Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction
Abstract
:1. Introduction
2. Review of Literature
2.1. Petasis Reaction Catalyzed by Nanoparticles
2.2. Petasis Reaction Involving Chiral Catalysts
2.3. Acid-Catalyzed Petasis Reaction
2.4. Catalyst-Free Petasis Reaction
2.5. Solvent-Free Synthesis via Petasis Reaction
2.6. Base-Catalyzed Petasis Reaction
2.7. Miscellaneous Catalysts
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res. 2009, 42, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Feng, X. Asymmetric strecker reactions. Chem. Rev. 2011, 111, 6947–6983. [Google Scholar] [CrossRef] [PubMed]
- Hantzsch, A. Condensation product of aldehyde ammonia and ketone-like compounds. Ber. Dtsch. Chem. Ges. 1881, 14, 1637–1638. [Google Scholar] [CrossRef]
- Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type a literature survey. Eur. J. Med. Chem. 2000, 35, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Reza Kazemizadeh, A.; Ramazani, A. Synthetic applications of Passerini reaction. Curr. Org. Chem. 2012, 16, 418–450. [Google Scholar] [CrossRef]
- Mushtaq, A.; Zahoor, A.F.; Ahmad, S.; Parveen, B.; Ali, K.G. Novel synthetic methods toward the synthesis of Betti bases: An update. Chem. Pap. 2023, 77, 4751–4795. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Toporova, M.S.; Kodess, M.I.; Ezhikova, M.A.; Isenov, M.L.; Pervova, M.G.; Kravchenko, M.A.; Medvinskiy, I.D.; Skornyakov, S.N.; Rusinov, G.L.; et al. Synthesis, X-ray crystal structure and antimycobacterial activity of enantiomerically pure 1-ethyl-2, 3-dicyano-5-(het) aryl-6-hetaryl-1, 6-dihydropyrazines. Arkivoc 2014, 2014, 247–270. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Slepukhin, P.A.; Kravchenko, M.A.; Skornyakov, S.N.; Kungurov, N.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Synthesis, antimycobacterial and antifungal evaluation of some new 1-ethyl-5-(hetero) aryl-6-styryl-1, 6-dihydropyrazine-2, 3-dicarbonitriles. Bioorg. Med. Chem. Lett. 2015, 25, 524–528. [Google Scholar] [CrossRef]
- Ahmad, S.; Zahoor, A.F.; Naqvi, S.A.R.; Akash, M. Recent trends in ring opening of epoxides with sulfur nucleophiles. Mol. Divers. 2018, 22, 191–205. [Google Scholar] [CrossRef]
- Da Silva, A.R.; Dos Santos, D.A.; Paixão, M.W.; Corrêa, A.G. Stereoselective Multicomponent Reactions in the Synthesis or Transformations of Epoxides and Aziridines. Molecules 2018, 24, 630. [Google Scholar] [CrossRef]
- Aziz, H.; Zahoor, A.F.; Ahmad, S. Pyrazole bearing molecules as bioactive scaffolds: A review. J. Chil. Chem. Soc. 2020, 65, 4746–4753. [Google Scholar] [CrossRef]
- Peng, W.; Michael, G.; Thomas, E.N. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem. Rev. 2019, 119, 11245–11290. [Google Scholar] [CrossRef]
- Fodor, A.; Hell, Z.; Pirault-Roy, L. Catalytic activity of metal-doped porous materials in the salicylaldehyde Petasis-Borono Mannich reaction. Monatsh. Chem. 2016, 147, 749–753. [Google Scholar] [CrossRef]
- Akhtar, R.; Zahoor, A.F.; Rasool, N.; Ahmad, M.; Ali, K.G. Recent trends in the chemistry of Sandmeyer reaction: A review. Mol. Divers 2022, 26, 1837–1873. [Google Scholar] [CrossRef] [PubMed]
- Bering, L.; Antonchick, A.P. Regioselective metal-free cross-coupling of quinoline N-oxides with boronic acids. Org. Lett. 2015, 17, 3134–3137. [Google Scholar] [CrossRef]
- Abonia, R.; Garay, A.; Castillo, J.C.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J.; Butassi, E.; Zacchino, S. Design of two alternative routes for the synthesis of naftifine and analogues as potential antifungal agents. Molecules 2018, 23, 520. [Google Scholar] [CrossRef]
- Petasis, N.A.; Akritopoulou, I. The boronic acid mannich reaction: A new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett. 1993, 34, 583–586. [Google Scholar] [CrossRef]
- Smith, A.B.; Simov, V. Total Synthesis of the marine natural product (−)-clavosolide A. A showcase for the Petasis− Ferrier union/rearrangement tactic. Org. Lett. 2006, 8, 3315–3318. [Google Scholar] [CrossRef]
- Smith, A.B.; Basu, K.; Bosanac, T. Total synthesis of (−)-okilactomycin. J. Am. Chem. Soc. 2007, 129, 14872–14874. [Google Scholar] [CrossRef]
- Smith, A.B.; Mesaros, E.F.; Meyer, E.A. Total synthesis of (−)-kendomycin exploiting a Petasis− Ferrier rearrangement/ring-closing olefin metathesis synthetic strategy. J. Am. Chem. 2005, 127, 6948–6949. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.B.; Razler, T.M.; Ciavarri, J.P.; Hirose, T.; Ishikawa, T.; Meis, R.M. A second-generation total synthesis of (+)-phorboxazole A. J. Org. Chem. 2008, 73, 1192–1200. [Google Scholar] [CrossRef]
- Frauenlob, R.; Garcia, C.; Bradshaw, G.A.; Burke, H.M.; Bergin, E. A copper-catalyzed Petasis reaction for the synthesis of tertiary amines and amino esters. J. Org. Chem. 2012, 77, 4445–4449. [Google Scholar] [CrossRef] [PubMed]
- Mundal, D.A.; Lutz, K.E.; Thomson, R.J. A direct synthesis of allenes by a traceless Petasis reaction. J. Am. Chem. Soc. 2012, 134, 5782–5785. [Google Scholar] [CrossRef]
- Murafuji, T.; Tasaki, Y.; Fujinaga, M.; Tao, K.; Kamijo, S.; Ishiguro, K. Blue Amino Acids Derived from Azulen-1-ylboronic Acid Pinacol Ester via the Petasis Reaction. Synthesis 2017, 49, 1037–1042. [Google Scholar] [CrossRef]
- Wu, P.; Petersen, M.A.; Cohrt, A.E.; Petersen, R.; Clausen, M.H.; Nielsen, T.E. Reductive cyclization and Petasis-like reaction for the synthesis of functionalized γ-lactams. Eur. J. Org. Chem 2015, 11, 2346–2350. [Google Scholar] [CrossRef]
- Hwang, J.; Borgelt, L.; Wu, P. Multicomponent Petasis reaction for the synthesis of functionalized 2-aminothiophenes and thienodiazepines. ACS Comb. Sci. 2020, 22, 495–499. [Google Scholar] [CrossRef]
- Chihara, K.; Kishikawa, N.; Ohyama, K.; Nakashima, K.; Kuroda, N. Determination of glyoxylic acid in urine by liquid chromatography with fluorescence detection, using a novel derivatization procedure based on the Petasis reaction. Anal. Bioanal. Chem. 2012, 403, 2765–2770. [Google Scholar] [CrossRef]
- Churches, Q.I.; Johnson, J.K.; Fifer, N.L.; Hutton, C.A. Anomalies in the stereoselectivity of the Petasis reaction using styrenyl boronic acids. Aust. J. Chem. 2011, 64, 62–67. [Google Scholar] [CrossRef]
- Boonyasuppayakorn, S.; Reichert, E.D.; Manzano, M.; Nagarajan, K.; Padmanabhan, R. Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antivir. Res. 2014, 106, 125–134. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, S.Y.; Park, C.Y.; Kim, Y.T.; Kim, B.J.; Song, Y.J.; Kim, B.G.; Kim, Y.B.; Cho, C.H.; Kim, J.H.; et al. A multicentre, randomised, open-label parallel-group Phase 2b study of belotecan versus topotecan for recurrent ovarian cancer. Brit. J. Cancer 2021, 124, 375–382. [Google Scholar] [CrossRef]
- Petasis, N.A.; Boral, S. One-step three-component reaction among organoboronic acids, amines and salicylaldehydes. Tetrahedron Lett. 2001, 42, 539–542. [Google Scholar] [CrossRef]
- Kulkarni, A.M.; Pandit, K.S.; Chavan, P.V.; Desai, U.V.; Wadgaonkar, P.P. Cobalt ferrite nanoparticles: A magnetically separable and reusable catalyst for Petasis-Borono–Mannich reaction. RSC Adv. 2015, 5, 70586–70594. [Google Scholar] [CrossRef]
- Rafiee, F.; Hosseinvand, S. CuII Immobolized on the amidinoglycine functionalized magnetic graphene oxide promoted the alkyl aminophenols synthesis. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 503–514. [Google Scholar] [CrossRef]
- Chacko, P.; Shivashankar, K. Synthesis of aminomethylphenol derivatives via magnetic nano Fe3O4 catalyzed one pot Petasis borono-Mannich reaction. J. Chem. Sci. 2018, 130, 154. [Google Scholar] [CrossRef]
- Han, W.Y.; Zuo, J.; Zhang, X.M.; Yuan, W.C. Enantioselective Petasis reaction among salicylaldehydes, amines, and organoboronic acids catalyzed by BINOL. Tetrahedron 2013, 69, 537–541. [Google Scholar] [CrossRef]
- Han, W.Y.; Zuo, J.; Zhang, X.M.; Yuan, W.C. Enantioselective Organocatalytic Three-Component Petasis Reaction among Salicylaldehydes, Amines, and Organoboronic Acids. Org. Lett. 2012, 14, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Beauseigneur, A.; Martel, A.; Dhal, R.; Laurent, M.; Dujardin, G. Access to α-substituted amino acid derivatives via 1, 3-dipolar cycloaddition of α-amino ester derived nitrones. J. Org. Chem. 2010, 75, 611–620. [Google Scholar] [CrossRef]
- Lou, S.; Schaus, S.E. Asymmetric Petasis reactions catalyzed by chiral biphenols. J. Am. Chem. Soc. 2008, 130, 6922–6923. [Google Scholar] [CrossRef]
- Reddy, B.N.; Rani, C.R.; Reddy, S.M.; Pathak, M. An efficient and green La(OTf)3 catalyzed Petasis borono–Mannich reaction for the synthesis of tertiary amines. Res. Chem. Intermed. 2016, 42, 7533–7549. [Google Scholar] [CrossRef]
- Rose, N.G.; Blaskovich, M.A.; Wong, A.; Lajoie, G.A. Synthesis of enantiomerically enriched β,γ-unsaturated-α-amino acids. Tetrahedron 2001, 57, 1497–1507. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.H. Lewis acid promoted highly diastereoselective Petasis borono-Mannich reaction: Efficient synthesis of optically active β,γ-unsaturated α-amino acids. Org. Lett. 2012, 14, 2062–2065. [Google Scholar] [CrossRef]
- Zhang, J.; Yun, F.; Xie, R.; Cheng, C.; Chen, G.; Li, J.; Tang, P.; Yuan, Q. Petasis three-component reaction accelerated by trifluoroacetic acid: Synthesis of indoline-derived glycines. Tetrahedron Lett. 2016, 57, 3916–3919. [Google Scholar] [CrossRef]
- Quach, T.D.; Batey, R.A. Copper (II)-catalyzed ether synthesis from aliphatic alcohols and potassium organotrifluoroborate salts. Org. Lett. 2003, 5, 1381–1384. [Google Scholar] [CrossRef] [PubMed]
- Carrera, D.E. The acid promoted Petasis reaction of organotrifluoroborates with imines and enamines. Chem. Commun. 2017, 53, 11185–11188. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Lee, H.Y. Au (I)-catalyzed cyclization of epoxyalkynes to allylic alcohol containing spiroketals and application to the total synthesis of (−)-alotaketal A. Org. Lett. 2020, 22, 4073–4077. [Google Scholar] [CrossRef] [PubMed]
- Jeso, V.; Micalizio, G.C. Total synthesis of lehualide B by allylic alcohol− alkyne reductive cross-coupling. J. Am. Chem. Soc. 2010, 132, 11422–11424. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Duan, Y.; Li, H.; Zhao, B.; Yang, J. An efficient HCl promoted Petasis reaction of 2-pyridinecarbaldehydes, amines and 1, 2-oxborol-2 (5H)-ols. Tetrahedron Lett. 2018, 59, 2502–2505. [Google Scholar] [CrossRef]
- Lo, V.K.Y.; Liu, Y.; Wong, M.K.; Che, C.M. Gold (III) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Org. Lett. 2006, 8, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Jia, H.; Sun, Z. Mild and Catalyst-free Petasis/decarboxylative domino reaction: Chemoselective synthesis of N-benzyl propargylamines. J. Org. Chem. 2014, 79, 11812–11818. [Google Scholar] [CrossRef]
- Nimmagadda, S.K.; Zhang, Z.; Antilla, J.C. Asymmetric one-pot synthesis of 1,3-oxazolidines and 1,3-oxazinanes via hemiaminal intermediates. Org. Lett. 2014, 16, 4098–4101. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, L.; Wang, J.; Song, G. Direct synthesis of N-substituted 1,3-oxazolidines via a hetero-domino Petasis borono-Mannich reaction of 1,2-amino alcohols, formaldehyde, and organoboronic acids. Chem. Heterocycl. Compd. 2019, 55, 648–653. [Google Scholar] [CrossRef]
- Liu, D.; Li, B.; Chen, J.; Gridnev, I.D.; Yan, D.; Zhang, W. Ni-catalyzed asymmetric hydrogenation of N-aryl imino esters for the efficient synthesis of chiral α-aryl glycines. Nat. Commun. 2020, 11, 5935. [Google Scholar] [CrossRef] [PubMed]
- Nanda, K.K.; Trotter, B.W. Diastereoselective Petasis Mannich reactions accelerated by hexafluoroisopropanol: A pyrrolidine-derived arylglycine synthesis. Tetrahedron Lett. 2005, 46, 2025–2028. [Google Scholar] [CrossRef]
- Tabassum, S.; Zahoor, A.F.; Ahmad, S.; Noreen, R.; Khan, S.G.; Ahmad, H. Cross-coupling reactions towards the synthesis of natural products. Mol. Divers 2022, 26, 647–689. [Google Scholar] [CrossRef]
- Theoclitou, M.E.; Robinson, L.A. Novel facile synthesis of 2,2,4 substituted 1,2-dihydroquinolines via a modified Skraup reaction. Tetrahedron Lett. 2002, 43, 3907–3910. [Google Scholar] [CrossRef]
- Chang, Y.M.; Lee, S.H.; Nam, M.H.; Cho, M.Y.; Park, Y.S.; Yoon, C.M. Petasis reaction of activated quinoline and isoquinoline with various boronic acids. Tetrahedron Lett. 2005, 46, 3053–3056. [Google Scholar] [CrossRef]
- Wilkes, J.S. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A Chem. 2004, 214, 11–17. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.S.; Lakshmi, P.N. Ionic liquid accelerated Petasis reaction: A green protocol for the synthesis of alkylaminophenols. J. Mol. Catal. A Chem. 2007, 274, 101–104. [Google Scholar] [CrossRef]
- Shahzadi, I.; Zahoor, A.F.; Rasul, A.; Rasool, N.; Raza, Z.; Faisal, S.; Parveen, B.; Kamal, S.; Zia-ur-Rehman, M.; Zahid, F.M. Synthesis, anticancer, and computational studies of 1, 3, 4-oxadiazole-purine derivatives. J. Heterocycl. Chem. 2020, 57, 2782–2794. [Google Scholar] [CrossRef]
- Ameen, M.A.; Motamed, S.M.; Abdel-latif, F.F. Highly efficient one-pot synthesis of dihydropyran heterocycles. Chin. Chem. Lett. 2014, 25, 212–214. [Google Scholar] [CrossRef]
- Li, H.; Cui, C.X.; Zhang, G.H.; Li, X.Q.; Yang, J. Regioselective synthesis of functionalized dihydropyrones via the Petasis reaction. J. Org. Chem. 2019, 85, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Azizi, N.; Farhadi, E. Straightforward and rapid Petasis multicomponent reactions in deep eutectic solvent. Curr. Res. Green Sustain. Chem. 2020, 4, 100220. [Google Scholar] [CrossRef]
- Di, J.Q.; Wang, H.J.; Cui, Z.S.; Hu, J.Y.; Zhang, Z.H. Catalyst-free Synthesis of Aminomethylphenol Derivatives in Cyclopentyl Methyl Ether via Petasis Borono-Mannich Reaction. Curr. Org. Syn. 2021, 18, 294–300. [Google Scholar] [CrossRef]
- Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Adv. 2012, 2, 4547–4592. [Google Scholar] [CrossRef]
- Hosseinzadeh, R.; Lasemi, Z.; Oloub, M.; Pooryousef, M. A green protocol for the one-pot multicomponent Petasis boronic Mannich reaction using ball milling. J. Iran. Chem. Soc. 2017, 14, 347–355. [Google Scholar] [CrossRef]
- Nun, P.; Martinez, J.; Lamaty, F. Microwave-assisted neat procedure for the Petasis reaction. Synthesis 2010, 12, 2063–2068. [Google Scholar] [CrossRef]
- Parhi, A.K.; Zhang, Y.; Saionz, K.W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Daniel, S.P.; LaVoie, E.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines. Bioorg. Med. Chem. Lett. 2013, 23, 4968–4974. [Google Scholar] [CrossRef]
- Shekhar, A.C.; Rao, P.S.; Narsaiah, B.; Allanki, A.D.; Sijwali, P.S. Emergence of pyrido quinoxalines as new family of antimalarial agents. Eur. J. Med. Chem. 2014, 77, 280–287. [Google Scholar] [CrossRef]
- Xu, H.; Fan, L.L. Synthesis and antifungal activities of novel 5,6-dihydro-indolo [1,2-a] quinoxaline derivatives. Eur. J. Med. Chem. 2011, 46, 1919–1925. [Google Scholar] [CrossRef]
- Soleymani, M.; Chegeni, M. The Chemistry and Applications of the Quinoxaline Compounds. Curr. Org. Chem. 2019, 23, 1789–1827. [Google Scholar] [CrossRef]
- Ayaz, M.; Dietrich, J.; Hulme, C. A novel route to synthesize libraries of quinoxalines via Petasis methodology in two synthetic operations. Tetrahedron Lett. 2011, 52, 4821–4823. [Google Scholar] [CrossRef]
- Eom, D.; Kang, D.; Lee, P.H. Synthesis of 2-alkyl-and aryl-3-ethoxycarbonyl-2,5-dihydrofurans through gold-catalyzed intramolecular hydroalkoxylation. J. Org. Chem. 2010, 75, 7447–7450. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.X.; Li, H.; Yang, X.J.; Yang, J.; Li, X.Q. One-pot synthesis of functionalized 2, 5-dihydrofurans via an amine-promoted Petasis borono-Mannich Reaction. Org. Lett. 2013, 15, 5944–5947. [Google Scholar] [CrossRef] [PubMed]
- Bauri, K.; Nandi, M.; De, P. Amino acid-derived stimuli-responsive polymers and their applications. Polym. Chem. 2018, 9, 1257–1287. [Google Scholar] [CrossRef]
- Takahashi, R.; Kakuchi, R. Rational optimization of the Petasis three-component reaction as a feasible elementary reaction in polymer chemistry. Macromol. Chem. Phys. 2021, 222, 2000347. [Google Scholar] [CrossRef]
- Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug. Deliver. Rev. 2010, 62, 83–99. [Google Scholar] [CrossRef]
- Reddy, S.R.S.; Reddy, B.R.P.; Reddy, P.V.G. Chitosan: Highly efficient, green, and reusable biopolymer catalyst for the synthesis of alkylaminophenols via Petasis borono–Mannich reaction. Tetrahedron Lett. 2015, 56, 4984–4989. [Google Scholar] [CrossRef]
- Vytla, D.; Emmadi, J.; Velayuthaperumal, R.; Shaw, P.; Cavallaro, C.L.; Mathur, A.; Roy, A. Visible-light enabled one-pot three-component Petasis reaction for synthesis of a-substituted secondary sulfonamides/amides/hydrazides. Tetrahedron Lett. 2022, 106, 154055. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, S.; Munawar, S.; Ahmad, S.; Mansha, A.; Zahoor, A.F.; Irfan, A.; Irfan, A.; Kotwica-Mojzych, K.; Soroka, M.; Głowacka, M.; et al. Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction. Molecules 2023, 28, 8032. https://doi.org/10.3390/molecules28248032
Saeed S, Munawar S, Ahmad S, Mansha A, Zahoor AF, Irfan A, Irfan A, Kotwica-Mojzych K, Soroka M, Głowacka M, et al. Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction. Molecules. 2023; 28(24):8032. https://doi.org/10.3390/molecules28248032
Chicago/Turabian StyleSaeed, Sadaf, Saba Munawar, Sajjad Ahmad, Asim Mansha, Ameer Fawad Zahoor, Ali Irfan, Ahmad Irfan, Katarzyna Kotwica-Mojzych, Malgorzata Soroka, Mariola Głowacka, and et al. 2023. "Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction" Molecules 28, no. 24: 8032. https://doi.org/10.3390/molecules28248032
APA StyleSaeed, S., Munawar, S., Ahmad, S., Mansha, A., Zahoor, A. F., Irfan, A., Irfan, A., Kotwica-Mojzych, K., Soroka, M., Głowacka, M., & Mojzych, M. (2023). Recent Trends in the Petasis Reaction: A Review of Novel Catalytic Synthetic Approaches with Applications of the Petasis Reaction. Molecules, 28(24), 8032. https://doi.org/10.3390/molecules28248032