Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods
2.2. Fat Properties of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods
2.2.1. Fatty Acid Composition of Fat from Convective- and Infrared–Convective-Dried Black Soldier Fly Larvae
2.2.2. Acid Value, Peroxide Value, and Oxidative Stability of Fat from the Convective- and Infrared–Convective-Dried Black Soldier Fly Larvae
2.3. Chemical Properties of Black Soldier Fly Larvae Dried with the Convective and Infrared–Convective Methods
2.3.1. Total Polyphenol Content (TPC) and Antioxidant Activity (ABTS Assay) of Convective- and Infrared–Convective-Dried Black Soldier Fly Larvae
2.3.2. Allergen Content of Convective- and Infrared–Convective-Dried Black Soldier Fly Larvae
2.4. Thermal Properties of Black Soldier Fly Larvae Dried with the Convective and Infrared–Convective Methods
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Technological Treatment
4.2.1. Pulsed Electric Field Treatment
4.2.2. Convective Drying
4.2.3. Infrared–Convective Drying
4.3. Characterization of Dried Black Soldier Fly Larvae
4.3.1. Chemical Composition
4.3.2. Fat Analysis
Fatty Acid Composition
Oxidative Stability
Acid Value
Peroxide Value
4.3.3. Chemical Analysis
Extract Preparation
Total Polyphenol Content (TPC)
Antioxidant Activity (AA)
Allergen Content
4.3.4. Thermal Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruszkowska, M.; Tańska, M.; Kowalczewski, P.Ł. Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability 2022, 14, 16578. [Google Scholar] [CrossRef]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2021, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Moura, M.B.M.V.; Teixeira, C.S.S.; Costa, J.; Mafra, I. Monitoring Yellow Mealworm (Tenebrio molitor) as a Potential Novel Allergenic Food: Effect of Food Processing and Matrix. Nutrients 2023, 15, 482. [Google Scholar] [CrossRef] [PubMed]
- Ochieng, B.O.; Anyango, J.O.; Khamis, F.M.; Ekesi, S.; Egonyu, J.P.; Subramanian, S.; Nduko, J.M.; Nakimbugwe, D.; Cheseto, X.; Tanga, C.M. Nutritional Characteristics, Microbial Loads and Consumer Acceptability of Cookies Enriched with Insect (Ruspolia differens) Meal. LWT 2023, 184, 115012. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Identification of Antioxidant and Anti-Inflammatory Peptides Obtained by Simulated Gastrointestinal Digestion of Three Edible Insects Species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 2018, 53, 2542–2551. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Laurent, S.; Hue, I.; Cabon, S.; Grua-Priol, J.; Jury, V.; Federighi, M.; Boué, G. Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods 2023, 12, 572. [Google Scholar] [CrossRef]
- Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.F.; Benning, R.; Haase, H. Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor L.). Insects 2019, 10, 84. [Google Scholar] [CrossRef]
- Zielińska, E.; Zieliński, D.; Jakubczyk, A.; Karaś, M.; Pankiewicz, U.; Flasz, B.; Dziewięcka, M.; Lewicki, S. The Impact of Polystyrene Consumption by Edible Insects Tenebrio molitor and Zophobas morio on Their Nutritional Value, Cytotoxicity, and Oxidative Stress Parameters. Food Chem. 2021, 345, 128846. [Google Scholar] [CrossRef]
- Belleggia, L.; Foligni, R.; Ferrocino, I.; Biolcati, F.; Mozzon, M.; Aquilanti, L.; Osimani, A.; Harasym, J. Morphotextural, Microbiological, and Volatile Characterization of Flatbread Containing Cricket (Acheta domesticus) Powder and Buckwheat (Fagopyrum Esculentum) Flour. Eur. Food Res. Technol. 2023, 249, 2777–2795. [Google Scholar] [CrossRef]
- Hurtado-Ribeira, R.; Hernández, D.M.; Villanueva-Bermejo, D.; García-Risco, M.R.; Hernández, M.D.; Vázquez, L.; Fornari, T.; Martin, D. The Interaction of Slaughtering, Drying, and Defatting Methods Differently Affects Oxidative Quality of the Fat from Black Soldier Fly (Hermetia illucens) Larvae. Insects 2023, 14, 368. [Google Scholar] [CrossRef]
- Kumar, S.; Queiroz, L.S.; Marie, R.; Nascimento, L.G.L.; Mohammadifar, M.A.; de Carvalho, A.F.; Brouzes, C.M.C.; Fallquist, H.; Fraihi, W.; Casanova, F. Gelling Properties of Black Soldier Fly (Hermetia illucens) Larvae Protein after Ultrasound Treatment. Food Chem. 2022, 386, 132826. [Google Scholar] [CrossRef]
- Lemke, B.; Siekmann, L.; Grabowski, N.T.; Plötz, M.; Krischek, C. Impact of the Addition of Tenebrio molitor and Hermetia illucens on the Physicochemical and Sensory Quality of Cooked Meat Products. Insects 2023, 14, 487. [Google Scholar] [CrossRef] [PubMed]
- Miron, L.; Montevecchi, G.; Bruggeman, G.; Macavei, L.I.; Maistrello, L.; Antonelli, A.; Thomas, M. Functional Properties and Essential Amino Acid Composition of Proteins Extracted from Black Soldier Fly Larvae Reared on Canteen Leftovers. Innov. Food Sci. Emerg. Technol. 2023, 87, 103407. [Google Scholar] [CrossRef]
- Huang, C.; Feng, W.; Xiong, J.; Wang, T.; Wang, W.; Wang, C.; Yang, F. Impact of Drying Method on the Nutritional Value of the Edible Insect Protein from Black Soldier Fly (Hermetia illucens L.) Larvae: Amino Acid Composition, Nutritional Value Evaluation, in Vitro Digestibility, and Thermal Properties. Eur. Food Res. Technol. 2019, 245, 11–21. [Google Scholar] [CrossRef]
- Alles, M.C.; Smetana, S.; Parniakov, O.; Shorstkii, I.; Toepfl, S.; Aganovic, K.; Heinz, V. Bio-Refinery of Insects with Pulsed Electric Field Pre-Treatment. Innov. Food Sci. Emerg. Technol. 2020, 64, 102403. [Google Scholar] [CrossRef]
- Smetana, S.; Leonhardt, L.; Kauppi, S.-M.; Pajic, A.; Heinz, V. Insect Margarine: Processing, Sustainability and Design. J. Clean. Prod. 2020, 264, 121670. [Google Scholar] [CrossRef]
- Vallespir, F.; Rodríguez, Ó.; Cárcel, J.A.; Rosselló, C.; Simal, S. Ultrasound Assisted Low-temperature Drying of Kiwifruit: Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity. J. Sci. Food Agric. 2019, 99, 2901–2909. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Yang, X.-H.; Mujumdar, A.S.; Zhao, J.-H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.-J.; Xiao, H.-W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Marczak, W.; Lenart, A.; Janowicz, M. Production of Innovative Freeze-Dried Vegetable Snack with Hydrocolloids in Terms of Technological Process and Carbon Footprint Calculation. Food Hydrocoll. 2020, 108, 105993. [Google Scholar] [CrossRef]
- Kowalska, J.; Kowalska, H.; Marzec, A.; Brzeziński, T.; Samborska, K.; Lenart, A. Dried Strawberries as a High Nutritional Value Fruit Snack. Food Sci. Biotechnol. 2018, 27, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, D.; Kostyra, E.; Grzegory, P.; Janiszewska-Turak, E. Influence of Drying Methods on the Structure, Mechanical and Sensory Properties of Strawberries. Eur. Food Res. Technol. 2021, 247, 1859–1867. [Google Scholar] [CrossRef]
- Yao, L.; Fan, L.; Duan, Z. Effect of Different Pretreatments Followed by Hot-Air and Far-Infrared Drying on the Bioactive Compounds, Physicochemical Property and Microstructure of Mango Slices. Food Chem. 2020, 305, 125477. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, S.; Han, X.; Ni, Y.; Zhao, D.; Hao, J. Quality Evaluation and Drying Kinetics of Shitake Mushrooms Dried by Hot Air, Infrared and Intermittent Microwave–Assisted Drying Methods. LWT 2019, 107, 236–242. [Google Scholar] [CrossRef]
- Telfser, A.; Gómez Galindo, F. Effect of Reversible Permeabilization in Combination with Different Drying Methods on the Structure and Sensorial Quality of Dried Basil (Ocimum basilicum L.) Leaves. LWT 2019, 99, 148–155. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The Application of PEF Technology in Food Processing and Human Nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Alam, M.R.; Lyng, J.G.; Frontuto, D.; Marra, F.; Cinquanta, L. Effect of Pulsed Electric Field Pretreatment on Drying Kinetics, Color, and Texture of Parsnip and Carrot. J. Food Sci. 2018, 83, 2159–2166. [Google Scholar] [CrossRef]
- Shorstkii, I.; Mirshekarloo, M.S.; Koshevoi, E. Application of Pulsed Electric Field for Oil Extraction from Sunflower Seeds: Electrical Parameter Effects on Oil Yield. J. Food Process. Eng. 2017, 40, e12281. [Google Scholar] [CrossRef]
- Velickova, E.; Tylewicz, U.; Dalla Rosa, M.; Winkelhausen, E.; Kuzmanova, S.; Romani, S. Effect of Pulsed Electric Field Coupled with Vacuum Infusion on Quality Parameters of Frozen/Thawed Strawberries. J. Food Eng. 2018, 233, 57–64. [Google Scholar] [CrossRef]
- Piasecka, I.; Wiktor, A.; Górska, A. Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. Appl. Sci. 2022, 12, 1734. [Google Scholar] [CrossRef]
- Messina, C.M.; Gaglio, R.; Morghese, M.; Tolone, M.; Arena, R.; Moschetti, G.; Santulli, A.; Francesca, N.; Settanni, L. Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods 2019, 8, 400. [Google Scholar] [CrossRef]
- Vanqa, N.; Mshayisa, V.V.; Basitere, M. Proximate, Physicochemical, Techno-Functional and Antioxidant Properties of Three Edible Insect (Gonimbrasia belina, Hermetia illucens and Macrotermes subhylanus) Flours. Foods 2022, 11, 976. [Google Scholar] [CrossRef] [PubMed]
- Bogusz, R.; Pobiega, K.; Rybak, K.; Wiktor, A.; Parniakov, O.; Smetana, S.; Nowacka, M. The Pulsed Electric Field Treatment Effect on Drying Kinetics and Chosen Quality Aspects of Freeze-Dried Black Soldier Fly (Hermetia illucens) and Yellow Mealworm (Tenebrio molitor) Larvae. Appl. Sci. 2023, 13, 10251. [Google Scholar] [CrossRef]
- Ruzgys, P.; Novickij, V.; Novickij, J.; Šatkauskas, S. Influence of the Electrode Material on ROS Generation and Electroporation Efficiency in Low and High Frequency Nanosecond Pulse Range. Bioelectrochemistry 2019, 127, 87–93. [Google Scholar] [CrossRef]
- Lee, S.; Jo, K.; Jeong, H.G.; Choi, Y.-S.; Kyoung, H.; Jung, S. Freezing-Induced Denaturation of Myofibrillar Proteins in Frozen Meat. Crit. Rev. Food Sci. Nutr. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zheng, Y.; Qian, B.; Zhong, Y.; Zhao, Y. Thermal Behavior, Microstructure and Protein Quality of Squid Fillets Dried by Far-Infrared Assisted Heat Pump Drying. Food Control 2014, 36, 102–110. [Google Scholar] [CrossRef]
- Brzezińska, R.; Bryś, J.; Giers, O.; Bryś, A.; Górska, A.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M. Quality Evaluation of Plant Oil Blends Interesterified by Using Immobilized Rhizomucor miehei Lipase. Appl. Sci. 2022, 12, 11148. [Google Scholar] [CrossRef]
- Mai, H.C.; Dao, N.D.; Lam, T.D.; Nguyen, B.V.; Nguyen, D.C.; Bach, L.G. Purification Process, Physicochemical Properties, and Fatty Acid Composition of Black Soldier Fly (Hermetia illucens Linnaeus) Larvae Oil. J. Am. Oil Chem. Soc. 2019, 96, 1303–1311. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.-H.; Jeong, S.-B.; Lee, J.-W.; Kim, T.-H.; Lee, H.-G.; Lee, K.-W. Black Soldier Fly Larvae Oil as an Alternative Fat Source in Broiler Nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef]
- Utama, D.T.; Jeong, H.S.; Kim, J.; Barido, F.H.; Lee, S.K. Fatty Acid Composition and Quality Properties of Chicken Sausage Formulated with Pre-Emulsified Perilla-Canola Oil as an Animal Fat Replacer. Poult. Sci. 2019, 98, 3059–3066. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, J.; Wen, P.; Guo, X.; Li, K.; Wang, Y.; Liu, R.; Guo, Y.; Li, D. Effect of Lard or Plus Soybean Oil on Markers of Liver Function in Healthy Subjects: A Randomized Controlled-Feeding Trial. Foods 2023, 12, 1894. [Google Scholar] [CrossRef]
- Shehu, U.E.; Chow, T.Q.; Hafid, H.S.; Mokhtar, M.N.; Baharuddin, A.S.; Nawi, N.M. Kinetics of Thermal Hydrolysis of Crude Palm Oil with Mass and Heat Transfer in a Closed System. Food Bioprod. Process. 2019, 118, 187–197. [Google Scholar] [CrossRef]
- Symoniuk, E.; Marczak, Z.; Brzezińska, R.; Janowicz, M.; Ksibi, N. Effect of the Freeze-Dried Mullein Flower Extract (Verbascum nigrum L.) Addition on Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils. Foods 2023, 12, 2391. [Google Scholar] [CrossRef] [PubMed]
- Frega, N.; Mozzon, M.; Lercker, G. Effects of Free Fatty Acids on Oxidative Stability of Vegetable Oil. J. Am. Oil Chem. Soc. 1999, 76, 325–329. [Google Scholar] [CrossRef]
- Son, Y.-J.; Choi, S.Y.; Hwang, I.-K.; Nho, C.W.; Kim, S.H. Could Defatted Mealworm (Tenebrio molitor) and Mealworm Oil Be Used as Food Ingredients? Foods 2020, 9, 40. [Google Scholar] [CrossRef]
- Anuduang, A.; Loo, Y.Y.; Jomduang, S.; Lim, S.J.; Wan Mustapha, W.A. Effect of Thermal Processing on Physico-Chemical and Antioxidant Properties in Mulberry Silkworm (Bombyx mori L.) Powder. Foods 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Marzec, A.; Domian, E.; Galus, S.; Ciurzyńska, A.; Lenart, A.; Kowalska, H. The Use of Antioxidant Potential of Chokeberry Juice in Creating Pro-Healthy Dried Apples by Hybrid (Convection-Microwave-Vacuum) Method. Molecules 2020, 25, 5680. [Google Scholar] [CrossRef]
- Lucas-González, R.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Effect of Drying Processes in the Chemical, Physico-Chemical, Techno-Functional and Antioxidant Properties of Flours Obtained from House Cricket (Acheta domesticus). Eur. Food Res. Technol. 2019, 245, 1451–1458. [Google Scholar] [CrossRef]
- Baek, M.; Kim, M.; Kwon, Y.; Hwang, J.; Goo, T.; Jun, M.; Yun, E. Effects of Processing Methods on Nutritional Composition and Antioxidant Activity of Mealworm (Tenebrio molitor) Larvae. Entomol. Res. 2019, 49, 284–293. [Google Scholar] [CrossRef]
- Mirzaei-Baktash, H.; Hamdami, N.; Torabi, P.; Fallah-Joshaqani, S.; Dalvi-Isfahan, M. Impact of Different Pretreatments on Drying Kinetics and Quality of Button Mushroom Slices Dried by Hot-Air or Electrohydrodynamic Drying. LWT 2022, 155, 112894. [Google Scholar] [CrossRef]
- Psarianos, M.; Dimopoulos, G.; Ojha, S.; Cavini, A.C.M.; Bußler, S.; Taoukis, P.; Schlüter, O.K. Effect of Pulsed Electric Fields on Cricket (Acheta domesticus) Flour: Extraction Yield (Protein, Fat and Chitin) and Techno-Functional Properties. Innov. Food Sci. Emerg. Technol. 2022, 76, 102908. [Google Scholar] [CrossRef]
- Pyo, S.-J.; Kang, D.-G.; Jung, C.; Sohn, H.-Y. Anti-Thrombotic, Anti-Oxidant and Haemolysis Activities of Six Edible Insect Species. Foods 2020, 9, 401. [Google Scholar] [CrossRef]
- Ruggeri, M.; Bianchi, E.; Vigani, B.; Sánchez-Espejo, R.; Spano, M.; Totaro Fila, C.; Mannina, L.; Viseras, C.; Rossi, S.; Sandri, G. Nutritional and Functional Properties of Novel Italian Spray-Dried Cricket Powder. Antioxidants 2023, 12, 112. [Google Scholar] [CrossRef]
- Torre, R.; Freitas, M.; Costa-Rama, E.; Nouws, H.P.A.; Delerue-Matos, C. Food Allergen Control: Tropomyosin Analysis through Electrochemical Immunosensing. Food Chem. 2022, 396, 133659. [Google Scholar] [CrossRef] [PubMed]
- Kamath, S.D.; Abdel Rahman, A.M.; Komoda, T.; Lopata, A.L. Impact of Heat Processing on the Detection of the Major Shellfish Allergen Tropomyosin in Crustaceans and Molluscs Using Specific Monoclonal Antibodies. Food Chem. 2013, 141, 4031–4039. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic Changes of Nutrient Composition throughout the Entire Life Cycle of Black Soldier Fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef]
- Leni, G.; Tedeschi, T.; Faccini, A.; Pratesi, F.; Folli, C.; Puxeddu, I.; Migliorini, P.; Gianotten, N.; Jacobs, J.; Depraetere, S.; et al. Shotgun Proteomics, in-Silico Evaluation and Immunoblotting Assays for Allergenicity Assessment of Lesser Mealworm, Black Soldier Fly and Their Protein Hydrolysates. Sci. Rep. 2020, 10, 1228. [Google Scholar] [CrossRef] [PubMed]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Dhanani, K.; Hoffman, L.C. Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods 2021, 10, 1934. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Raghavan, V. Critical Reviews and Recent Advances of Novel Non-Thermal Processing Techniques on the Modification of Food Allergens. Crit. Rev. Food Sci. Nutr. 2021, 61, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of Processing on Conformational Changes of Food Proteins Related to Allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
- Lamberti, C.; Nebbia, S.; Antoniazzi, S.; Cirrincione, S.; Marengo, E.; Manfredi, M.; Smorgon, D.; Monti, G.; Faccio, A.; Giuffrida, M.G.; et al. Effect of Hot Air and Infrared Roasting on Hazelnut Allergenicity. Food Chem. 2021, 342, 128174. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tu, Z.; Wang, H.; Zhang, L.; Gao, Y.; Li, X.; Tian, M. Immunogenic and Structural Properties of Ovalbumin Treated by Pulsed Electric Fields. Int. J. Food Prop. 2017, 20, S3164–S3176. [Google Scholar] [CrossRef]
- Leni, G.; Soetemans, L.; Caligiani, A.; Sforza, S.; Bastiaens, L. Degree of Hydrolysis Affects the Techno-Functional Properties of Lesser Mealworm Protein Hydrolysates. Foods 2020, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Szabo, M.-R.; Chambre, D.; Idiţoiu, C. TG/DTG/DTA for the Oxidation Behavior Characterization of Vegetable and Animal Fats. J. Therm. Anal. Calorim. 2012, 110, 281–285. [Google Scholar] [CrossRef]
- Zozo, B.; Wicht, M.M.; Mshayisa, V.V.; van Wyk, J. The Nutritional Quality and Structural Analysis of Black Soldier Fly Larvae Flour before and after Defatting. Insects 2022, 13, 168. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Fiorenza Caboni, M.; Lercker, G. Pressurized Liquid Extraction of Lipids for the Determination of Oxysterols in Egg-Containing Food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Ziarno, M.; Bryś, J.; Parzyszek, M.; Veber, A. Effect of Lactic Acid Bacteria on the Lipid Profile of Bean-Based Plant Substitute of Fermented Milk. Microorganisms 2020, 8, 1348. [Google Scholar] [CrossRef] [PubMed]
- Bochnak-Niedźwiecka, J.; Szymanowska, U.; Świeca, M. The Protein-Rich Powdered Beverages Stabilized with Flax Seeds Gum—Antioxidant and Antiproliferative Properties of the Potentially Bioaccessible Fraction. Appl. Sci. 2022, 12, 7159. [Google Scholar] [CrossRef]
- Vidal-Gutiérrez, M.; Robles-Zepeda, R.E.; Vilegas, W.; Gonzalez-Aguilar, G.A.; Torres-Moreno, H.; López-Romero, J.C. Phenolic Composition and Antioxidant Activity of Bursera microphylla A. Gray. Ind. Crop. Prod. 2020, 152, 112412. [Google Scholar] [CrossRef]
- Nino, M.C.; Reddivari, L.; Ferruzzi, M.G.; Liceaga, A.M. Targeted Phenolic Characterization and Antioxidant Bioactivity of Extracts from Edible Acheta domesticus. Foods 2021, 10, 2295. [Google Scholar] [CrossRef]
- Mikus, M.; Galus, S.; Ciurzyńska, A.; Janowicz, M. Development and Characterization of Novel Composite Films Based on Soy Protein Isolate and Oilseed Flours. Molecules 2021, 26, 3738. [Google Scholar] [CrossRef] [PubMed]
PEF Energy | Drying Method | PEF Energy × Drying Method | ||||
---|---|---|---|---|---|---|
Partial η2 | p-Value | Partial η2 | p-Value | Partial η2 | p-Value | |
Fat Extraction Yield | 0.992 | <0.001 | 0.724 | <0.001 | 0.992 | <0.001 |
Protein Content | 0.972 | <0.001 | 0.897 | <0.001 | 0.842 | <0.001 |
Ash Content | 0.986 | <0.001 | 0.146 | 0.118 | 0.989 | <0.001 |
Moisture Content | 0.297 | 0.121 | 0.976 | <0.001 | 0.664 | <0.001 |
Saturated Fatty Acids (SFA) | 0.907 | <0.001 | 0.979 | <0.001 | 0.955 | <0.001 |
Monounsaturated Fatty Acids (MUFA) | 0.836 | <0.001 | 0.969 | <0.001 | 0.890 | <0.001 |
Polyunsaturated Fatty Acids (PUFA) | 0.967 | <0.001 | 0.988 | <0.001 | 0.985 | <0.001 |
Acid Value (AV) | 0.934 | <0.001 | 0.999 | <0.001 | 0.992 | <0.001 |
Peroxide Value (PV) | 0.834 | <0.001 | 0.987 | <0.001 | 0.834 | <0.001 |
Oxidation Stability | 0.857 | <0.001 | 0.990 | <0.001 | 0.965 | <0.001 |
Total Polyphenol Content (TPC) | 0.965 | <0.001 | 0.987 | <0.001 | 0.947 | <0.001 |
Antioxidant Activity (AA) | 0.984 | <0.001 | 0.986 | <0.001 | 0.973 | <0.001 |
Crustacean Content | 0.914 | <0.001 | 0.995 | <0.001 | 0.993 | <0.001 |
Mollusk Content | 0.957 | <0.001 | 0.811 | <0.001 | 0.977 | <0.001 |
PEF0_CD | PEF5_CD | PEF20_CD | PEF40_CD | PEF0_IR-CD | PEF5_IR-CD | PEF20_IR-CD | PEF40_IR-CD | |
---|---|---|---|---|---|---|---|---|
Capric acid (C10:0) | 0.89 ± 0.01 d 1 | 1.18 ± 0.01 e | 0.83 ± 0.03 cd | 0.88 ± 0.01 d | 0.74 ± 0.01 a | 0.80 ± 0.03 abc | 0.76 ± 0.02 ab | 0.82 ± 0.08 bc |
Lauric acid (C12:0) | 41.56 ± 0.86 a | 47.15 ± 0.11 c | 41.67 ± 1.25 a | 44.85 ± 0.17 b | 47.93 ± 0.03 c | 44.98 ± 0.40 b | 44.40 ± 0.52 b | 46.87 ± 1.24 c |
Myristic acid (C14:0) | 11.90 ± 0.12 a | 11.90 ± 0.02 a | 11.90 ± 0.04 a | 12.01 ± 0.08 a | 13.35 ± 0.04 d | 12.90 ± 0.09 c | 12.55 ± 0.16 b | 12.49 ± 0.23 b |
Palmitic acid (C16:0) | 16.92 ± 0.20 cd | 14.72 ± 0.04 a | 17.02 ± 0.31 d | 16.45 ± 0.11 bc | 17.02 ± 0.17 d | 17.19 ± 0.16 d | 17.14 ± 0.08 d | 16.23 ± 0.56 b |
Palmitoleic acid (C16:1) | 3.12 ± 0.18 d | 3.30 ± 0.03 de | 3.33 ± 0.06 e | 3.29 ± 0.02 de | 2.54 ± 0.01 a | 2.70 ± 0.04 ab | 2.75 ± 0.17 bc | 2.91 ± 0.11 c |
Margaric acid (C17:0) | 0.21 ± 0.04 cd | 0.19 ± 0.01 cd | 0.21 ± 0.01 d | 0.18 ± 0.01 cd | 0.11 ± 0.01 a | 0.18 ± 0.01 cd | 0.17 ± 0.03 bc | 0.14 ± 0.02 ab |
Stearic acid (C18:0) | 3.00 ± 0.13 bc | 2.32 ± 0.04 a | 3.12 ± 0.13 c | 2.93 ± 0.01 b | 3.44 ± 0.04 d | 3.05 ± 0.04 bc | 3.03 ± 0.15 bc | 2.89 ± 0.01 b |
Oleic acid (C18:1 n-9c) | 11.49 ± 0.24 e | 9.93 ± 0.03 cd | 11.40 ± 0.45 e | 10.40 ± 0.01 d | 8.26 ± 0.21 a | 9.38 ± 0.04 b | 9.94 ± 0.28 cd | 9.50 ± 0.28 bc |
Linoleic acid (C18:2 n-6c) | 9.28 ± 0.08 f | 7.94 ± 0.03 d | 8.84 ± 0.28 e | 7.55 ± 0.04 c | 5.70 ± 0.01 a | 7.53 ± 0.08 c | 7.94 ± 0.06 d | 6.99 ± 0.15 b |
α-Linolenic acid (C18:3 n-3) | 0.97 ± 0.06 d | 0.84 ± 0.04 c | 0.97 ± 0.06 d | 0.84 ± 0.01 c | 0.50 ± 0.01 a | 0.77 ± 0.01 c | 0.79 ± 0.06 c | 0.67 ± 0.01 b |
Arachidic acid (C20:0) | 0.54 ± 0.06 cd | 0.40 ± 0.01 b | 0.57 ± 0.01 d | 0.52 ± 0.01 c | 0.32 ± 0.01 a | 0.42 ± 0.01 b | 0.43 ± 0.01 b | 0.41 ± 0.04 b |
Other acid | 0.15 ± 0.01 de | 0.15 ± 0.01 de | 0.16 ± 0.01 e | 0.14 ± 0.01 cde | 0.10 ± 0.01 a | 0.14 ± 0.01 cd | 0.13 ± 0.01 bc | 0.12 ± 0.01 b |
∑SFA | 75.00 ± 0.57 a | 77.85 ± 0.01 b | 75.31 ± 0.86 a | 77.80 ± 0.01 b | 82.90 ± 0.21 d | 79.51 ± 0.15 c | 78.46 ± 0.57 b | 79.83 ± 0.55 c |
∑MUFA | 14.61 ± 0.42 e | 13.23 ± 0.06 cd | 14.73 ± 0.50 e | 13.68 ± 0.03 d | 10.80 ± 0.20 a | 12.08 ± 0.08 b | 12.69 ± 0.45 bc | 12.41 ± 0.39 b |
∑PUFA | 10.24 ± 0.14 f | 8.78 ± 0.06 d | 9.81 ± 0.34 e | 8.38 ± 0.03 c | 6.20 ± 0.01 a | 8.29 ± 0.08 c | 8.73 ± 0.12 d | 7.65 ± 0.16 b |
n-6/n-3 | 9.63 ± 0.55 abc | 9.52 ± 0.37 abc | 9.12 ± 0.24 ab | 9.04 ± 0.12 a | 11.40 ± 0.35 e | 9.84 ± 0.01 bcd | 10.07 ± 0.64 cd | 10.50 ± 0.11 d |
Sample | Acid Value (mg KOH/g) | Peroxide Value (meq O2/kg) | Oxidative Stability (min) |
---|---|---|---|
Convective-Dried Black Soldier Fly Larvae | |||
PEF0_CD | 17.38 ± 1.46 a 1 | 1.70 ± 0.05 c | 38.34 ± 1.03 a |
PEF5_CD | 27.01 ± 0.30 b | 2.07 ± 0.20 d | 44.49 ± 0.80 b |
PEF20_CD | 32.57 ± 0.84 c | 1.16 ± 0.30 b | 52.75 ± 1.39 c |
PEF40_CD | 26.76 ± 1.08 b | 1.13 ± 0.22 b | 45.79 ± 2.93 b |
Infrared–Convective-Dried Black Soldier Fly Larvae | |||
PEF0_IR-CD | 120.59 ± 0.16 f | <0.01 a | 84.46 ± 2.93 f |
PEF5_IR-CD | 114.08 ± 0.78 e | <0.01 a | 63.73 ± 5.17 d |
PEF20_IR-CD | 107.18 ± 0.18 d | <0.01 a | 61.65 ± 1.37 d |
PEF40_IR-CD | 120.55 ± 0.67 f | <0.01 a | 76.68 ± 1.22 e |
Sample | Step 1 | Step 2 | Step 3 | Sum (%) | Decomposition Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Temp. Range (°C) | Mass Loss (%) | Temp. Range (°C) | Mass Loss (%) | Temp. Range (°C) | Mass Loss (%) | ||||||
Convective-Dried Black Soldier Fly Larvae | |||||||||||
PEF0_CD | 30–110 | 0.8 | 110–420 | 62.8 | 420–600 | 6.5 | 70.1 | – | – | – | 358 |
PEF5_CD | 30–110 | 1.0 | 110–420 | 62.9 | 420–600 | 6.6 | 70.5 | – | – | – | 359 |
PEF20_CD | 30–110 | 1.1 | 110–420 | 64.2 | 420–600 | 6.0 | 71.3 | 180 | – | – | 358 |
PEF40_CD | 30–110 | 1.3 | 110–420 | 63.9 | 420–600 | 6.8 | 72.0 | 186 | – | – | 357 |
Infrared–Convective-Dried Black Soldier Fly Larvae | |||||||||||
PEF0_IR-CD | 30–110 | 1.3 | 110–420 | 76.2 | 420–600 | 5.8 | 83.2 | 192 | – | 339 | 357 |
PEF5_IR-CD | 30–110 | 1.4 | 110–420 | 61.6 | 420–600 | 8.4 | 71.4 | 187 | 305 | 338 | 356 |
PEF20_IR-CD | 30–110 | 1.3 | 110–420 | 65.6 | 420–600 | 3.5 | 70.3 | 189 | 304 | – | 351 |
PEF40_IR-CD | 30–110 | 1.3 | 110–420 | 62.5 | 420–600 | 1.1 | 64.9 | 190 | 303 | 338 | 356 |
Properties (Unit) | Value (Mean ± SD) |
Moisture content (%) | 80.91 ± 2.82 |
Protein content (g/100 g w.m.) | 9.39 ± 0.08 |
Fat content (g/100 g w.m.) | 1.36 ± 0.21 |
Ash content (g/100 g w.m.) | 1.80 ± 0.01 |
Total polyphenol content (mg ChlA/100 g d.m.) | 67.47 ± 0.77 |
Antioxidant activity (mg TE/g d.m.) | 1.83 ± 0.14 |
Fat properties | |
∑SFA | 76.89 ± 2.73 |
∑MUFA | 13.91 ± 1.15 |
∑PUFA | 9.00 ± 1.52 |
n-6/n-3 | 10.08 ± 2.11 |
Acid value (mg KOH/g) | 178.56 ± 15.32 |
Peroxide value (meq O2/kg) | 3.48 ± 3.33 |
Oxidative stability (min) | 22.70 ± 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogusz, R.; Bryś, J.; Onopiuk, A.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods. Molecules 2023, 28, 8121. https://doi.org/10.3390/molecules28248121
Bogusz R, Bryś J, Onopiuk A, Rybak K, Witrowa-Rajchert D, Nowacka M. Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods. Molecules. 2023; 28(24):8121. https://doi.org/10.3390/molecules28248121
Chicago/Turabian StyleBogusz, Radosław, Joanna Bryś, Anna Onopiuk, Katarzyna Rybak, Dorota Witrowa-Rajchert, and Małgorzata Nowacka. 2023. "Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods" Molecules 28, no. 24: 8121. https://doi.org/10.3390/molecules28248121
APA StyleBogusz, R., Bryś, J., Onopiuk, A., Rybak, K., Witrowa-Rajchert, D., & Nowacka, M. (2023). Effect of Pulsed Electric Field Technology on the Composition and Bioactive Compounds of Black Soldier Fly Larvae Dried with Convective and Infrared–Convective Methods. Molecules, 28(24), 8121. https://doi.org/10.3390/molecules28248121