The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material
Abstract
:1. Introduction
2. Results
2.1. Optimization of the Procedure for the Extraction of Cannabinoids from the Tested Matrices
2.1.1. Fresh Parts of Plants
2.1.2. Dried Plants
2.2. Optimization of the Cannabinoid Analysis Process Using UHPLC-HESI-MS
2.3. Method Validation
Method Validity: Analysis of CRM and Material for the Proficiency Test
2.4. Application of the Method to the Determination of Cannabinoids in Different Samples from Cannabis sativa L. var. sativa
2.4.1. Analysis of the Content of 17 Cannabinoids in the Fresh Plant Cannabis sativa L. var. sativa ‘Białobrzeskie’
2.4.2. Analysis of Cannabinoid Content in Teas Based on Cannabis sativa L. var. sativa
3. Discussion
3.1. Optimization of the Procedure for the Extraction of Cannabinoids from the Tested Matrices
3.1.1. Fresh Parts of Plants
3.1.2. Dried Plants
3.2. Application of the Method to the Determination of Cannabinoids in Different Samples from Cannabis sativa L. var. sativa
3.2.1. Analysis of the Content of 17 Cannabinoids in the Fresh Plant Cannabis sativa L. var. sativa ‘Białobrzeskie’
3.2.2. Analysis of Cannabinoid Content in Teas Based on Cannabis sativa L. var. sativa
4. Materials and Methods
4.1. Sample Material
4.2. Chemicals and Reagents
4.3. Preparation of Standard Solutions and Calibration Curves
4.4. Preparation of Test Samples
4.5. UHPLC-HESI-MS
4.6. Method Validation
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christinat, N.; Savoy, M.C.; Mottier, P. Development, validation, and application of an LC-MS/MS method for quantification of 15 cannabinoids in food. Food Chem. 2020, 318, 126469. [Google Scholar] [CrossRef] [PubMed]
- Kanabus, J.; Bryła, M.; Roszko, M.; Modrzewska, M.; Pierzgalski, A. Cannabinoids—Characteristics and potential for use in food production. Molecules 2021, 26, 6723. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2023/915. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?toc=OJ%3AL%3A2023%3A119%3ATOC&uri=uriserv%3AOJ.L_.2023.119.01.0103.01.POL (accessed on 2 October 2023).
- Scientific Opinion on the Risks for Human Health Related to the Presence of Tetrahydrocannabinol (THC) in Milk and Other Food of Animal Origin. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.4141 (accessed on 2 October 2023).
- Gunjević, V.; Grillo, G.; Carnaroglio, D.; Binello, A.; Barge, A.; Cravotto, G. Selective recovery of terpenes, polyphenols, and cannabinoids from Cannabis sativa L. inflorescences under microwaves. Ind. Crops Prod. 2021, 162, 113247. [Google Scholar] [CrossRef]
- Zivovinovic, S.; Alder, R.; Allenspach, M.D.; Steuer, C. Determination of cannabinoids in Cannabis sativa L. samples for recreational, medical, and forensic purposes by reversed-phase liquid chromatography-ultraviolet detection. J. Anal. Sci. Technol. 2018, 9, 28. [Google Scholar] [CrossRef]
- Patel, B.; Wene, D.; Fan, Z.T. Qualitative and quantitative measurement of cannabinoids in cannabis using modified HPLC/DAD method. J. Pharm. Biomed. Anal. 2017, 146, 15–23. [Google Scholar] [CrossRef]
- De Backer, B.; Debrus, B.; Lebrun, P.; Theunis, L.; Dubois, N.; Decock, L.; Verstraete, A.; Hubert, P.; Charlier, C. Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 32, 4115–4124. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wongso, I.; Putnam, D.; Khir, R.; Pan, Z. Effect of hot air and infrared drying on the retention of cannabidiol and terpenes in industrial hemp (Cannabis sativa L.). Ind. Crops Prod. 2021, 172, 114051. [Google Scholar] [CrossRef]
- Gallo-Molina, A.C.; Castro-Vargas, H.I.; Garzón-Méndez, W.F.; Martinez Ramirez, J.A.; Rivera Monroy, Z.J.; King, J.W.; Parada-Alfonso, F. Extraction, isolation, and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. J. Supercrit. Fluids 2019, 146, 208–216. [Google Scholar] [CrossRef]
- Baranauskaite, J.; Marksa, M.; Ivanauskas, L.; Vitkevivius, K.; Liaudanskas, M.; Skyrius, V.; Baranauskas, A. Development of extraction technique and GC/FIF method for the analysis of cannabinoids in Cannabis sativa L. spp. sativa (hemp). Pchytochem. Anal. 2020, 31, 516–521. [Google Scholar] [CrossRef]
- Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibretype Cannabis sativa L. (hemp). J. Pharm. 2017, 143, 228–236. [Google Scholar] [CrossRef]
- Mudge, E.M.; Murch, S.J.; Brown, P.N. Leaner and greener analysis of cannabinoids. Anal. Bioanal. Chem. 2017, 409, 3153–3163. [Google Scholar] [CrossRef] [PubMed]
- Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Lazarjani, M.P.; Torres, S.; Hooker, T.; Fowlie, C.; Young, O.; Seyfoddin, A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- McRae, G.; Melanson, J.E. Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 7382–7393. [Google Scholar] [CrossRef] [PubMed]
- Addo, P.W.; Sagili, S.U.K.R.; Bilodeau, S.E.; Galdu-Gallant, F.-A.; MacKenzie, D.A.; Bates, J.; McRae, G.; MacPherson, S.; Paris, M.; Raghavan, V.; et al. Microwave and ultrasound-ssisted extraction of cannabinoids and terpenes from Cannabis using response surface methodology. Molecules 2022, 27, 8803. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Carlson, S.; Valenzuela, G.; Chao, M.; Pathipaka, S.B. Development of a validated method for rapid quantification of up to sixteen cannabinoids using ultra-high-performance liquid chromatography diode-array detector with optional electrospray ionization time-of-flight mass spectrometry detection. J. Chromatogr. A 2022, 1670, 462953. [Google Scholar] [CrossRef]
- AOAC International Guidelines. 2002. Available online: https://aoac.org (accessed on 2 October 2023).
- ICH Validation of Analytical Procedures: Text and Methodology. 2005. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 2 October 2023).
- IRMM-JRC. 2010. Available online: https://crm.jrc.ec.europa.eu/graphics/cms_docs/erm1_polish.pdf (accessed on 2 October 2023).
- EURACHEM/CITAC. 2021. Available online: https://www.eurachem.org/index.php/publications/guides (accessed on 2 October 2023).
- Strzelczyk, M.; Lochynska, M.; Chudy, M. Systematics and botanical characteristics of industrial hemp Cannabis sativa L. J. Nat. Fibres 2021, 19, 5804–5826. [Google Scholar] [CrossRef]
- Strzelczyk, M.; Chudy, M.; Łochyńska, M.; Gimbut, M.; Krawczyk, K. Influence of cultivar, harvest date, and selected weather conditions on the essential oils content in inflorescences of hemp Cannabis sativa L. J. Nat. Fibers 2023, 20, 2163332. [Google Scholar] [CrossRef]
- Regulation (EU) 2021/2115. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R2115 (accessed on 2 October 2023).
- Namdar, D.; Mazuz, M.; Ion, A.; Koltai, H. Variation in the compositions of cannabinoids and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind. Crops Prod. 2018, 113, 376–382. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; Gul, W.; Gul, S.W.; Stamper, B.J.; Hadad, G.M.; Abdel Salam, R.A.; Ibrahim, A.K.; Ahmed, S.A.; Chandra, S.; Lata, H.; et al. Determination of acid and neutral cannabinoids in extracts of different strains of Cannabis sativa using GC-FID. Planta. Med. 2018, 84, 250–259. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Magnin, G.; Ensley, S.M.; Griffin, J.J.; Goeser, J.; PAS, L.E.; Coetzee, J.F. Nutrient concentrations, digestibility and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 2020, 36, 489–494. [Google Scholar] [CrossRef]
- Kalinová, J.P.; Vrchotová, N.; Třĭska, J.; Hellerová, Š. Industrial hemp (Cannabis sativa L.) as a possible source of cannabidiol. J. Cent. Eur. Agric. 2021, 22, 110–118. [Google Scholar] [CrossRef]
- Aizpurua-Olaizola, O.; Soydaner, U.; Öztürk, E.; Schibano, D.; Simsir, Y.; Navarro, P.; Etxebarria, N.; Usobiaga, A. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J. Nat. Prod. 2016, 79, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Eržen, M.; Košir, I.J.; Ocvirk, M.; Kreft, S.; Čerenak, A. Metabolomic analysis of cannabinoids and essential oil profiles in different hemp (Cannabis sativa L.). Phenotypes. Plants 2021, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Fischedick, J.T.; Hazekamp, A.; Erkelens, T.; Choi, Y.H.; Verpoorte, R. Metabolic fingerprinting of Cannabis sativa L. cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010, 71, 2058–2073. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Pauli, C.S.; Gostin, E.L.; Staples, S.K.; Seifried, D.; Kinney, C.; Vanden Heuvel, B.D. Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). J. Cannabis Res. 2022, 4, 1. [Google Scholar] [CrossRef]
- Berstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N. P. K, and humic acid supplementation on the chemical profile of medical Cannabis (Cannabis sativa L.). Front. Plant. Sci. 2019, 10, 736. [Google Scholar] [CrossRef] [PubMed]
- Husain, R.; Weeden, H.; Bogush, D.; Deguchi, M.; Soliman, M.; Potlakayala, S.; Katam, R.; Goldman, S.; Rudrabhatla, S. Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS ONE 2019, 14, e0221570. [Google Scholar] [CrossRef]
- Gorelick, J.; Bernstein, N. Cannabis sativa L.: Botany and horticulture. In Cannabis sativa L.: Botany and Biotechnology; Chandra, S., Lata, H., ElSohly, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 444–461. [Google Scholar]
- Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardò, F.P.; Pichini, S. Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography-tandem mass spectrometry. Clin. Chem. Lab. Med. 2017, 55, 1555–1563. [Google Scholar] [CrossRef]
- Knezevic, F.; Nikolai, A.; Marchart, R.; Sosa, S.; Tubaro, A.; Novak, J. Residues of herbal hemp leaf teas How much of the cannabinoids remain? Food Control 2021, 127, 108146. [Google Scholar] [CrossRef]
- Kladar, N.; Srdenoić Čonić, B.; Božin, B.; Torović, L. European hemp-based food products—Health concerning cannabinoids exposure assessment. Food Control 2021, 129, 108233. [Google Scholar] [CrossRef]
- Regulation (EU) 2017/1155. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32017R1155&from=ET (accessed on 2 October 2023).
Compound | Retention Time | Precursor Ion [m/z] |
---|---|---|
CBDVA | 1.25 | 329.1737 [M − H]− |
CBDV | 1.6 | 287.1992 [M + H]+ |
CBDA | 1.7 | 359.2043 [M − H]− |
CBGA | 1.9 | 359.2208 [M − H]− |
CBG | 2.2 | 317.2471 [M + H]+ |
CBD | 2.4 | 315.2305 [M + H]+ |
CBNA | 2.6 | 353.1732 [M − H]− |
Δ9-THCVA | 2.65 | 329.1744 [M − H]− |
Δ9-THCV | 2.85 | 287.1993 [M + H]+ |
CBN | 3.9 | 311.2003 [M + H]+ |
CBCA | 4.85 | 359.2177 [M − H]− |
Δ9-THC | 4.95 | 315.2314 [M + H]+ |
Δ9-THCA-A | 5.0 | 359.2038 [M − H]− |
Δ8-THC | 5.15 | 315.2305 [M + H]+ |
CBL | 6.1 | 315.2305 [M + H]+ |
CBLA | 6.5 | 359.2065 [M − H]− |
CBC | 6.6 | 315.2305 [M + H]+ |
Compound | Range of Calibration Curve [µg mL−1] | Coefficient of Determination [R2] | LOD [μg mL−1] | LOQ [μg mL−1] | LOD [mg kg−1] | LOQ [mg kg−1] | Matrix Effect (%) | ||
---|---|---|---|---|---|---|---|---|---|
Inflorescences | Leaves | CRM | |||||||
CBD | 0.200–25.600 | 0.9997 | 0.0010 | 0.0030 | 1.8 | 6 | 99 | 101 | 100 |
CBN | 0.008–1.024 | 0.9991 | 0.0020 | 0.0070 | 1.2 | 4 | 99 | 99 | 99 |
CBG | 0.008–1.024 | 0.9997 | 0.0003 | 0.0009 | 0.6 | 2 | 99 | 100 | 100 |
Δ9-THC | 0.080–10.240 | 0.9999 | 0.0011 | 0.0036 | 0.6 | 2 | 97 | 99 | 97 |
Δ8-THC | 0.008–1.024 | 0.9993 | 0.0020 | 0.0060 | 0.48 | 1.6 | 100 | 100 | 104 |
CBC | 0.020–2.560 | 0.9993 | 0.0050 | 0.0200 | 0.6 | 2 | 100 | 99 | 107 |
CBL | 0.020–2.560 | 0.9991 | 0.0020 | 0.0070 | 0.6 | 2 | 100 | 100 | 101 |
CBDV | 0.008–1.024 | 0.9994 | 0.0010 | 0.0020 | 0.12 | 0.4 | 101 | 100 | 101 |
Δ9-THCV | 0.008–1.024 | 0.9982 | 0.0006 | 0.0020 | 0.06 | 0.2 | 99 | 100 | 99 |
CBDA | 0.400–51.200 | 0.9950 | 0.0003 | 0.0009 | 5.4 | 18 | 102 | 100 | 106 |
CBNA | 0.002–0.256 | 0.9947 | 0.0001 | 0.0002 | 0.12 | 0.4 | 101 | 101 | 106 |
CBGA | 0.020–2.560 | 0.9967 | 0.00003 | 0.0001 | 0.06 | 0.2 | 101 | 99 | 101 |
Δ9-THCA-A | 0.080–10.240 | 0.9972 | 0.0004 | 0.0013 | 0.6 | 2 | 100 | 100 | 99 |
CBCA | 0.080–10.240 | 0.9983 | 0.0008 | 0.0030 | 0.6 | 2 | 100 | 100 | 102 |
CBLA | 0.020–2.560 | 0.9954 | 0.0004 | 0.0012 | 0.06 | 0.2 | 100 | 100 | 100 |
CBDVA | 0.020–2.560 | 0.9954 | 0.00003 | 0.0001 | 0.06 | 0.2 | 98 | 99 | 98 |
Δ9-THCVA | 0.020–2.560 | 0.9974 | 0.0001 | 0.0002 | 0.01 | 0.04 | 99 | 99 | 97 |
Compound | Declared Values | Determined Values | |||
---|---|---|---|---|---|
CCRM [mg kg−1] | UCRM [mg kg−1] | C [mg kg−1] | U [mg kg−1] | n | |
CBC | 325.0 | 84.0 | 321.8 | 25.8 | 9 |
CBDV | 188.0 | 32.0 | 187.3 | 15.0 | 9 |
CBG | 47.8 | 9.4 | 47.3 | 3.3 | 9 |
CBL | 74.1 | 13.6 | 74.0 | 5.2 | 9 |
CBN | 490.0 | 70.0 | 484.2 | 38.7 | 9 |
CBNA | 350.0 | 36.0 | 344.9 | 27.6 | 9 |
Δ8-THC | - 1 | - | 21.5 | 1.9 | 9 |
Δ9-THC | 318.0 | 86.0 | 319.4 | 28.7 | 9 |
Δ9-THCV | 14.3 | 2.0 | 14.1 | 1.3 | 9 |
CBDVA | 719.0 | 54.0 | 714.8 | 64.3 | 9 |
CBD | 5410.0 | 700.0 | 5398.7 | 377.9 | 9 |
CBGA | 117.0 | 12.0 | 113.5 | 9.1 | 9 |
Δ9-THCVA | 72.8 | 6.4 | 72.3 | 6.5 | 9 |
CBLA | 187.0 | 18.0 | 184.5 | 14.8 | 9 |
CBCA | 448.0 | 108.0 | 450.5 | 40.6 | 9 |
Δ9-THCA-A | 979.0 | 84.0 | 966.5 | 87.0 | 9 |
CBDA | 14,600 | 800.0 | 14,536 | 1308 | 9 |
Total Δ9-THC content * | 1180 | 140.0 | 1167 | 105.0 | 9 |
Total CBD content ** | 18,200 | 1200 | 18,147 | 1633 | 9 |
Compound | Part of the Plant [mg kg−1] | |||
---|---|---|---|---|
Small Inflorescences | Medium Inflorescences | Big Inflorescences | Leaves | |
CBC | 16.8 c ± 1.2 | 12.4 b ± 0.6 | 10.4 b ± 1.3 | 3.2 a ± 0.2 |
CBDV | 0.7 ab ± 0.1 | 0.4 a ± 0.1 | 0.7 ab ± 0.1 | 0.8 b ± 0.1 |
CBG | 25.1 b ± 0.7 | 40.4 c ± 1.1 | 43.2 c ± 4.1 | 5.8 a ± 0.3 |
CBL | <LOD | <LOD | <LOD | <LOD |
CBN | <LOD | <LOD | <LOD | <LOD |
CBNA | 2.3 a ± 0.2 | 3.4 b ± 0.1 | 2.4 a ± 0.2 | 4.4 c ± 0.2 |
Δ8-THC | <LOD | <LOD | <LOD | <LOD |
Δ9-THC | 11.6 b ± 0.7 | 16.6 c ± 0.5 | 5.9 a ± 0.5 | 6.0 a ± 0.3 |
Δ9-THCV | 0.2 a ± 0.1 | 0.2 a ± 0.1 | 0.3 a ± 0.1 | 5.9 b ± 0.2 |
CBDVA | 721.3 c ± 79.8 | 665.2 c ± 70.7 | 385.7 b ± 37.7 | 92.1 a ± 1.4 |
CBD | 61.1 a ± 2.6 | 65.7 a ± 7.4 | 44.5 a ± 1.5 | 168.7 b ± 23.2 |
CBGA | 152.5 a ± 16.4 | 189.6 a ± 26.3 | 150.9 a ± 12.5 | 171.6 a ± 12.2 |
Δ9-THCVA | 47.9 c ± 6.9 | 26.9 b ± 1.2 | 25.2 b ± 2.7 | 6.1 a ± 0.5 |
CBLA | 17.7 a ± 2.7 | 17.5 a ± 0.9 | 14.7 a ± 1.5 | 31.8 b ± 0.5 |
CBCA | 1371 d ± 87.7 | 592.2 b ± 28.4 | 818.4 c ± 74.9 | 276.3 a ± 17.1 |
Δ9-THCA-A | 1418 d ± 87.6 | 620.2 b ± 22.9 | 842.8 c ± 77.1 | 239.9 a ± 16.5 |
CBDA | 8146 b ± 305.9 | 9047 b ± 1347.3 | 6122 b ± 863.8 | 1992 a ± 285.5 |
Total Δ9-THC content * | 1255.3 d ± 44.2 | 560.6 b ± 11.7 | 745.1 c ± 38.8 | 216.4 a ± 8.4 |
Total CBD content ** | 7205 c ± 154.3 | 8000 c ± 677.5 | 5413 b ± 432.7 | 1915 a ± 154.4 |
The average sum of 17 cannabinoids | 11,993 c ± 259.5 | 11,298 c ± 303.9 | 8447 b ± 675.8 | 3004 a ± 240.4 |
Sample | Percentage Content of Cannabis sativa L. var. sativa | The Average Sum of 17 Cannabinoids | The Total Δ9-THC Content * | The Total CBD Content ** |
---|---|---|---|---|
1 | 100% | 15,680 ghi ± 1254 | 372.3 e ± 6.5 | 13,084 p ± 21 |
2 | 100% | 13,769 fghi ± 1101 | 514.5 j ± 5.4 | 10,852 kl ± 20 |
3 | 100% | 9823 cde ± 785 | 100.4 a ± 5.1 | 3205 d ± 10 |
4 | 100% | 13,282 efgh ± 1062 | 517.4 j ± 2.4 | 8998 g ± 14 |
5 | 80% | 15,521 ghi ± 1241 | 984.9 t ± 5.0 | 12,382 o ± 100 |
6 | 75% | 14,317 fghi ± 1145 | 273.7 c ± 10.0 | 10,938 klm ± 20 |
7 | 75% | 17,513 ij ± 1401 | 724.1 pq ± 1.3 | 13,686 q ± 233 |
8 | 75% | 13,461 efgh ± 1076 | 650.4 m ± 2.8 | 10,659 jk ± 118 |
9 | 75% | 18,181 ghi ± 1454 | 716.6 pq ± 5.7 | 13,551 q ± 61 |
10 | 40% | 10,678 cdefghi ± 854 | 617.0 l ± 4.9 | 7320 e ± 57 |
11 | 100% | 13,866 fghi ± 1109 | 712.7 pq ± 5.7 | 11,054 lmn ± 60 |
12 | 70% | 8876 bc ± 710 | 447.0 h ± 1.5 | 7103 e ± 70 |
13 | 70% | 8946 bc ± 715 | 436.3 h ± 5.6 | 7220 e ± 53 |
14 | 70% | 16,845 hij ± 1281 | 951.2 r ± 5.7 | 9726 i ± 161 |
15 | 70% | 9416 bcd ± 753 | 492.8 i ± 1.8 | 7383 e ± 81 |
16 | 70% | 12,255 cdefgh ± 980 | 641.5 m ± 1.6 | 7176 e ± 253 |
17 | 100% | 5960 ab ± 476.8 | 193.3 b ± 3.6 | 747.6 a ± 17 |
18 | 100% | 4107 a ± 328.6 | 399.1 g ± 5.6 | 2922 b ± 74 |
19 | 100% | 12,698 cdefgh ± 1015 | 504.4 ij ± 2.8 | 10,437 jk ± 92 |
20 | 75% | 2962 a ± 236 | 323.9 d ± 1.2 | 2106 b ± 181 |
21 | 75% | 3774 a ± 301 | 376.1 fg ± 1.6 | 2714 c ± 132 |
22 | 100% | 15,162 ghi ± 1213 | 726.1 q ± 1.7 | 12,267 o ± 151 |
23 | 70% | 9506 cdef ± 760 | 389.2 f ± 1.1 | 7922 f ± 86 |
24 | 100% | 13,811 fghi ± 1104 | 552.4 k ± 2.9 | 11,704 n ± 224 |
25 | 100% | 13,102 defgh ± 1048 | 625.0 l ± 2.5 | 9619 hi ± 83 |
26 | 100% | 12,084 cdefg ± 966 | 554.8 k ± 2.8 | 9324 gh ± 106 |
27 | 100% | 13,208 defgh ± 1056 | 661.9 n ± 4.6 | 10,174 j ± 100 |
28 | 100% | 14,176 fghi ± 1134 | 684.5 o ± 3.3 | 11,331 mn ± 61 |
29 | 100% | 9673 bcde ± 773 | 684.7 o ± 2.8 | 7461 e ± 98 |
30 | 60% | 19,723 j ± 1577 | 707.8 p ± 1.0 | 16,703 r ± 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanabus, J.; Bryła, M.; Roszko, M. The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material. Molecules 2023, 28, 8008. https://doi.org/10.3390/molecules28248008
Kanabus J, Bryła M, Roszko M. The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material. Molecules. 2023; 28(24):8008. https://doi.org/10.3390/molecules28248008
Chicago/Turabian StyleKanabus, Joanna, Marcin Bryła, and Marek Roszko. 2023. "The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material" Molecules 28, no. 24: 8008. https://doi.org/10.3390/molecules28248008
APA StyleKanabus, J., Bryła, M., & Roszko, M. (2023). The Development, Validation, and Application of a UHPLC-HESI-MS Method for the Determination of 17 Cannabinoids in Cannabis sativa L. var. sativa Plant Material. Molecules, 28(24), 8008. https://doi.org/10.3390/molecules28248008