Breaking Azacalix[4]arenes into Induline Derivatives
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. Calixarene-based multivalent ligands. Chem. Soc. Rev. 2007, 36, 254–266. [Google Scholar] [CrossRef]
- Kim, J.S.; Quang, D.T. Calixarene-Derived Fluorescent Probes. Chem. Rev. 2007, 107, 3780–3799. [Google Scholar] [CrossRef]
- Ikeda, A.; Shinkai, S. Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. Chem. Rev. 1997, 97, 1713–1734. [Google Scholar] [CrossRef]
- Neri, P.; Sessler, J.L.; Wang, M.-X. Calixarenes and Beyond, 1st ed.; English Edition; Springer: Berlin/Heidelberg, Germany, 2016; 1653p. [Google Scholar]
- Lhoták, P. Chemistry of Thiacalixarenes. Eur. J. Org. Chem. 2004, 2004, 1675–1692. [Google Scholar] [CrossRef]
- Morohashi, N.; Narumi, F.; Iki, N.; Hattori, T.; Miyano, S. Thiacalixarenes. Chem. Rev. 2006, 106, 5291–5316. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Lee, Y.O.; Bhalla, V.; Kumar, M.; Kim, J.S. Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 2014, 43, 4824–4870. [Google Scholar] [CrossRef] [PubMed]
- Botha, F.; Eigner, V.; Dvořákovác, H.; Lhoták, P. Arylation of thiacalix[4]arenes using organomercurial intermediates. New J. Chem. 2016, 40, 1104–1110. [Google Scholar] [CrossRef]
- Mikšátko, J.; Eigner, V.; Lhoták, P. Unexpected cleavage of thiacalix[4]arene sulfoxides. RSC Adv. 2017, 7, 53407–53414. [Google Scholar] [CrossRef]
- Maes, W.; Dehaen, W. Oxacalix[n](het)arenes. Chem. Soc. Rev. 2008, 37, 2393–2402. [Google Scholar] [CrossRef] [PubMed]
- Cottet, K.; Marcos, P.M.; Cragg, P.J. Fifty years of oxacalix[3]arenes: A review. Beilstein J. Org. Chem. 2012, 8, 201–226. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, H.; Harikrishnan, U.; Bhatt, D.; Dhadnekar, N.; Kumar, K.; Panchal, M.; Trivedi, P.; Sindhav, G.; Modi, K. A Highly Selective Pyrene Appended Oxacalixarene Receptor for MNA and 4-NP Detection: An Experimental and Computational Study. J. Fluoresc. 2023. [Google Scholar] [CrossRef] [PubMed]
- Zerr, P.; Mussrabi, M.; Vicens, J. Isolation and characterization of a new oxacalixarene. Tetrahedron. Lett. 1991, 32, 1879–1880. [Google Scholar] [CrossRef]
- Smith, G.W. Crystal Structure of a Nitrogen Isostere of Pentacyclo-Octacosadodecaene. Nature 1963, 198, 879. [Google Scholar] [CrossRef]
- Ito, A.; Ono, Y.; Tanaka, K. N-Methyl-Substituted Aza[1n]metacyclophane: Preparation, Structure, and Properties. J. Org. Chem. 1999, 64, 8236–8241. [Google Scholar] [CrossRef]
- Tsue, H.; Ishibashi, K.; Tamura, R. Azacalixarene: A New Class in the Calixarene Family. Topic Heterocycl. Chem. 2008, 17, 73–96. [Google Scholar] [CrossRef]
- Tsue, H.; Ishibashi, K.; Tokita, S.; Matsui, K.; Takahashi, H.; Tamura, R. Frozen 1,3-Alternate Conformation of Exhaustively Methylated Azacalix[4]arene in Solution: Successful Immobilization by Small but yet Sufficiently Bulky O-Methyl Group. Chem. Lett. 2007, 36, 1374–1375. [Google Scholar] [CrossRef]
- Tsue, H.; Ishibashi, K.; Takahashi, H.; Tamura, R. Exhaustively Methylated Azacalix[4]arene: Preparation, Conformation, and Crystal Structure with Exclusively CH/π-Controlled Crystal Architecture. Org. Lett. 2005, 7, 2165–2168. [Google Scholar] [CrossRef]
- Vale, M.; Pink, M.; Rajca, S.; Rajca, A. Synthesis, Structure, and Conformation of Aza[1n]metacyclophanes. J. Org. Chem. 2008, 73, 27–35. [Google Scholar] [CrossRef]
- Xuea, M.; Chen, C.-F. Aromatic single-walled organic nanotubes self-assembled from NH-bridged azacalix[2]triptycene[2]pyridine. Chem. Commun. 2011, 47, 2318–2320. [Google Scholar] [CrossRef]
- Tsue, H.; Ishibashi, K.; Tokita, S.; Takahashi, H.; Matsui, K.; Tamura, R. Azacalix[6]arene Hexamethyl Ether: Synthesis, Structure, and Selective Uptake of Carbon Dioxide in the Solid State. Chem. Eur. J. 2008, 14, 6125–6134. [Google Scholar] [CrossRef]
- Yi, Y.; Fa, S.; Cao, W.; Zeng, L.; Wang, M.; Xu, H.; Zhang, X. Fabrication of well-defined crystalline azacalixarene nanosheets assisted by Se⋯N non-covalent interactions. Chem. Commun. 2012, 48, 7495–7497. [Google Scholar] [CrossRef] [PubMed]
- Caio, J.M.; Esteves, T.; Carvalho, S.; Moiteiro, C.; Félix, V. Azacalix[2]arene[2]triazine-based receptors bearing carboxymethyl pendant arms on nitrogen bridges: Synthesis and evaluation of their coordination ability towards copper(ii). Org. Biomol. Chem. 2014, 12, 589–599. [Google Scholar] [CrossRef]
- Ishibashi, K.; Tsue, H.; Takahashi, H.; Tamura, R. Azacalix[4]arene tetramethyl ether with inherent chirality generated by substitution on the nitrogen bridges. Tetrahedron Asymmetry 2009, 20, 375–380. [Google Scholar] [CrossRef]
- Sakamaki, D.; Ito, A.; Matsumoto, T.; Tanaka, K. Electronic structure of tetraaza[1.1.1.1]o,p,o,p-cyclophane and its oxidized states. RSC Adv. 2014, 4, 39476–39483. [Google Scholar] [CrossRef]
- Sakamaki, D.; Ito, A.; Furukawa, K.; Kato, T.; Tanaka, K. Meta–Para-Linked Octaaza[18]cyclophanes and Their Polycationic States. J. Org. Chem. 2013, 78, 2947–2956. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.Z.; Pawlas, J.; Goodson, T.; Hartwig, J.F. Polaron Delocalization in Ladder Macromolecular Systems. J. Am. Chem. Soc. 2005, 127, 9105–9116. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Ono, Y.; Tanaka, K. The Tetraaza[1.1.1.1]m,p,m,p-cyclophane Dication: A Triplet Diradical Having Two m-Phenylenediamine Radical Cations Linked by Twisted Benzenes. Angew. Chem. Int. Ed. 2000, 39, 1072–1075. [Google Scholar] [CrossRef]
- Ishibashi, K.; Tsue, H.; Sakai, N.; Tokita, S.; Matsui, K.; Yamauchi, J.; Tamura, R. Azacalix[4]arene cation radicals: Spin-delocalised doublet- and triplet-ground states observed in the macrocyclic m-phenylene system connected with nitrogen atoms. Chem. Commun. 2008, 2812–2814. [Google Scholar] [CrossRef]
- Kulszewicz-Bajer, I.; Maurel, V.; Gambarelli, S.; Wielgus, I.; Djurado, D. Ferromagnetic spins interaction in tetraaza- and hexaazacyclophanes. Phys. Chem. Chem. Phys. 2009, 11, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42, 8895–8999. [Google Scholar] [CrossRef]
- Touil, M.; Lachkar, M.; Siri, O. Metal-free synthesis of azacalix[4]arenes. Tetrahedron Lett. 2008, 49, 7250–7252. [Google Scholar] [CrossRef]
- Haddoub, R.; Touil, M.; Raimundo, J.-M.; Siri, O. Unprecedented Tunable Tetraazamacrocycles. Org. Lett. 2010, 12, 2722–2725. [Google Scholar] [CrossRef]
- Canard, G.; Andeme Edzang, J.; Chen, Z.; Chessé, M.; Elhabiri, M.; Giorgi, M.; Siri, O. Alternate Tetraamido-Azacalix[4]arenes as Selective Anion Receptors. Chem. Eur. J. 2016, 22, 5756–5766. [Google Scholar] [CrossRef]
- Tsue, H.; Oketani, R. Azacalixarene: An Ever-Growing Class in the Calixarene Family. In Advances in Organic Crystal Chemistry; Springer: Tokyo, Japan, 2015; pp. 241–261. ISBN 978-4-431-55554-4. [Google Scholar]
- Konishi, H.; Hashimoto, S.; Sakakibara, T.; Matsubara, S.; Yasukawa, Y.; Morikawa, O.; Kobayashi, K. Synthesis and conformational properties of tetranitroazacalix[4]arenes. Tetrahedron Lett. 2009, 50, 620–623. [Google Scholar] [CrossRef]
- Pascal, S.; Lavaud, L.; Azarias, C.; Varlot, A.; Canard, G.; Giorgi, M.; Jacquemin, D.; Siri, O. Azacalixquinarenes: From Canonical to (Poly-)Zwitterionic Macrocycles. J. Org. Chem. 2019, 84, 1387–1397. [Google Scholar] [CrossRef]
- Chen, C.; Giorgi, M.; Jacquemin, D.; Elhabiri, M.; Siri, O. Azacalixphyrin: The Hidden Porphyrin Cousin Brought to Light. Angew. Chem. Int. Ed. 2013, 52, 6250–6254. [Google Scholar] [CrossRef]
- Chen, Z.; Haddoub, R.; Mahé, J.; Marchand, G.; Jacquemin, D.; Edzang, J.A.; Canard, G.; Ferry, D.; Grauby, O.; Ranguis, A.; et al. N-Substituted Azacalixphyrins: Synthesis, Properties, and Self-Assembly. Chem. Eur. J. 2016, 22, 17820–17832. [Google Scholar] [CrossRef]
- Seillan, C.; Marsal, P.; Siri, O. New class of highly stable nonaromatic tautomers. Org. Biomol. Chem. 2010, 8, 3882–3887. [Google Scholar] [CrossRef]
- Chen, Z.; Pascal, S.; Daurat, M.; Lichon, L.; Nguyen, C.; Godefroy, A.; Durand, D.; Ali, L.M.A.; Bettache, N.; Gary-Bobo, M.; et al. Modified Indulines: From Dyestuffs to in vivo Theranostic Agents. ACS Appl. Mater. Interfaces 2021, 13, 30337–30349. [Google Scholar] [CrossRef] [PubMed]
- Yushchenko, D.A.; Shvadchak, V.V.; Klymchenko, A.S.; Duportail, G.; Mély, Y.; Pivovarenko, V.G. 2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer. New J. Chem. 2006, 30, 774–781. [Google Scholar] [CrossRef]
- Roy, S.K.; Samanta, S.; Sinan, M.; Ghosh, P.; Goswami, S. Aerial Oxidation of Protonated Aromatic Amines. Isolation, X-ray Structure, and Redox and Spectral Characteristics of N- Containing Dyes. J. Org. Chem. 2012, 77, 10249–10259. [Google Scholar] [CrossRef] [PubMed]
- Berneth, H. ULLMANN’S Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Solodar, W.E.; Monahan, A.R. The synthesis and Spectroscopic Characterization of Indulin 6B Tetrasulfonate. Can. J. Chem. 1976, 54, 2909–2914. [Google Scholar] [CrossRef]
- Journot, G.; Neier, R.; Gualandi, A. Hydrogenation of Calix[4]pyrrole: From the Formation to the Synthesis of Calix[4]pyrrolidine. Eur. J. Org. Chem. 2021, 2021, 4444–4464. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Canard, G.; Grauby, O.; Mourot, B.; Siri, O. Breaking Azacalix[4]arenes into Induline Derivatives. Molecules 2023, 28, 8113. https://doi.org/10.3390/molecules28248113
Chen Z, Canard G, Grauby O, Mourot B, Siri O. Breaking Azacalix[4]arenes into Induline Derivatives. Molecules. 2023; 28(24):8113. https://doi.org/10.3390/molecules28248113
Chicago/Turabian StyleChen, Zhongrui, Gabriel Canard, Olivier Grauby, Benjamin Mourot, and Olivier Siri. 2023. "Breaking Azacalix[4]arenes into Induline Derivatives" Molecules 28, no. 24: 8113. https://doi.org/10.3390/molecules28248113
APA StyleChen, Z., Canard, G., Grauby, O., Mourot, B., & Siri, O. (2023). Breaking Azacalix[4]arenes into Induline Derivatives. Molecules, 28(24), 8113. https://doi.org/10.3390/molecules28248113