LiOtBu-Promoted Intramolecular 1,3-Dipolar Cycloaddition of the 2′-Alkynyl-biaryl-2-aldehyde N-Tosylhydrazones Approach to 3-Substituted 1H-Dibenzo[e,g]indazoles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.1.1. Optimization of Model Reaction Conditions
2.1.2. Substrates’ Expansion under Optimized Conditions
2.2. Proposed Mechanism
2.3. Structural Analysis
2.3.1. X-ray Data of Compound 2a
2.3.2. DFT Calculation of Dimeric Species of 2a and Its Tautomer
2.3.3. Temperature Gradient Experiment of Compound 2a in DMSO-d6
3. Materials and Methods
3.1. Materials
3.2. General Methods
3.3. General Procedure for the Preparation of 2′-Alkynyl-biaryl-2-aldehydes 1a–p
3.4. Analytical Data of Compound 1a–p
- 2′-(Phenylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1a). Pale yellow oil (355 mg, 1.26 mmol, 84% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.94 (s, 1H), 8.09 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.68–7.64 (m, 2H), 7.54 (t, 3JH,H = 7.6 Hz, 1H), 7.46–7.38 (m, 4H), 7.25–7.22 (m, 4H), 7.17–7.15 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δC 192.0, 144.4, 140.4, 134.3, 133.6, 132.1, 131.4, 130.4, 128.6, 128.4, 128.3, 127.0, 123.8, 122.8, 93.9, 88.3 ppm.
- 2′-[(4-Methoxyphenyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1b). Yellow oil (332 mg, 1.07 mmol, 71% yield). Rf = 0.55 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.93 (s, 1H), 8.08 (dd, 3JH,H = 7.9 Hz, 4JH,H = 1.5 Hz, 1H), 7.66–7.59 (m, 2H), 7.52 (dd app. t, 3JH,H = 7.5 Hz, 1H), 7.43–7.36 (m, 4H), 7.12–7.08 (m, 2H), 6.77–6.74 (m, 2H), 3.74 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.9, 159.8, 144.5, 140.1, 134.3, 133.5, 132.8, 131.8, 131.4, 130.3, 128.3, 128.2, 128.2, 126.8, 124.1, 114.9, 114.0, 94.0, 87.1, 55.3 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H17O2 313.1223, found 313.1223.
- 2′-(p-Tolylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1c). Pale yellow oil (417 mg, 1.41 mmol, 94% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.93 (s, 1H), 8.08 (dd, 3JH,H = 7.7 Hz, 4JH,H = 1.5 Hz, 1H), 7.66–7.61 (m, 2H), 7.52 (t, 3JH,H = 7.6 Hz, 1H), 7.44–7.36 (m, 4H), 7.07–7.02 (m, 4H), 2.29 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.9, 144.4, 140.3, 138.7, 134.3, 133.5, 132.0, 131.4, 131.3, 130.3, 129.1, 128.3, 128.3, 126.9, 124.0, 119.7, 94.1, 87.7, 21.6 ppm.
- 2′-[(4-Fluorophenyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1d). Pale yellow oil (333 mg, 1.11 mmol, 74% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.93 (s, 1H), 8.08 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.67–7.61 (m, 2H), 7.53 (t, 3JH,H = 7.6 Hz, 1H), 7.46–7.38 (m, 4H), 7.16–7.11 (m, 2H), 6.95–6.90 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.9, 162.7 (d, J = 249.6 Hz), 144.3, 140.3, 134.3, 133.6, 133.3 (d, J = 8.3 Hz), 132.0, 131.4, 130.3, 128.6, 128.3, 126.9, 123.6, 118.8 (d, J = 3.6 Hz), 115.7 (d, J = 22.2 Hz), 92.8, 88.0. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C21H14FO 301.1023, found 301.1023.
- 2′-[(4-Chlorophenyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1e). Pale yellow oil (436 mg, 1.38 mmol, 92% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.92 (s, 1H), 8.08 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.69–7.62 (m, 2H), 7.55 (t, 3JH,H = 7.5 Hz, 1H), 7.49–7.40 (m, 4H), 7.22–7.19 (m, 2H), 7.09–7.07 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.9, 144.3, 140.5, 134.6, 134.3, 133.6, 132.6, 132.1, 131.4, 130.4, 128.8, 128.8, 128.4, 128.4, 127.0, 123.5, 121.3, 92.7, 89.3 ppm.
- 5′-Methyl-2′-(phenylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1f). Pale yellow oil (404 mg, 1.36 mmol, 91% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.94 (s, 1H), 8.08 (dd, 3JH,H = 7.9 Hz, 4JH,H = 1.6 Hz, 1H), 7.66–7.61 (m, 1H), 7.53–7.49 (m, 2H), 7.42 (d, 3JH,H = 7.5 Hz, 1H), 7.23–7.20 (m, 5H), 7.16–7.14 (m, 2H), 2.41 (s, 3H) ppm. 13C NMR (100 MHz, CDCl3) δC 192.0, 144.5, 140.3, 138.8, 134.3, 133.5, 131.9, 131.3, 131.3, 131.1, 129.1, 128.3, 128.2, 126.9, 123.0, 120.8, 93.1, 88.5, 21.6 ppm.
- 5′-Chloro-2′-(phenylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1g). Pale yellow solid (374 mg, 1.18 mmol, 79% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). m.p. 83.7–84.2 °C. 1H NMR (400 MHz, CDCl3) δH 9.93 (s, 1H), 8.09 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.67 (td, 3JH,H = 7.4 Hz, 4JH,H = 1.5 Hz, 1H), 7.58–7.54 (m, 2H), 7.42–7.39 (m, 3H), 7.26–7.21(m, 4H), 7.16–7.13 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.4, 142.9, 142.1, 134.5, 134.3, 133.8, 133.1, 131.4, 131.2, 130.3, 128.8, 128.6, 128.4, 127.3, 122.5, 94.8, 87.3 ppm.
- 2′-(Phenylethynyl)-5′-(trifluoromethyl)-(1,1′-biphenyl)-2-carbaldehyde (1h). Pale yellow solid (483 mg, 1.38 mmol, 92% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). m.p. 79.5–80.1 °C. 1H NMR (400 MHz, CDCl3) δH 9.92 (s, 1H), 8.11 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.5 Hz, 1H), 7.75–7.67 (m, 4H), 7.58 (t, 3JH,H = 7.6 Hz, 1H), 7.41 (d, 3JH,H = 7.8 Hz, 1H), 7.28–7.26 (m, 3H), 7.18–7.15 (m, 2H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.1, 142.7, 141.2, 134.3, 133.9, 132.4, 131.6, 131.3, 130.3 (q, J = 32.7 Hz), 129.1, 129.0, 128.5, 127.6, 127.5, 126.9 (q, J = 3.8 Hz), 125.1 (q, J = 3.5 Hz), 123.9 (q, J = 273.7 Hz), 122.1, 96.4, 87.1 ppm. 19F NMR (376 MHz, Chloroform-d) δ −62.53. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H14F3O 351.0991, found 351.0991.
- 2′-(Pyridin-2-ylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1i). Pale yellow solid (378 mg, 1.34 mmol, 89% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). m.p. 104.6–104.9 °C. 1H NMR (400 MHz, CDCl3) δH 9.95 (s, 1H), 8.50 (d, 3JH,H = 3.3 Hz, 1H), 8.09 (d, 3JH,H = 7.7 Hz, 1H), 7.74 (dd, 3JH,H = 7.3 Hz, 4JH,H = 1.7 Hz, 1H), 7.66 (td, 3JH,H = 7.5 Hz, 4JH,H = 1.4 Hz, 1H), 7.55–7.39 (m, 6H), 7.15–7.11 (m, 1H), 7.00 (d, 3JH,H = 7.8 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.6, 149.9, 143.9, 142.8, 140.6, 136.0, 134.1, 133.5, 132.6, 131.3, 130.3, 129.1, 128.3, 128.3, 127.1, 126.8, 122.8, 122.6, 92.7, 87.8 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14NO 284.1070, found 284.1069.
- 2′-(Thiophen-2-ylethynyl)-(1,1′-biphenyl)-2-carbaldehyde (1j). Pale yellow oil (363 mg, 1.26 mmol, 84% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.91 (s, 1H), 8.08 (dd, 3JH,H = 7.7 Hz, 4JH,H = 1.5 Hz, 1H), 7.67–7.59 (m, 2H), 7.52 (t, 3JH,H = 7.6 Hz, 1H), 7.45–7.36 (m, 4H), 7.18 (dd, 3JH,H = 5.1 Hz, 4JH,H = 1.2 Hz, 1H), 6.98 (dd, 3JH,H = 3.7 Hz, 4JH,H = 1.2 Hz, 1H), 6.88 (dd, 3JH,H = 5.2 Hz, 3JH,H = 3.6 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.7, 144.1, 140.1, 134.2, 133.5, 132.0, 131.6, 131.3, 130.3, 128.5, 128.3, 128.2, 127.7, 127.1, 127.0, 123.4, 122.6, 92.0, 87.3 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C19H13OS 289.0682, found 289.0682.
- 2′-[(Triisopropylsilyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1k). White solid (391 mg, 1.08 mmol, 72% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v). m.p. 68.0–68.3 °C. 1H NMR (400 MHz, CDCl3) δH 9.85 (s, 1H), 8.01 (d, 3JH,H = 7.7 Hz, 1H), 7.61–7.58 (m, 2H), 7.46 (t, 3JH,H = 7.6 Hz, 1H), 7.41–7.34 (m, 3H), 7.31–7.28 (m, 1H), 0.91 (s, 21H) ppm. 13C NMR (100 MHz, CDCl3) δC 191.6, 144.6, 140.7, 134.1, 133.4, 132.7, 131.0, 130.1, 128.3, 128.1, 128.0, 127.0, 123.9, 105.2, 95.7, 18.5, 11.1. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C24H31OSi 363.2139, found 363.2138.
- 2′-(Hept-1-yn-1-yl)-(1,1′-biphenyl)-2-carbaldehyde (1l). Pale yellow oil (99 mg, 0.36 mmol, 24% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.85 (s, 1H), 8.03 (d, 3JH,H = 7.7 Hz, 1H), 7.64–7.60 (m, 1H), 7.50–7.49 (m, 2H), 7.35–7.32 (m, 4H), 7.25 (s, 1H), 2.17–2.13 (s, 2H), 1.33–1.26 (m, 2H), 1.21–1.16 (m, 2H), 1.11–1.05 (m, 2H), 0.83–0.79 (m, 3H) ppm. 13C NMR (100 MHz, CDCl3) δC 192.0, 144.7, 140.2, 134.1, 133.4, 132.0, 131.2, 130.1, 128.1, 128.0, 127.7, 126.7, 124.5, 95.5, 79.5, 30.8, 27.8, 22.2, 19.3, 14.0 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H21O 277.1587, found 277.1587.
- 4-Chloro-2′-[(triisopropylsilyl)ethynyl]-(1,1′-biphenyl)-2-carbaldehyde (1m). Pale yellow oil (422 mg, 1.07 mmol, 71% yield). Rf = 0.50 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.77 (s, 1H), 7.98 (d, 3JH,H = 2.6 Hz, 1H), 7.62–7.56 (m, 2H), 7.44–7.37 (m, 2H), 7.34 (d, 3JH,H = 8.2 Hz, 1H), 7.30–7.28 (m, 1H), 0.92 (s, 21H) ppm. 13C NMR (100 MHz, CDCl3) δC 190.4, 142.8, 139.5, 135.3, 134.7, 133.3, 132.9, 132.6, 130.0, 128.5, 128.4, 126.9, 124.0, 104.9, 96.4, 18.5, 11.1 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C21H24ClOSi 355.1279, found 355.1278.
- 2-[2-(Phenylethynyl)pyridin-3-yl]benzaldehyde (1n). Pale yellow oil (365 mg, 1.29 mmol, 86% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.96 (s, 1H), 8.69 (dd, 3JH,H = 4.7, 4JH,H = 1.8 Hz, 1H), 8.11 (dd, 3JH,H = 7.8 Hz, 4JH,H = 1.4 Hz, 1H), 7.73–7.67 (m, 2H), 7.59 (t, 3JH,H = 7.5 Hz, 1H), 7.43–7.36 (m, 2H), 7.30–7.19 (m, 5H) ppm. 13C NMR (100 MHz, CDCl3) δC 190.8, 149.7, 142.8, 141.4, 137.5, 136.6, 134.2, 133.7, 131.7, 131.3, 129.1, 128.9, 128.3, 127.7, 122.6, 121.6, 93.7, 87.7 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14NO 284.1070, found 284.1069.
- 2-[3-(Phenylethynyl)pyridin-4-yl]benzaldehyde (1o). Pale yellow oil (386 mg, 1.36 mmol, 91% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.93 (s, 1H), 8.86 (s, 1H), 8.65 (d, 3JH,H = 5.1 Hz, 1H), 8.11 (dd, 3JH,H = 7.9, 1.5 Hz, 1H), 7.71 (td, 3JH,H = 7.5 Hz, 4JH,H = 1.5 Hz, 1H), 7.61 (t, 3JH,H = 7.7 Hz, 1H), 7.43–7.40 (m, 1H), 7.34 (d, 3JH,H = 5.1 Hz, 1H), 7.31–7.20 (m, 6H) ppm. 13C NMR (100 MHz, CDCl3) δC 190.6, 152.5, 148.7, 147.8, 141.1, 133.8, 131.4, 130.7, 129.3, 129.0, 128.4, 127.8, 124.2, 122.0, 120.6, 96.7, 84.9 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14NO 284.1070, found 284.1069.
- 2-[4-(Phenylethynyl)pyridin-3-yl]benzaldehyde (1p). Pale yellow oil (378 mg, 1.33 mmol, 89% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 10/1 v/v). 1H NMR (400 MHz, CDCl3) δH 9.95 (s, 1H), 8.67–8.66 (m, 2H), 8.12 (d, 3JH,H = 7.8 Hz, 1H), 7.71 (td, 3JH,H = 7.4, 4JH,H = 1.4 Hz, 1H), 7.60 (t, 3JH,H = 7.6 Hz, 1H), 7.49 (d, 3JH,H = 5.1 Hz, 1H), 7.44 (d, 3JH,H = 7.6 Hz, 1H), 7.32–7.19 (m, 5H) ppm. 13C NMR (100 MHz, CDCl3) δC 190.8, 150.2, 149.3, 140.1, 135.0, 134.4, 133.8, 131.6, 131.6, 131.4, 129.4, 129.0, 128.4, 127.7, 125.1, 121.5, 98.2, 85.7 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14NO 284.1070, found 284.1069.
3.5. General Procedure for the Preparation of 1H-Dibenzo[e,g]indazoles 2a–p
3.6. Analytical Data of Compound 2a–p
- 3-Phenyl-1H-dibenzo[e,g]indazole (2a) [30]. White solid (259 mg, 0.88 mmol, 88% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 260.4–260.8 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.24–13.95 (s, 1H), 8.78–8.71 (m, 2H), 8.55 (d, 3JH,H = 7.8 Hz, 1H), 8.02 (d, 3JH,H = 8.1 Hz, 1H), 7.74–7.69 (m, 4H), 7.59–7.54 (m, 3H), 7.50–7.40 (m, 2H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 147.3, 137.2, 135.4, 129.6, 128.6, 128.3, 127.5, 127.4, 127.1, 124.9, 124.1, 124.0, 122.6, 122.3, 121.0, 112.5 ppm.
- 3-(4-Methoxyphenyl)-1H-dibenzo[e,g]indazole (2b). White solid (285 mg, 0.88 mmol, 88% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 204.2–204.7 °C. 1H NMR (400 MHz, DMSO-d6) δH 13.97 (s, 1H), 8.71 (dd, 2JH,H = 16.9 Hz, 3JH,H = 8.1 Hz, 2H), 8.56 (d, 3JH,H = 7.7 Hz, 1H), 8.05 (d, 3JH,H = 7.3 Hz, 1H), 7.74–7.63 (m, 4H), 7.49–7.40 (m, 2H), 7.14 (d, 3JH,H = 8.4 Hz, 2H), 3.84 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 159.3, 147.2, 137.2, 130.9, 129.6, 127.4, 127.3, 127.1, 124.8, 124.0, 123.9, 122.6, 122.4, 121.1, 114.0, 112.6, 55.1 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H17N2O 325.1335, found 325.1334.
- 3-(p-Tolyl)-1H-dibenzo[e,g]indazole (2c). White solid (262 mg, 0.85 mmol, 85% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 199.6–200.0 °C. 1H NMR (400 MHz, DMSO-d6) δH 11.79 (s, 1H), 8.71 (dd, 2JH,H = 17.1 Hz, 3JH,H = 8.1 Hz, 2H), 8.57 (d, 3JH,H = 7.7 Hz, 1H), 8.06 (d, 3JH,H = 7.7 Hz, 1H), 7.73 (t, 3JH,H = 7.5 Hz, 1H), 7.66 (t, 3JH,H = 7.5 Hz, 1H), 7.61 (d, 3JH,H = 7.8 Hz, 2H), 7.48–7.36 (m, 4H), 2.40 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 145.1, 139.0, 137.8, 131.4, 129.7, 129.4, 129.2, 127.5, 127.4, 127.3, 127.1, 125.6, 124.9, 124.1, 123.9, 122.6, 122.3, 112.3, 20.9 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H17N2 309.1386, found 309.1385.
- 3-(4-Fluorophenyl)-1H-dibenzo[e,g]indazole (2d). White solid (262 mg, 0.84 mmol, 84% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 235.7–236.2 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.31–14.03 (s, 1H), 8.70–8.58 (m, 3H), 8.00 (s, 1H), 7.80–7.62 (m, 4H), 7.43–7.39 (m, 4H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 162.2 (d, J = 245.1 Hz), 146.4, 137.3, 131.8, 131.7, 131.6, 129.6, 127.4, 127.3, 127.1, 124.9, 124.1, 124.0, 122.6, 122.4, 121.0, 115.5 (d, J = 21.5 Hz), 112.6 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C21H14FN2 313.1136, found 313.1134.
- 3-(4-Chlorophenyl)-1H-dibenzo[e,g]indazole (2e). White solid (262 mg, 0.80 mmol, 80% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 265.3–265.9 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.18 (s, 1H), 8.76 (dd, 2JH,H = 17.0 Hz, 3JH,H = 8.0 Hz, 2H), 8.53 (dd, 3JH,H = 7.7 Hz, 4JH,H = 1.7 Hz, 1H), 7.96 (d, 3JH,H = 7.5 Hz, 1H), 7.76–7.68 (m, 4H), 7.66–7.64 (m, 2H), 7.53–7.44 (m, 2H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 144.8, 138.5, 133.6, 133.3, 131.3, 129.6, 128.7, 127.6, 127.4, 127.4, 127.1, 127.1, 125.0, 124.1, 123.9, 122.6, 122.4, 121.7, 112.5 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C21H14ClN2 329.0840, found 329.0838.
- 6-Methyl-3-phenyl-1H-dibenzo[e,g]indazole (2f). White solid (265 mg, 0.86 mmol, 86% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 235.6–235.9 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.22–13.93 (s, 1H), 8.76–8.52 (m, 3H), 7.94 (d, 3JH,H = 8.3 Hz, 1H), 7.76–7.52 (m, 7H), 7.19 (d, 3JH,H = 8.4 Hz, 1H), 2.44 (s, 3H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 147.1, 137.0, 135.6, 134.0, 129.6, 129.5, 128.5, 128.4, 128.2, 127.5, 127.3, 127.1, 124.8, 123.9, 122.5, 122.3, 121.1, 112.6, 21.2 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H17N2 309.1386, found 309.1385.
- 6-Chloro-3-phenyl-1H-dibenzo[e,g]indazole (2g). White solid (276 mg, 0.84 mmol, 84% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 286.9–287.3 °C. 1H NMR (400 MHz, DMSO-d6) δH 13.77 (s, 1H), 8.73–8.69 (m, 2H), 8.51 (d, 3JH,H = 7.6 Hz, 1H), 7.92 (d, 3JH,H = 8.6 Hz, 1H), 7.75–7.64 (m, 4H), 7.60–7.52 (m, 3H), 7.40 (dd, 3JH,H = 8.6 Hz, 4JH,H = 2.1 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 129.8, 129.5, 129.2, 128.7, 128.5, 128.1, 127.4, 127.0, 125.8, 124.3, 124.2, 123.6, 122.3, 111.7. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C21H14ClN2 329.0840, found 329.0838.
- 3-Phenyl-6-(trifluoromethyl)-1H-dibenzo[e,g]indazole (2h). White solid (300 mg, 0.83 mmol, 83% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 276.9–277.3 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.29–14.10 (s, 1H), 8.88–8.84 (m, 1H), 8.72–8.65 (m, 1H), 8.55–8.47 (m, 1H), 8.07–8.02 (m, 1H), 7.71–7.51 (m, 8H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 147.7, 138.0, 135.0, 129.8, 129.5, 128.8, 128.6, 128.4, 128.1, 127.6, 127.0, 126.0, 125.0 (q, J = 31.7 Hz), 124.1, 123.3 (d, J = 6.7 Hz), 122.8, 122.3, 121.1 (d, J = 15.7 Hz), 111.7 ppm. 19F NMR (376 MHz, DMSO-d6) δ −60.08. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C22H14F3N2 363.1104, found 363.1102.
- 3-(Pyridin-2-yl)-1H-dibenzo[e,g]indazole (2i). White solid (230 mg, 0.78 mmol, 78% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 209.3–209.7 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.44–14.28 (s, 1H), 9.04–9.02 (m, 1H), 8.86 (d, 3JH,H = 4.9 Hz, 1H), 8.79–8.58 (m, 3H), 8.06–7.97 (m, 2H), 7.78–7.67 (m, 2H), 7.52–7.49 (m, 3H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 154.3, 148.8, 147.1, 137.8, 137.0, 129.7, 127.5, 127.5, 127.4, 127.3, 127.0, 125.6, 125.2, 124.3, 124.0, 123.7, 123.1, 122.3, 120.9, 113.5. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14N3 296.1182, found 296.1181.
- 3-(Thiophen-2-yl)-1H-dibenzo[e,g]indazole (2j). White solid (273 mg, 0.91 mmol, 91% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 255.4–255.9 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.40–14.17 (s, 1H), 8.71–8.56 (m, 3H), 8.34–8.31 (m, 1H), 7.76–7.73 (m, 2H), 7.66 (t, 3JH,H = 7.7 Hz, 1H), 7.56 (d, 3JH,H = 3.6 Hz, 1H), 7.52–7.46 (m, 2H), 7.32–7.30 (m, 1H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 140.4, 137.4, 136.1, 129.6, 128.0, 127.7, 127.5, 127.3, 127.1, 126.9, 125.1, 124.1, 124.0, 122.6, 122.3, 120.8, 113.2. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C19H13N2S 301.0794, found 301.0793.
- 3-(Triisopropylsilyl)-1H-dibenzo[e,g]indazole (2k). White solid (348 mg, 0.93 mmol, 93% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 87.8–88.3 °C. 1H NMR (400 MHz, CDCl3) δH 12.12 (s, 1H), 8.75 (d, 3JH,H = 7.6 Hz, 1H), 8.58–8.53 (m, 2H), 8.27 (d, 3JH,H = 7.8 Hz, 1H), 7.64–7.46 (m, 4H), 1.78 (hept, 3JH,H = 7.5 Hz, 3H), 1.12 (d, 3JH,H = 7.7 Hz, 18H) ppm. 13C NMR (100 MHz, CDCl3) δC 130.5, 129.1, 128.7, 127.3, 127.2, 126.5, 126.0, 125.3, 124.0, 123.6, 123.4, 123.2, 18.8, 12.7 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C24H31N2Si 375.2251, found 375.2251.
- 3-Pentyl-1H-dibenzo[e,g]indazole (2l). White solid (176 mg, 0.61 mmol, 61% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 188.5–188.9 °C. 1H NMR (400 MHz, DMSO-d6) δH 13.69–13.49 (s, 1H), 8.78–8.67 (m, 2H), 8.44 (d, 3JH,H = 7.5 Hz, 1H), 8.24–8.15 (m, 1H), 7.69–7.52 (m, 4H), 3.19 (t, 3JH,H = 7.6 Hz, 2H), 1.82–1.80 (m, 2H), 1.42–1.32 (m, 4H), 0.87 (t, 3JH,H = 7.1 Hz, 3H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 147.3, 137.1, 129.4, 127.6, 127.3, 127.1, 124.4, 124.0, 123.1, 122.2, 121.1, 112.4, 31.2, 28.9, 27.7, 21.9, 13.9 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H21N2 289.1699, found 289.1698.
- 10-Chloro-3-(triisopropylsilyl)-1H-dibenzo[e,g]indazole (2m). White solid (335 mg, 0.82 mmol, 82% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 191.1–191.7 °C. 1H NMR (400 MHz, CDCl3) δH 11.96 (s, 1H), 8.68 (s, 1H), 8.52 (d, 3JH,H = 7.9 Hz, 1H), 8.47 (d, 3JH,H = 9.0 Hz, 1H), 8.23 (d, 3JH,H = 7.7 Hz, 1H), 7.58–7.50 (m, 3H), 1.76 (hept, 3JH,H = 7.5 Hz, 3H), 1.15 (d, 3JH,H = 7.6 Hz, 18H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 133.3, 129.0, 128.7, 128.5, 127.6, 126.9, 125.7, 125.5, 125.1, 124.0, 123.9, 122.8, 18.9, 12.7 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C24H30ClN2Si 409.1861, found 409.1860.
- 3-Phenyl-1H-benzo[f]pyrazolo[3,4-h]quinoline (2n). White solid (260 mg, 0.88 mmol, 88% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 265.7–266.2 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.39–14.16 (s, 1H), 9.02–8.92 (m, 1H), 8.78–8.56 (m, 3H), 8.29–8.14 (m, 2H), 7.79–7.62 (m, 2H), 7.55–7.42 (m, 4H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 148.6, 148.2, 147.4, 145.9, 144.6, 139.9, 139.7, 134.6, 131.7, 130.1, 129.9, 129.6, 128.9, 128.5, 128.0, 127.9, 127.6, 127.4, 126.0, 124.1, 123.8, 123.4, 122.4, 122.3, 120.8, 120.5, 120.1, 113.4, 112.5 ppm. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14N3 296.1182, found 296.1181.
- 3-Phenyl-1H-benzo[f]pyrazolo[3,4-h]isoquinoline (2o). White solid (266 mg, 0.90 mmol, 90% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 277.9–278.4 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.37–14.12 (s, 1H), 9.22 (s, 1H), 8.82–8.72 (m, 1H), 8.56–8.52 (m, 3H), 7.85–7.59 (m, 7H) ppm. 13C NMR (100 MHz, DMSO-d6) δC 146.9, 145.1, 144.1, 137.7, 135.1, 132.5, 129.6, 129.4, 128.7, 128.5, 127.7, 127.5, 124.7, 122.4, 117.5, 110.6. HRMS (ESI IT-TOF) m/z [M + H]+ Calcd. for C20H14N3 296.1182, found 296.1181.
- 3-Phenyl-1H-benzo[h]pyrazolo[4,3-f]isoquinoline (2p). White solid (221 mg, 0.75 mmol, 75% yield). Rf = 0.40 (petroleum ether/ethyl acetate, 1/1 v/v). m.p. 324.3–324.8 °C. 1H NMR (400 MHz, DMSO-d6) δH 14.46–14.20 (s, 1H), 10.06–9.95 (m, 1H), 9.04–8.87 (m, 1H), 8.56–8.48 (m, 2H), 7.86–7.55 (m, 8H). HRMS (ESI IT-TOF) m/z [M + H]+ Calcd for C20H14N3 296.1182, found 296.1181. The 13C NMR spectroscopic data could not be recorded due to the poor solubility in deuterated solvents, such as DMSO-d6, CDCl3.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. 2002, 114, 2708–2711. [Google Scholar] [CrossRef]
- Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev. 2007, 36, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Jewett, J.C.; Bertozzi, C.R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010, 39, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 2013, 113, 4905–4979. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.W. Recent developments in the chemistry of pyrazoles. Adv. Heterocycl. Chem. 2018, 126, 55–107. [Google Scholar] [CrossRef]
- Mix, K.A.; Aronoff, M.R.; Raines, R.T. Diazo compounds: Versatile tools for chemical biology. ACS Chem. Biol. 2016, 11, 3233–3244. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Vicente, J.d.; Bonnert, R.V. A novel one-pot method for the preparation of pyrazoles by 1,3-dipolar cycloadditions of diazo compounds generated in situ. J. Org. Chem. 2003, 68, 5381–5383. [Google Scholar] [CrossRef]
- Jiang, N.; Li, C.-J. Novel 1,3-dipolar cycloaddition of diazocarbonyl compounds to alkynes catalyzed by InCl3 in water. Chem. Commun. 2004, 394–395. [Google Scholar] [CrossRef]
- Moran, J.; McKay, C.S.; Pezacki, J.P. Strain-promoted 1,3-dipolar cycloadditions of diazo compounds with cyclooctynes. Can. J. Chem. 2011, 89, 148–151. [Google Scholar] [CrossRef]
- McGrath, N.A.; Raines, R.T. Diazo compounds as highly tunable reactants in 1,3-dipolar cycloaddition reactions with cycloalkynes. Chem. Sci. 2012, 3, 3237–3240. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-L.; Ge, Y.-C.; He, T.; Zhang, L.; Fu, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. An efficient one-pot synthesis of 3,5-disubstituted 1H-pyrazoles. Synthesis 2012, 44, 1577–1583. [Google Scholar] [CrossRef]
- Friscourt, F.; Fahrni, C.J.; Boons, G.-J. Fluorogenic strain-promoted alkyne-diazo cycloadditions. Chem. Eur. J. 2015, 21, 13996–14001. [Google Scholar] [CrossRef] [PubMed]
- Aronoff, M.R.; Gold, B.; Raines, R.T. 1,3-dipolar cycloadditions of diazo compounds in the presence of azides. Org. Lett. 2016, 18, 1538–1541. [Google Scholar] [CrossRef] [PubMed]
- Gold, B.; Aronoff, M.R.; Raines, R.T. 1,3-dipolar cycloaddition with diazo groups: Noncovalent interactions overwhelm strain. Org. Lett. 2016, 18, 4466–4469. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Qiu, S.; Chen, Y.; Wu, L. K2CO3-promoted pyrazoles synthesis from 1,3-dipolar cycloaddition of N-tosylhydrazones with acetylene gas. ChemistrySelect 2020, 5, 12034–12037. [Google Scholar] [CrossRef]
- Bubyrev, A.; Dar’in, D.; Kantin, G.; Krasavin, M. Synthetic studies towards CH-diazomethane sulfonamides: A novel type of diazo reagents. Eur. J. Org. Chem. 2020, 27, 4112–4115. [Google Scholar] [CrossRef]
- Ruffell, K.; Smith, F.R.; Lewis, W.; Green, M.T.; Hayes, C.J.; Nicolle, S.M.; Moody, C.J. Diazophosphonates: Effective surrogates for diazoalkanes in pyrazole synthesis. Chem. Eur. J. 2021, 27, 13703–13708. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, L.; Wu, H.; He, Y.; Wu, G. Divergent trideuteromethylthiolation and aminotrideuteromethylthiolation of alkenes with N-fluorobenzenesulfonimide and CD3SSO3Na. Org. Lett. 2023, 25, 7078–7082. [Google Scholar] [CrossRef]
- Ajvazi, N.; Stavber, S. Alcohols in direct carbon-carbon and carbon-heteroatom bond-forming reactions: Recent advances. Arkivoc 2018, 2018, 288–329. [Google Scholar] [CrossRef]
- Thangadurai, A.; Minu, M.; Wakode, S.; Agrawal, S.; Narasimhan, B. Indazole: A medicinally important heterocyclic moiety. Med. Chem. Res. 2012, 21, 1509–1523. [Google Scholar] [CrossRef]
- Denya, I.; Malan, S.; Joubert, J. Indazole derivatives and their therapeutic applications: A patent review (2013–2017). Expert Opin. Ther. Pat. 2018, 28, 441–453. [Google Scholar] [CrossRef]
- Zhang, S.-G.; Liang, C.-G.; Zhang, W.-H. Recent advances in indazole-containing derivatives: Synthesis and biological perspectives. Molecules 2018, 23, 2783. [Google Scholar] [CrossRef] [PubMed]
- Minu, M.; Thangadurai, A.; Wakode, S.R.; Agrawal, S.S.; Narasimhan, B. Synthesis, antimicrobial activity and QSAR studies of new 2,3-disubstituted-3,3a,4,5,6,7-hexahydro-2H-indazoles. Bioorg. Med. Chem. Lett. 2009, 19, 2960–2964. [Google Scholar] [CrossRef] [PubMed]
- Cheekavolu, C.; Muniappan, M. In vivo and in vitro anti-inflammatory activity of indazole and its derivatives. J. Clin. Diagn. Res. 2016, 10, FF01–FF06. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Rodgers, J.D.; McHugh, R.J., Jr.; Johnson, B.L.; Cordova, B.C.; Klabe, R.M.; Bacheler, L.T.; Erickson-Viitanen, S.; Ko, S.S. Unsymmetrical cyclic ureas as HIV-1 protease inhibitors: Novel biaryl indazoles as P2/P2′ substituents. Bioorg. Med. Chem. Lett. 1999, 9, 3217–3220. [Google Scholar] [CrossRef] [PubMed]
- Öğretir, C.; Kaypak, N.F. Quantum chemical calculations on the annular tautomerism of some indazole derivatives. 1. A gas phase study. J. Mol. Struct. THEOCHEM 2002, 583, 137–144. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Du, Z.; Hua, H.; Chen, S. One-pot synthesis of 2H-phenanthro [9, 10-c] pyrazoles from isoflavones by two dehydration processes. Green Chem. 2013, 15, 1048–1054. [Google Scholar] [CrossRef]
- Mykytka, J.P.; Jones, W.M. Formation of a bicyclo [4.1,0]heptatriene by intramolecular addition of a carbene to a carbon-carbon triple bond. J. Am. Chem. Soc. 1975, 97, 5933–5935. [Google Scholar] [CrossRef]
- Hao, L.; Hong, J.-J.; Zhu, J.; Zhan, Z.-P. One-pot synthesis of pyrazoles through a four-step cascade sequence. Chem. Eur. J. 2013, 19, 5715–5720. [Google Scholar] [CrossRef]
- Liu, H.; Lu, L.; Hua, R. [Cu(maloNHC)]-catalyzed synthesis of 2-aryl pyrazolo[5,1-a]isoquinolines by annulation of N′-(2-((trimethylsilyl)ethynyl)benzylidene)hydrazides with terminal aromatic alkynes. Tetrahedron 2017, 73, 6428–6435. [Google Scholar] [CrossRef]
- Lv, J.; Liu, H.; Lu, L.; Hua, R. Copper(I)-catalyzed syntheses of benzo[b]fluorenes by the cascade reactions of 2-alkynylbenzaldehyde N-tosylhydrazones and aromatic terminal alkynes. J. Org. Chem. 2022, 87, 16011–16018. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Hua, R. Copper(I)-catalyzed reactions of 2′-cyano-biaryl-2-aldehyde N-tosylhydrazones with terminal alkynes: An approach towards 9-amino-10-alkynylphenanthrene modules. Adv. Synth. Catal. 2023, 365, 3360–3366. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- The Structural Data for 2a Are Available Free of Charge from the Cambridge Crystallographic Data Center with Reference Number CCDC 2270088. Available online: https://www.ccdc.cam.ac.uk (accessed on 15 June 2023).
- Goerigk, L.; Grimme, S. Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2010, 7, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, X.; Truhlar, D.G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 2011, 128, 295–305. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F.D. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Bera, K.; Sarkar, S.; Jalal, S.; Jana, U. Synthesis of Substituted Phenanthrene by Iron (III)-Catalyzed Intramolecular Alkyne–Carbonyl Metathesis. J. Org. Chem. 2012, 77, 8780–8786. [Google Scholar] [CrossRef]
- Bruker. SHELXTL. In Structure Determination Programs; Version 5.10; Bruker AXS Inc.: Madison, WI, USA, 1997. [Google Scholar]
- Milburn, G. International Tables for X-ray Crystallography; Tables 4.2.6.8 and 6.1.1.4; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; Volume C. [Google Scholar]
- Oxford. CrysAlisPro, Agilent Technologies, Version 1.171.36.32; Oxford Diffraction Ltd.: Oxfordshire, UK, 2013.
Entry b | Solvent | °C/h | Yield of 2a (%) d |
---|---|---|---|
1 | THF | 100/2 | 89 |
2 | THF | 50/2 | 88 |
3 | THF | 45/2 | 88 |
4 | THF | 35/2 | 85 |
5 | THF | 25/2 | 77 |
6 | THF | 45/1 | 88 |
7 | MeOH | 45/1 | 68 |
Entry a | Base | Yield of 2a (%) |
---|---|---|
1 | LiOtBu | 88 |
2 | NaOtBu | 81 |
3 | KOtBu | 85 |
4 | Li2CO3 | 9 |
5 | Na2CO3 | 9 |
6 | K2CO3 | 11 |
7 | Cs2CO3 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Hua, R. LiOtBu-Promoted Intramolecular 1,3-Dipolar Cycloaddition of the 2′-Alkynyl-biaryl-2-aldehyde N-Tosylhydrazones Approach to 3-Substituted 1H-Dibenzo[e,g]indazoles. Molecules 2023, 28, 8061. https://doi.org/10.3390/molecules28248061
Lv J, Hua R. LiOtBu-Promoted Intramolecular 1,3-Dipolar Cycloaddition of the 2′-Alkynyl-biaryl-2-aldehyde N-Tosylhydrazones Approach to 3-Substituted 1H-Dibenzo[e,g]indazoles. Molecules. 2023; 28(24):8061. https://doi.org/10.3390/molecules28248061
Chicago/Turabian StyleLv, Jiaying, and Ruimao Hua. 2023. "LiOtBu-Promoted Intramolecular 1,3-Dipolar Cycloaddition of the 2′-Alkynyl-biaryl-2-aldehyde N-Tosylhydrazones Approach to 3-Substituted 1H-Dibenzo[e,g]indazoles" Molecules 28, no. 24: 8061. https://doi.org/10.3390/molecules28248061
APA StyleLv, J., & Hua, R. (2023). LiOtBu-Promoted Intramolecular 1,3-Dipolar Cycloaddition of the 2′-Alkynyl-biaryl-2-aldehyde N-Tosylhydrazones Approach to 3-Substituted 1H-Dibenzo[e,g]indazoles. Molecules, 28(24), 8061. https://doi.org/10.3390/molecules28248061