Exploring Optimization of Zeolites as Adsorbents for Rare Earth Elements in Continuous Flow by Machine Learning Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. Machine Learning Analysis
2.2. Sorption Analysis of the Continuous Flow Assays Cycles
2.2.1. Adsorption Analysis
2.2.2. Desorption Analysis
2.2.3. ML Analysis of the Desorption Optimization
3. Materials and Methods
3.1. Materials
3.2. Analytical Quantification of REE
3.3. Continuous Flow Assays
3.4. Machine Learning
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, S.J.; Chiang, L.H. Advances and opportunities in machine learning for process data analytics. Comput. Chem. Eng. 2019, 126, 465–473. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Bi, Q.; Goodman, K.E.; Kaminsky, J.; Lessler, J. What is Machine Learning? A Primer for the Epidemiologist. Am. J. Epidemiol. 2019, 188, 2222–2239. [Google Scholar] [CrossRef]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 2000, 44, 206–226. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? In Machine Learning in Radiation Oncology; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–11. ISBN 9781119815075. [Google Scholar]
- Peng, G.C.Y.; Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; et al. Multiscale Modeling Meets Machine Learning: What Can We Learn? Arch. Comput. Methods Eng. 2021, 28, 1017–1037. [Google Scholar] [CrossRef] [PubMed]
- Nasteski, V. An overview of the supervised machine learning methods. Horizons B 2017, 4, 51–62. [Google Scholar] [CrossRef]
- Torregrossa, D.; Leopold, U.; Hernández-Sancho, F.; Hansen, J. Machine learning for energy cost modelling in wastewater treatment plants. J. Environ. Manag. 2018, 223, 1061–1067. [Google Scholar] [CrossRef]
- Pang, J.-W.; Yang, S.-S.; He, L.; Chen, Y.-D.; Cao, G.-L.; Zhao, L.; Wang, X.-Y.; Ren, N.-Q. An influent responsive control strategy with machine learning: Q-learning based optimization method for a biological phosphorus removal system. Chemosphere 2019, 234, 893–901. [Google Scholar] [CrossRef]
- Foroughi, M.; Ahmadi Azqhandi, M.H.; Kakhki, S. Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN). J. Hazard. Mater. 2020, 388, 121769. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Mohd Salleh, M.S.; Noman, E.A.; Mohamed, R.M.S.R.; Crane, R.; Hamdan, R.; Naushad, M. Cephalexin adsorption by acidic pretreated jackfruit adsorbent: A Deep Learning prediction model study. Water 2022, 14, 2243. [Google Scholar] [CrossRef]
- Zhang, K.; Zhong, S.; Zhang, H. Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with Machine Learning. Environ. Sci. Technol. 2020, 54, 7008–7018. [Google Scholar] [CrossRef]
- Sigmund, G.; Gharasoo, M.; Hüffer, T.; Hofmann, T. Deep Learning Neural Network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materials. Environ. Sci. Technol. 2020, 54, 4583–4591. [Google Scholar] [CrossRef]
- Sadek, A.H.; Fahmy, O.M.; Nasr, M.; Mostafa, M.K. Predicting Cu(II) adsorption from aqueous solutions onto nano zero-valent aluminum (nZVAl) by Machine Learning and Artificial Intelligence techniques. Sustainability 2023, 15, 2081. [Google Scholar] [CrossRef]
- Abdi, J.; Mazloom, G. Machine learning approaches for predicting arsenic adsorption from water using porous metal–organic frameworks. Sci. Rep. 2022, 12, 16458. [Google Scholar] [CrossRef] [PubMed]
- Ke, B.; Nguyen, H.; Bui, X.-N.; Bui, H.-B.; Choi, Y.; Zhou, J.; Moayedi, H.; Costache, R.; Nguyen-Trang, T. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models. Chemosphere 2021, 276, 130204. [Google Scholar] [CrossRef] [PubMed]
- Lèbre, É.; Stringer, M.; Svobodova, K.; Owen, J.R.; Kemp, D.; Côte, C.; Arratia-Solar, A.; Valenta, R.K. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 2020, 11, 4823. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Fan, J.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R.; Liu, X. Rare-Earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in adsorption processes: State of the art and future prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, W.; Roslan, I.I.; Jaenicke, S.; Chuah, G.-K. A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to γ-valerolactone. J. Catal. 2019, 375, 56–67. [Google Scholar] [CrossRef]
- Zhao, S.; Li, H.; Wang, B.; Yang, X.; Peng, Y.; Du, H.; Zhang, Y.; Han, D.; Li, Z. Recent advances on syngas conversion targeting light olefins. Fuel 2022, 321, 124124. [Google Scholar] [CrossRef]
- Silva, B.; Figueiredo, H.; Soares, O.S.G.P.; Pereira, M.F.R.; Figueiredo, J.L.; Lewandowska, A.E.; Bañares, M.A.; Neves, I.C.; Tavares, T. Evaluation of ion exchange-modified Y and ZSM5 zeolites in Cr(VI) biosorption and catalytic oxidation of ethyl acetate. Appl. Catal. B Environ. 2012, 117–118, 406–413. [Google Scholar] [CrossRef]
- Qiu, Q.; Jiang, X.; Lv, G.; Chen, Z.; Lu, S.; Ni, M.; Yan, J.; Deng, X. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 2018, 335, 156–163. [Google Scholar] [CrossRef]
- Jahani, F.; Sadeghi, R.; Shakeri, M. Ultrasonic-assisted chemical modification of a natural clinoptilolite zeolite: Enhanced ammonium adsorption rate and resistance to disturbing ions. J. Environ. Chem. Eng. 2023, 11, 110354. [Google Scholar] [CrossRef]
- Filippidis, A.; Kantiranis, N. Experimental neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination 2007, 213, 47–55. [Google Scholar] [CrossRef]
- Wang, C.; Yu, J.; Feng, K.; Wang, L.; Huang, J. Synthesis of porous magnetic zeolite-based material and its performance on removal of Cd2+ ion and methylene blue from aqueous solution. Microporous Mesoporous Mater. 2022, 345, 112256. [Google Scholar] [CrossRef]
- Martins, A.; Neves, V.; Moutinho, J.; Nunes, N.; Carvalho, A.P. Friedel-Crafts acylation reaction over hierarchical Y zeolite modified through surfactant mediated technology. Microporous Mesoporous Mater. 2021, 323, 111167. [Google Scholar] [CrossRef]
- Roshanfekr Rad, L.; Anbia, M. Zeolite-based composites for the adsorption of toxic matters from water: A review. J. Environ. Chem. Eng. 2021, 9, 106088. [Google Scholar] [CrossRef]
- Grela, A.; Kuc, J.; Bajda, T. A Review on the Application of Zeolites and Mesoporous Silica Materials in the Removal of Non-Steroidal Anti-Inflammatory Drugs and Antibiotics from Water. Materials 2021, 14, 4994. [Google Scholar] [CrossRef]
- Liu, T.; Johnson, K.R.; Jansone-Popova, S.; Jiang, D. Advancing Rare-Earth separation by Machine Learning. J. Am. Chem. Soc. 2022, 2, 1428–1434. [Google Scholar] [CrossRef]
- de Vargas Brião, G.; Franco, D.S.P.; da Silva, F.V.; da Silva, M.G.C.; Vieira, M.G.A. Critical rare earth metal adsorption onto expanded vermiculite: Accurate modeling through response surface methodology and machine learning techniques. Sustain. Chem. Pharm. 2023, 31, 100938. [Google Scholar] [CrossRef]
- Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior. In Proceedings of the 2011 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA, 20–24 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 166–171. [Google Scholar]
- de Vasconcellos, M.E.; da Rocha, S.M.R.; Pedreira, W.R.; Queiroz, C.A.d.S.; Abrão, A. Solubility behavior of rare earths with ammonium carbonate and ammonium carbonate plus ammonium hydroxide: Precipitation of their peroxicarbonates. J. Alloys Compd. 2008, 451, 426–428. [Google Scholar] [CrossRef]
- Kim, P.; Anderko, A.; Navrotsky, A.; Riman, R. Trends in Structure and Thermodynamic Properties of Normal Rare Earth Carbonates and Rare Earth Hydroxycarbonates. Minerals 2018, 8, 106. [Google Scholar] [CrossRef]
- Gupta, C.K.; Krishnamurthy, N. Extractive metallurgy of rare earths. Int. Mater. Rev. 1992, 37, 197–248. [Google Scholar] [CrossRef]
- Ganguli, R.; Cook, D.R. Rare earths: A review of the landscape. MRS Energy Sustain. 2018, 5, 6. [Google Scholar] [CrossRef]
- Chi, R.; Xu, Z. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Metall. Mater. Trans. B 1999, 30, 189–195. [Google Scholar] [CrossRef]
- Khawassek, Y.M.; Eliwa, A.A.; Gawad, E.A.; Abdo, S.M. Recovery of rare earth elements from El-Sela effluent solutions. J. Radiat. Res. Appl. Sci. 2015, 8, 583–589. [Google Scholar] [CrossRef]
- He, L.; Xu, Q.; Li, W.; Dong, Q.; Sun, W. One-step separation and recovery of rare earth and iron from NdFeB slurry via phosphoric acid leaching. J. Rare Earths 2022, 40, 338–344. [Google Scholar] [CrossRef]
- Seo, S.M.; Lim, W.T.; Seff, K. Crystallographic verification that copper(II) coordinates to four of the oxygen atoms of zeolite 6-Rings. Two single-crystal structures of fully dDehydrated, largely Cu2+-exchanged zeolite Y (FAU, Si/Al = 1.56). J. Phys. Chem. C 2012, 116, 963–974. [Google Scholar] [CrossRef]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic tenets of classification algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Zhou, Y.; Guo, X.; Ma, Y. A feature selection algorithm of decision tree based on feature weight. Expert Syst. Appl. 2021, 164, 113842. [Google Scholar] [CrossRef]
- Awad, F.H.; Hamad, M.M.; Alzubaidi, L. Robust classification and detection of big medical data using advanced Parallel K-Means Clustering, YOLOv4, and Logistic Regression. Life 2023, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- Barros, Ó.; Costa, L.; Costa, F.; Lago, A.; Rocha, V.; Vipotnik, Z.; Silva, B.; Tavares, T. Recovery of Rare Earth Elements from wastewater towards a circular economy. Molecules 2019, 24, 1005. [Google Scholar] [CrossRef] [PubMed]
Column Designation | Zeolite Used | Modification | Washing between Sorption Assays |
---|---|---|---|
Z13X_NW | Z13X | Control | Without |
Z13X_WW | With | ||
ZNaOH_NW | NaOH 0.1 M | Without | |
ZNaOH_WW | With |
Removal (Rm) | Recovery (Rc) | Classification Means | Binary Classification | ||
---|---|---|---|---|---|
Interval | Classification | Interval | Classification | ||
80 < Rm < 100 | 1 | 80 < Rc < 100 | 5 | ≥3.5 | 1 |
60 < Rm < 80 | 2 | 60 < Rc < 80 | 4 | ||
40 < Rm < 60 | 3 | 40 < Rc < 60 | 3 | ||
20 < Rm < 40 | 4 | 20 < Rc < 40 | 2 | <3.5 | 0 |
00 < Rm < 20 | 5 | 00 < Rc < 20 | 1 |
Removal (%) | La | Ce | Y | Tb | Pr | Eu |
---|---|---|---|---|---|---|
Z13X_NW | 81.6 ± 6.5 | 83.3 ± 5.8 | 80.4 ± 6.7 | 83.8 ± 6.0 | 84.7 ± 5.7 | 83.6 ± 5.5 |
Z13X_WW | 71.9 ± 0.4 | 74.7 ± 0.2 | 71.4 ± 2.2 | 76.2 ± 1.8 | 76.4 ± 0.8 | 75.6 ± 2.0 |
ZNaOH_NW | 73.0 ± 3.0 | 73.6 ± 2.6 | 83.0 ± 2.0 | 72.7 ± 2.3 | 73.2 ± 2.9 | 72.7 ± 2.5 |
ZNaOH_WW | 68.2 ± 4.1 | 70.9 ± 4.8 | 75.1 ± 4.5 | 72.3 ± 2.4 | 70.9 ± 3.6 | 70.7 ± 3.3 |
Recovery (%) | La | Ce | Y | Tb | Pr | Eu |
---|---|---|---|---|---|---|
Z13X_NW | 9.5 ± 0.1 | 9.2 ± 0.2 | 11.0 ± 0.7 | 10.9 ± 1.1 | 9.4 ± 0.1 | 11.5 ± 0.5 |
Z13X_WW | 7.9 ± 1.1 | 8.4 ± 1.1 | 10.7 ± 0.6 | 10.1 ± 0.7 | 8.3 ± 1.0 | 11.2 ± 0.6 |
ZNaOH_NW | 11.7 ± 1.7 | 12.1 ± 2.2 | 10.5 ± 4.5 | 13.6 ± 3.5 | 13.8 ± 2.1 | 15.8 ± 2.9 |
ZNaOH_WW | 14.9 ± 1.6 | 13.9 ± 0.8 | 14.9 ± 1.8 | 17.5 ± 0.9 | 16.0 ± 1.3 | 18.9 ± 1.1 |
Step | Cycle | Solution | Pump Rate (mL/min) | Duration (h) |
---|---|---|---|---|
Adsorption | 1 | Ci = 60 mg/L for each REE; Vi = 5 L | 4 | 72 |
2 | Ci = 10 mg/L for each REE; Vi ≈ 5 L | |||
3 | Ci = 60 mg/L for each REE; Vi = 5 L | |||
4 | Ci = 25 mg/L for each REE; Vi ≈ 5 L | |||
Desorption | 1 | 1 L of HNO3 0.1 M for each desorption step | 8 | 6 |
2 | ||||
3 | ||||
4 | ||||
Wash | 1 | 1 L of NaOH 0.01 M for each washing step | 15 | 2 |
2 | ||||
3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, Ó.; Parpot, P.; Neves, I.C.; Tavares, T. Exploring Optimization of Zeolites as Adsorbents for Rare Earth Elements in Continuous Flow by Machine Learning Techniques. Molecules 2023, 28, 7964. https://doi.org/10.3390/molecules28247964
Barros Ó, Parpot P, Neves IC, Tavares T. Exploring Optimization of Zeolites as Adsorbents for Rare Earth Elements in Continuous Flow by Machine Learning Techniques. Molecules. 2023; 28(24):7964. https://doi.org/10.3390/molecules28247964
Chicago/Turabian StyleBarros, Óscar, Pier Parpot, Isabel C. Neves, and Teresa Tavares. 2023. "Exploring Optimization of Zeolites as Adsorbents for Rare Earth Elements in Continuous Flow by Machine Learning Techniques" Molecules 28, no. 24: 7964. https://doi.org/10.3390/molecules28247964
APA StyleBarros, Ó., Parpot, P., Neves, I. C., & Tavares, T. (2023). Exploring Optimization of Zeolites as Adsorbents for Rare Earth Elements in Continuous Flow by Machine Learning Techniques. Molecules, 28(24), 7964. https://doi.org/10.3390/molecules28247964