma, S.M.; Prasad, R. Conformational Analysis by Nuclear Magnetic Resonance Spectroscopy. N′-Derivatives of N-Aminocamphorimides. J. Org. Chem. 1973, 38, 1004–1010. [Google Scholar] [CrossRef]
- Atkinson, R.S.; Barker, E.; Price, C.J.; Russell, D.R. The N–N Bond as a Chiral Axis: 3-(Diacylamino)Quinazolin-4(3H)Ones as Chiral Acylating Agents. J. Chem. Soc. Chem. Commun. 1994, 1159–1160. [Google Scholar] [CrossRef]
- Atkinson, R.S.; Barker, E.; Edwards, P.J.; Thomson, G.A. The N–N Bond as a Chiral Axis: 3-Diacylaminoquinazolinones as Chiral Acylating Agents. J. Chem. Soc. Perkin Trans. 1996, 1, 1047–1055. [Google Scholar] [CrossRef]
- Coogan, M.P.; Smart, E.; Hibbs, D.E. Asymmetric Transformation (Deracemisation) of an Atropisomeric Bisheterocyclic Amine†. Chem. Commun. 1999, 1991–1992. [Google Scholar] [CrossRef]
- Coogan, M.P.; Passey, S.C. Tetraacyl Hydrazines and 3,3′-Biquinazoline-4,4′-Diones; Synthesis, Studies of Rotational Barriers and Deracemisation. J. Chem. Soc. Perkin Trans. 2000, 2, 2060–2066. [Google Scholar] [CrossRef]
- Wang, X.-M.; Zhang, P.; Xu, Q.; Guo, C.-Q.; Zhang, D.-B.; Lu, C.-J.; Liu, R.-R. Enantioselective Synthesis of Nitrogen–Nitrogen Biaryl Atropisomers via Copper-Catalyzed Friedel–Crafts Alkylation Reaction. J. Am. Chem. Soc. 2021, 143, 15005–15010. [Google Scholar] [CrossRef]
- Chen, K.-W.; Chen, Z.-H.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Organocatalytic Atroposelective Synthesis of N−N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angew. Chem. Int. Ed. 2022, 61, e202116829. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, L.-Y.; Zhang, T.; Yang, B.-M.; Zhao, Y. Atroposelective Synthesis of 1,1′-Bipyrroles Bearing a Chiral N−N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angew. Chem. Int. Ed. 2022, 61, e202200371. [Google Scholar] [CrossRef]
- Lin, W.; Zhao, Q.; Li, Y.; Pan, M.; Yang, C.; Yang, G.-H.; Li, X. Asymmetric Synthesis of N–N Axially Chiral Compounds via Organocatalytic Atroposelective N-Acylation. Chem. Sci. 2021, 13, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Mei, G.-J.; Wong, J.J.; Zheng, W.; Nangia, A.A.; Houk, K.N.; Lu, Y. Rational Design and Atroposelective Synthesis of N–N Axially Chiral Compounds. Chem 2021, 7, 2743–2757. [Google Scholar] [CrossRef]
- Chen, Z.; Li, T.; Wang, N.; Ma, X.; Ni, S.; Zhang, Y.; Shi, F. Organocatalytic Enantioselective Synthesis of Axially Chiral N,N′-Bisindoles. Angew. Chem. Int. Ed. 2023, 62, e202300419. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Miao, J.; Zhao, Y.; Yang, B.-M. Chiral Acid-Catalyzed Atroposelective Indolization Enables Access to 1,1′-Indole-Pyrroles and Bisindoles Bearing a Chiral N–N Axis. Org. Lett. 2023, 25, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; et al. N-N-Coupled Indolo-Sesquiterpene Atropo-Diastereomers from a Marine-Derived Actinomycete. Eur. J. Org. Chem. 2012, 2012, 5256–5262. [Google Scholar] [CrossRef]
- LaPlante, S.R.; Edwards, P.J.; Fader, L.D.; Jakalian, A.; Hucke, O. Revealing Atropisomer Axial Chirality in Drug Discovery. ChemMedChem 2011, 6, 505–513. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem.–Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef]
- Houk, K.N.; Bickelhaupt, M. Analyzing Reaction Rates with the Distortion Interaction-Activation Strain Model. Angew. Chem. Int. Ed. 2017, 56, 10070–10086. [Google Scholar] [CrossRef]
- Velasco-Juárez, E.; Arpa, E.M. A Novel Partitioning Scheme for the Application of the Distortion/Interaction–Activation Strain Model to Intramolecular Reactions. Theor. Chem. Acc. 2021, 140, 107. [Google Scholar] [CrossRef]
- Gloaguen, E.; Brenner, V.; Alauddin, M.; Tardivel, B.; Mons, M.; Zehnacker-Rentien, A.; Declerck, V.; Aitken, D.J. Direct Spectroscopic Evidence of Hyperconjugation Unveils the Conformational Landscape of Hydrazides. Angew. Chem. Int. Ed. 2014, 53, 13756–13759. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, F.; Landis, C.R.; Glendening, E.D. What Is NBO Analysis and How Is It Useful? Int. Rev. Phys. Chem. 2016, 35, 399–440. [Google Scholar] [CrossRef]
- He, C.Q.; Simon, A.; Lam, Y.; Brunskill, A.P.J.; Yasuda, N.; Tan, J.; Hyde, A.M.; Sherer, E.C.; Houk, K.N. Model for the Enantioselectivity of Asymmetric Intramolecular Alkylations by Bis-Quaternized Cinchona Alkaloid-Derived Catalysts. J. Org. Chem. 2017, 82, 8645–8650. [Google Scholar] [CrossRef] [PubMed]
- Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended TIGHT‐BINDING Quantum Chemistry Methods. WIREs Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Bohle, F.; Hansen, A.; Pracht, P.; Spicher, S.; Stahn, M. Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. J. Phys. Chem. A 2021, 125, 4039–4054. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.-M. r2SCAN-3c: A “Swiss Army Knife” Composite Electronic-Structure Method. J. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef]
- Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. J. Chem. Theory Comput. 2021, 17, 4250–4261. [Google Scholar] [CrossRef] [PubMed]
- Spicher, S.; Grimme, S. Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. J. Chem. Theory Comput. 2021, 17, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Portolani, C.; Centonze, G.; Luciani, S.; Pellegrini, A.; Righi, P.; Mazzanti, A.; Ciogli, A.; Sorato, A.; Bencivenni, G. Synthesis of Atropisomeric Hydrazides by One-Pot Sequential Enantio- and Diastereoselective Catalysis. Angew. Chem. Int. Ed. 2022, 61, e202209895. [Google Scholar] [CrossRef] [PubMed]
- Simón, L.; Goodman, J.M. How Reliable Are DFT Transition Structures? Comparison of GGA, Hybrid-Meta-GGA and Meta-GGA Functionals. Org. Biomol. Chem. 2011, 9, 689–700. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
- Rasmussen, L.K. Facile Synthesis of Mono-, Di-, and Trisubstituted Alpha-Unbranched Hydrazines. J. Org. Chem. 2006, 71, 3627–3629. [Google Scholar] [CrossRef] [PubMed]
- Bredihhin, A.; Mäeorg, U. Effective Strategy for the Systematic Synthesis of Hydrazine Derivatives. Tetrahedron 2008, 64, 6788–6793. [Google Scholar] [CrossRef]
- Gasparrini, F.; Lunazzi, L.; Mazzanti, A.; Pierini, M.; Pietrusiewicz, K.M.; Villani, C. Comparison of Dynamic HPLC and Dynamic NMR in the Study of Conformational Stereodynamics: Case of the Enantiomers of a Hindered Secondary Phosphine Oxide1. J. Am. Chem. Society 2000, 122, 4776–4780. [Google Scholar] [CrossRef]
- Gasparrini, F.; D’Acquarica, I.; Pierini, M.; Villani, C. Chromatographic Resolution and Enantiomerization Barriers of Axially Chiral 1-Naphthamides. J. Sep. Sci. 2001, 24, 941–946. [Google Scholar] [CrossRef]
- Sabia, R.; Ciogli, A.; Pierini, M.; Franzini, R.; Iazzetti, A.; Villani, C. Chromatographic Separation of the Interconverting Enantiomers of Imidazo- and Triazole-Fused Benzodiazepines. J. Chromatogr. A 2021, 1647, 462148. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, P.M. Growing String Method with Interpolation and Optimization in Internal Coordinates: Method and Examples. J. Chem. Phys. 2013, 138, 184102. [Google Scholar] [CrossRef] [PubMed]
- Luchini, G.; Alegre-Requena, J.V.; Funes-Ardoiz, I.; Paton, R.S. GoodVibes: Automated Thermochemistry for Heterogeneous Computational Chemistry Data. F1000Research 2020, 9, 291. [Google Scholar] [CrossRef]
- Zhao, Q.; Hsu, H.-H.; Savoie, B. Conformational Sampling for Transition State Searches on a Computational Budget. J. Chem. Theory Comput. 2021, 18, 3006–3016. [Google Scholar] [CrossRef]
Parameter | CREST | Part0 | Part1 | Part2 |
---|---|---|---|---|
A1 | 93 (67.0%) | 89 | 78 | 48 (31.5%) |
B2 | 241 (22.2%) | 177 | 127 | 96 (4.5%) |
C3 | 125 (46.9%) | 72 | 37 | 31 (29.4%) |
D4 | 71 (24.7%) | 47 | 37 | 30 (17.0%) |
E5 | 86 (30.1%) | 60 | 59 | 51 (11.2%) |
F6 | 66 (9.8%) | 40 | 40 | 35 (7.5%) |
G7 | 115 (38.1%) | 83 | 62 | 50 (13.1%) |
Parameter | A1 | B2 | C3 | D4 | E5 | F6 | G7 |
---|---|---|---|---|---|---|---|
ϑ1 [°] | −0.75 | 9.26 | −1.26 | −10.41 | 4.35 | 1.48 | −8.31 |
ϑ2 [°] | −0.75 | 8.84 | −1.25 | −10.41 | −5.82 | 1.48 | −11.52 |
ϑ3 [°] | 77.89 | −61.55 | 77.58 | 62.73 | 87.70 | −84.12 | 62.11 |
ϑ5 [°] | 179.87 | 171.67 | 179.23 | −171.38 | 19.01 | 179.24 | −170.04 |
ϑ6 [°] | 179.87 | 171.35 | 179.23 | −171.38 | −20.29 | 179.24 | −172.92 |
r4 [Å] | 1.37 | 1.38 | 1.37 | 1.38 | 1.37 | 1.38 | 1.38 |
r5 [Å] | 1.38 | 1.38 | 1.38 | 1.38 | 1.41 | 1.41 | 1.38 |
r6 [Å] | 1.38 | 1.38 | 1.38 | 1.38 | 1.41 | 1.41 | 1.38 |
Inside | Outside | ΔG kcal/mol (In-Out) | |
---|---|---|---|
A1 | 1.9848 [b] | 0.9121 [a] | +5.85 |
B2 | 1.5692 [b] | 0.8129 [a] | +8.21 |
C3 | 1.9374 [b] | 0.8278 [a] | +8.47 |
D4 | 1.5456 [b] | 0.8058 [a] | +3.32 |
E5 | 2.1177 [a] | 5.2156 [b] | −1.75 |
F6 | 2.7641 [b] | 5.7090 [a] | +3.92 |
G7 | 1.7223 [b] | 0.6977 [a] | +5.43 |
Parameter | A1 | B2 | C3 | D4 | E5 | F6 | G7 |
---|---|---|---|---|---|---|---|
ϑ1 [°] | 20.71 | −21.33 | 35.49 | 23.46 | −25.12 | −31.56 | −31.60 |
ϑ2 [°] | −29.53 | 28.85 | −20.30 | −34.37 | 28.25 | 24.53 | 19.85 |
ϑ3 [°] | −173.62 | −161.50 | 170.61 | −177.37 | 169.33 | −166.89 | −176.93 |
ϑ5 [°] | 162.93 | −166.00 | −179.60 | 11.77 | −129.29 | −179.69 | −2.07 |
ϑ6 [°] | −1.71 | 13.97 | 39.47 | −172.14 | −40.38 | −8.82 | 169.36 |
r4 [Å] | 1.44 | 1.44 | 1.44 | 1.44 | 1.42 | 1.43 | 1.44 |
r5 [Å] | 1.39 | 1.38 | 1.44 | 1.40 | 1.46 | 1.41 | 1.41 |
r6 [Å] | 1.41 | 1.42 | 1.39 | 1.40 | 1.47 | 1.40 | 1.39 |
Sample | T [°C] | krac [min−1] | kenant [min−1] | ΔGenant [kcal/mol] | t1/2 [min] |
---|---|---|---|---|---|
D4 | 70 | 0.0111 (R2 = 0.9974) | - | 25.57 | 31 |
C3 | 71 | 0.0064 (R2 = 0.9989) | - | 26.01 | 54 |
B2 | 71 | 0.0250 (R2 = 0.9991) | - | 25.09 | 14 |
A1 | 70 | 0.0645 | - | <24.3 a | 5.4 |
F6 | 40 | - | 0.0296 | 23.10 b | 12 |
E5 | 25 | - | 0.3560 b | 20.61 b | 2 |
Molecule | ∆G Exp [kcal/mol] | T exp [°C] | ∆G Computational [kcal/mol] | Deviation from Experimental Value [%] |
---|---|---|---|---|
A1 | <24.3 | 70 | 29.23 | 20.29 [a] |
B2 | 25.09 | 71 | 26.31 | 4.87 |
C3 | 26.01 | 71 | 36.23 | 39.29 |
D4 | 25.57 | 70 | 24.81 | −2.96 |
E5 | 20.61 | 25 | 22.57 | 9.52 |
F6 | 23.10 | 40 | 28.46 | 23.20 |
G7 | N.A. | 26.87 [b] | N.A. |
Bond [a] | A1 | B2 | C3 | D4 | E5 | F6 | G7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∆bd [Å] | ∆p [%] | ∆bd [Å] | ∆p [%] | ∆bd [Å] | ∆p [%] | ∆bd [Å] | ∆p [%] | ∆bd [Å] | ∆p [%] | ∆bd [Å] | ∆p [%] | ∆bd [Å] | ∆p [%] | |
1–2 | 0.07 | 2.56 | 0.06 | 2.10 | 0.07 | 4.88 | 0.06 | 3.55 | 0.05 | 3.02 | 0.05 | 2.96 | 0.06 | 3.98 |
2–1 | 0.07 | 3.90 | 0.06 | 4.34 | 0.07 | 2.53 | 0.06 | 3.39 | 0.05 | 2.84 | 0.05 | 2.41 | 0.06 | 2.26 |
1–3 | 0.01 | 1.56 | 0.01 | 2.02 | 0.03 | 5.81 | 0.03 | 3.16 | −0.01 | 2.01 | 0.07 | 7.23 | 0.04 | 5.18 |
1–5 | 0.01 | 2.95 | 0.00 | 1.10 | 0.06 | 7.53 | 0.02 | 3.09 | 0.05 | 6.60 | 0.00 | 4.90 | 0.04 | 4.44 |
2–4 | 0.04 | 5.20 | 0.03 | 3.64 | 0.01 | 1.33 | 0.02 | 2.85 | −0.01 | 3.40 | 0.06 | 7.03 | 0.02 | 0.85 |
2–6 | 0.04 | 4.79 | 0.04 | 5.65 | 0.01 | 2.64 | 0.02 | 3.24 | 0.06 | 5.73 | 0.00 | 3.09 | 0.00 | 1.75 |
N1 | N2 | |||
---|---|---|---|---|
Molecule | ∆A | ∆A [%] | ∆A | ∆A [%] |
A1 | 10.26 | 26.31 | 10.26 | 26.31 |
B2 | 7.33 | 18.79 | 17.38 | 44.56 |
C3 | 29.34 | 75.23 | 9.00 | 23.08 |
D4 | 13.80 | 35.38 | 13.70 | 35.13 |
E5 | 16.93 | 43.41 | 17.66 | 45.28 |
F6 | 22.44 | 57.54 | 16.19 | 41.51 |
G7 | 17.85 | 45.77 | 6.68 | 17.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, A.; Marcon, L.; Righi, P.; Centonze, G.; Portolani, C.; Capodiferro, M.; Oljira, S.B.; Manetto, S.; Ciogli, A.; Bencivenni, G. On the Nature of the Rotational Energy Barrier of Atropisomeric Hydrazides. Molecules 2023, 28, 7856. https://doi.org/10.3390/molecules28237856
Pellegrini A, Marcon L, Righi P, Centonze G, Portolani C, Capodiferro M, Oljira SB, Manetto S, Ciogli A, Bencivenni G. On the Nature of the Rotational Energy Barrier of Atropisomeric Hydrazides. Molecules. 2023; 28(23):7856. https://doi.org/10.3390/molecules28237856
Chicago/Turabian StylePellegrini, Andrea, Laura Marcon, Paolo Righi, Giovanni Centonze, Chiara Portolani, Marco Capodiferro, Shilashi Badasa Oljira, Simone Manetto, Alessia Ciogli, and Giorgio Bencivenni. 2023. "On the Nature of the Rotational Energy Barrier of Atropisomeric Hydrazides" Molecules 28, no. 23: 7856. https://doi.org/10.3390/molecules28237856
APA StylePellegrini, A., Marcon, L., Righi, P., Centonze, G., Portolani, C., Capodiferro, M., Oljira, S. B., Manetto, S., Ciogli, A., & Bencivenni, G. (2023). On the Nature of the Rotational Energy Barrier of Atropisomeric Hydrazides. Molecules, 28(23), 7856. https://doi.org/10.3390/molecules28237856