Essential Oils Composition and Biological Activity of Chamaecyparis obtusa, Chrysopogon nigritanus and Lavandula coronopifolia Grown Wild in Sudan
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Profiles of the EOs
2.2. Antioxidant Activity
2.3. Enzyme-Inhibitory Activity
2.4. Molecular Docking
3. Materials and Methods
3.1. Plant Materials
3.2. Extraction of Essential Oils
3.3. Chemical Analysis of the EOs
3.4. Antioxidant and Enzyme Inhibitory Assays
3.5. Molecular Modeling
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 1, 70. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.; Plainfossé, H.; Brochet, X.; Chemat, F.; Fernandez, X. Extraction of natural fragrance ingredients: History overview and future trends. Chem. Biodivers. 2019, 16, e1900424. [Google Scholar] [CrossRef] [PubMed]
- Mohammadhosseini, M. Chemical composition of the essential oils and volatile fractions from flowers, stems and roots of Salvia multicaulis Vahl. by Using MAHD, SFME and HS-SPME Methods. J. Essent. Oil Bear. Plants 2015, 18, 1360–1371. [Google Scholar] [CrossRef]
- Mohammadhosseini, M.; Venditti, A.; Mahdavi, B. Characterization of essential oils and volatiles from the aerial parts of Mentha pulegium L. (Lamiaceae) using microwave-assisted hydrodistillation (MAHD) and headspace solid phase microextraction (HS-SPME) in combination with GC-MS. Nat. Prod. Res. 2023, 37, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Market Research Report, Essential Oils Market Size, Share & Growth Report [2021–2028]. 2021. Available online: https://www.fortunebusinessinsights.com (accessed on 15 December 2022).
- Marques, M.O.M.; Facanali, R.; Haber, L.L.; Vieira, M.A.R. Essential oils: History, biosynthesis, and agronomic aspects. Med. Essent. Oils Chem. Pharmacol. Ther. Asp. 2012, 2, 3–22. [Google Scholar]
- Elshiekh, Y.H.; Ali, M.A.M.; Abubakr, R.; Musa, Y.A.A. Evaluation of Antibacterial, Antioxidant and Phytochemical screening of Chamaecyparis obtusa (Crippsii) Fruits. Am. J. Res. Commun. 2020, 8, 15–24. [Google Scholar]
- Koyama, S.; Yamaguchi, Y.; Tanaka, S.; Motoyoshiya, J. A new substance (Yoshixol) with an interesting antibiotic mechanism from wood oil of Japanese traditional tree (Kiso-Hinoki), Chamaecyparis obtusa. Gen. Pharmacol. 1997, 28, 797–804. [Google Scholar] [CrossRef]
- Yang, J.-K.; Choi, M.-S.; Seo, W.-T.; Rinker, D.L.; Han, S.W.; Cheong, G.-W. Chemical composition and antimicrobial activity of Chamaecyparis obtusa leaf essential oil. Fitoterapia 2007, 78, 149–152. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Lee, S.-H.; Kim, M.-K.; Lee, H.-S. Larvicidal activity of Chamaecyparis obtusa and Thuja orientalis leaf oils against two mosquito species. J. Appl. Biol. Chem. 2005, 48, 26–28. [Google Scholar]
- Lee, S.-H.; Do, H.-S.; Min, K.-J. Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PLoS ONE 2015, 10, e0143450. [Google Scholar] [CrossRef]
- Park, I.-K.; Lee, S.-G.; Choi, D.-H.; Park, J.-D.; Ahn, Y.-J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J. Stored Prod. Res. 2003, 39, 375–384. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Matsui, N.; Ohira, T.; Imai, Y.; Miyazaki, Y. Effect of hinoki (Chamaecyparis obtusa) wood-wool in tatami mat on the activity of house dust mite Dermatophagoides pteronyssinus. J. Wood Sci. 2006, 52, 353–357. [Google Scholar] [CrossRef]
- Matsui, N.; Ohira, T.; Hiramatsu, Y.; Imai, Y.; Miyazaki, Y. The composition of volatiles from tatami mats containing hinoki (Chamaecyparis obtusa) wood-wool and its decline over the long term. J. Wood Sci. 2007, 53, 529–532. [Google Scholar] [CrossRef]
- Joo, S.S.; Yoo, Y.-M.; Ko, S.-H.; Choi, W.; Park, M.-J.; Kang, H.Y.; Choi, K.-C.; Choi, I.-G.; Jeung, E.-B. Effects of essential oil from Chamaecypris obtusa on the development of atopic dermatitis-like skin lesions and the suppression of Th cytokines. J. Dermatol. Sci. 2010, 60, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Kim, S.M.; Lee, H.J.; Lee, S.J.; Heo, J.D.; Venkatarame Gowda Saralamma, V.; Ha, S.E.; Kim, E.H.; Mun, S.P.; Kim, G.S. Essential oil from Korean Chamaecyparis obtusa leaf ameliorates respiratory activity in Sprague-Dawley rats and exhibits protection from NF-κB-induced inflammation in WI38 fibroblast cells. Int. J. Mol. Med. 2019, 43, 393–403. [Google Scholar] [CrossRef]
- Lee, G.-S.; Hong, E.-J.; Gwak, K.-S.; Park, M.-J.; Choi, K.-C.; Choi, I.-G.; Jang, J.-W.; Jeung, E.-B. The essential oils of Chamaecyparis obtusa promote hair growth through the induction of vascular endothelial growth factor gene. Fitoterapia 2010, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-D.; Cheng, M.-J.; Chen, J.-J.; Khamthong, N.; Lin, W.-W.; Kuo, Y.-H. Secondary metabolites with antimicrobial activities from Chamaecyparis obtusa var. formosana. Molecules 2022, 27, 429. [Google Scholar] [CrossRef] [PubMed]
- Andrews, F.W. The flowering plants of the Sudan. The Flowering Plants of the Sudan; T. Buncle & Company: Arbroath, UK, 1956. [Google Scholar]
- Champagnat, P.; Figueredo, G.; Chalchat, J.-C.; Bessière, J.-M. Essential oil composition of Vetiveria nigritana from Mali. J. Essent. Oil Res. 2006, 18, 647–649. [Google Scholar] [CrossRef]
- El Ghazali, G.E.B. Medicinal Plants of Sudan, Part I: Medicinal plants of Erkowit; National Council for Research: Khartoum, Sudan, 1986. [Google Scholar]
- Ait Said, L.; Zahlane, K.; Ghalbane, I.; El Messoussi, S.; Romane, A.; Cavaleiro, C.; Salgueiro, L. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Nat. Prod. Res. 2015, 29, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Emam, M.; Abdel-Haleem, D.R.; Salem, M.M.; Abdel-Hafez, L.J.M.; Latif, R.R.A.; Farag, S.M.; Sobeh, M.; El Raey, M.A. Phytochemical Profiling of lavandula coronopifolia poir. aerial parts extract and its larvicidal, antibacterial, and antibiofilm activity against Pseudomonas aeruginosa. Molecules 2021, 26, 1710. [Google Scholar] [CrossRef] [PubMed]
- Messaoud, C.; Chograni, H.; Boussaid, M. Chemical composition and antioxidant activities of essential oils and methanol extracts of three wild Lavandula L. species. Nat. Prod. Res. 2012, 26, 1976–1984. [Google Scholar] [CrossRef] [PubMed]
- Hassan, W.; El Gamal, A.; El-Sheddy, E.; Al-Oquil, M.; Farshori, N. The chemical composition and antimicrobial activity of the essential oil of Lavandula coronopifolia growing in Saudi Arabia. J. Chem. Pharm. Res. 2014, 6, 515–604. [Google Scholar]
- Elsbaey, M.; Mwakalukwa, R.; Shimizu, K.; Miyamoto, T. Pentacylic triterpenes from Lavandula coronopifolia: Structure related inhibitory activity on α-glucosidase. Nat. Prod. Res. 2021, 35, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Hassan, W.H.; Al-Khedhairy, A.A.; Musarrat, J.; Siddiqui, M.A. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells. Toxicol. Ind. Health 2015, 31, 727–737. [Google Scholar] [CrossRef] [PubMed]
- El-Garf, I.; Grayer, R.J.; Kite, G.C.; Veitch, N.C. Hypolaetin 8-O-glucuronide and related flavonoids from Lavandula coronopifolia and L. pubescens. Biochem. Syst. Ecol. 1999, 27, 843–846. [Google Scholar] [CrossRef]
- El-Gendi, O.D.; Kusano, A.; KUSANO, G. Two new triterpenic glucosidates from Lavandula coronipifolia in Egypt. Nat. Med. = 生薬學雜誌 2000, 54, 38–41. [Google Scholar]
- Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020, 32, 279–295. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.-S.; Kim, J.-W.; Lee, S.-S.; Park, M.-J. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. J. Korean Wood Sci. Technol. 2019, 47, 674–691. [Google Scholar] [CrossRef]
- Khalil, M.A.; Ayoub, S.M.H. Analysis of the essential oil of Vetiveria nigritana (Benth.) Stapf root growing in Sudan. J. Med. Plants Res. 2011, 5, 7006–7010. [Google Scholar]
- Semde, Z.; Koudou, J.; Zongo, C.; Figueredo, G.; Somda, M.K.; Ganou, L.; Traore, A.S. Chemical composition, antioxidant and antimicrobial activities of the essential oil of Vetiveria nigritana (Benth.) Stapf roots from Burkina Faso. J. Appl. Biol. Biotechnol. 2017, 5, 29–36. [Google Scholar]
- 34 Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite produc- tion in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Yagi, S.; Mohammed, A.B.; Tzanova, T.; Schohn, H.; Abdelgadir, H.; Stefanucci, A.; Mollica, A.; Zengin, G. Chemical profile, antiproliferative, antioxidant, and enzyme inhibition activities and docking studies of Cymbopogon schoenanthus (L.) Spreng. and Cymbopogon nervatus (Hochst.) Chiov. from Sudan. J. Food Biochem. 2020, 44, e13107. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, L.F.R.; Portella, R.O.; Bufalo, J.; Marques, M.O.M.; Facanali, R.; Frei, F. Non- Oxygenated sesquiterpenes in the essential oil of Copaifera langsdorffii Desf. increase during the day in the dry season. PLoS ONE 2016, 11, e0149332. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Aghaee, Z. Essential oil constituents, phenolic content and antioxidant activity of Lavandula stricta Delile growing wild in southern Iran. Nat. Prod. Res. 2016, 30, 2253–2257. [Google Scholar] [CrossRef]
- Li, Y.; Chen, F.; Li, Z.; Li, C.; Zhang, Y. Identification and functional characterization of sesquiterpene synthases from Xanthium strumarium. Plant Cell Physiol. 2016, 57, 630–641. [Google Scholar] [CrossRef] [Green Version]
- Sakauchi, H.; Kiyota, H.; Takigawa, S.; Oritani, T.; Kuwahara, S. Enzymatic resolution and odor description of both enantiomers of lavandulol, a fragrance of lavender oil. Chem. Biodivers. 2005, 2, 1183–1186. [Google Scholar] [CrossRef]
- El-Ahmady, S.H.; Ashour, M.L.; Wink, M. Chemical composition and anti-inflammatory activity of the essential oils of Psidium guajava fruits and leaves. J. Essent. Oil Res. 2013, 25, 475–481. [Google Scholar] [CrossRef]
- Braga, P.C.; Dal Sasso, M.; Fonti, E.; Culici, M. Antioxidant activity of bisabolol: Inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems. Pharmacology 2009, 83, 110–115. [Google Scholar] [CrossRef]
- Lin, C.-W.; Yu, C.-W.; Wu, S.-C.; Yih, K.-H. DPPH Free-Radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J. Food Drug Anal. 2009, 17, 386–395. [Google Scholar] [CrossRef]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.-A.; Elfeki, A.; Talarmin, H. Potential protective effects of alpha-pinene against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 93, 961–968. [Google Scholar] [CrossRef]
- Karakaya, S.; Bingol, Z.; Koca, M.; Demirci, B.; Gulcin, I.; Baser, K.H.C. Screening of non-alkaloid acetylcholinesterase and carbonic anhydrase isoenzymes inhibitors of Leiotulus dasyanthus (K. Koch) Pimenov & Ostr.(Apiaceae). J. Essent. Oil Res. 2020, 32, 227–241. [Google Scholar]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Sariri, R.; Seifzadeh, S.; Sajedi, R. Anti-tyrosinase and antioxidant activity of Lavandula sp. extracts. Pharmacol. Online 2009, 3, 319–326. [Google Scholar]
- Boutahiri, S.; Bouhrim, M.; Abidi, C.; Mechchate, H.; Alqahtani, A.S.; Noman, O.M.; Elombo, F.K.; Gressier, B.; Sahpaz, S.; Bnouham, M. Antihyperglycemic Effect of Lavandula pedunculata: In Vivo, In Vitro and Ex Vivo approaches. Pharmaceutics 2021, 13, 2019. [Google Scholar] [CrossRef]
- Ak, G.; Zengin, G.; Ceylan, R.; Fawzi Mahomoodally, M.; Jugreet, S.; Mollica, A.; Stefanucci, A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr. J. 2021, 36, 554–563. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Gerlits, O.; Ho, K.-Y.; Cheng, X.; Blumenthal, D.; Taylor, P.; Kovalevsky, A.; Radić, Z. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem. Biol. Interact. 2019, 309. [Google Scholar] [CrossRef] [PubMed]
- Rosenberry, T.; Brazzolotto, X.; Macdonald, I.; Wandhammer, M.; Trovaslet-Leroy, M.; Darvesh, S.; Nachon, F. Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: A crystallographic, kinetic and calorimetric study. Molecules 2017, 22, 2098. [Google Scholar] [CrossRef]
- Maurus, R.; Begum, A.; Williams, L.K.; Fredriksen, J.R.; Zhang, R.; Withers, S.G.; Brayer, G.D. Alternative catalytic anions differentially modulate human α-amylase activity and specificity. Biochemistry 2008, 47, 3332–3344. [Google Scholar] [CrossRef]
- Ielo, L.; Deri, B.; Germanò, M.P.; Vittorio, S.; Mirabile, S.; Gitto, R.; Rapisarda, A.; Ronsisvalle, S.; Floris, S.; Pazy, Y.; et al. Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. Eur. J. Med. Chem. 2019, 178, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Karade, S.S.; Hill, M.L.; Kiappes, J.L.; Manne, R.; Aakula, B.; Zitzmann, N.; Warfield, K.L.; Treston, A.M.; Mariuzza, R.A. N-Substituted valiolamine derivatives as potent inhibitors of endoplasmic reticulum α-glucosidases I and II with antiviral activity. J. Med. Chem. 2021, 64, 18010–18024. [Google Scholar] [CrossRef] [PubMed]
- Omer, H.A.A.; Caprioli, G.; Abouelenein, D.; Mustafa, A.M.; Uba, A.I.; Ak, G.; Ozturk, R.B.; Zengin, G.; Yagi, S. Phenolic profile, antioxidant and enzyme inhibitory activities of leaves from two Cassia and two Senna species. Molecules 2022, 27, 5590. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, R.B.; Zengin, G.; Sinan, K.I.; Montesano, D.; Zheleva-Dimitrova, D.; Gevrenova, R.; Uba, A.I.; Çakılcıoğlu, U.; Kaplan, A.; Jugreet, S.; et al. Which extraction solvents and methods are more effective in terms of chemical composition and biological activity of Alcea fasciculiflora from Turkey? Molecules 2022, 27, 5011. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Llorent-Martínez, E.J.; Ruiz-Medina, A.; Zengin, G.; Ak, G.; Jugreet, S.; Mahomoodally, M.F.; Emre, G.; Orlando, G.; Libero, M.L.; Acquaviva, A.; et al. New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches. Molecules 2022, 27, 9029. [Google Scholar] [CrossRef]
No. | RIL a | RI b | Compounds | Percentage Occurrence (%) |
---|---|---|---|---|
1 | 1032 | 1023 | α-Pinene | 69.1 |
2 | 1065 | 1057 | α-Fenchene | 0.7 |
3 | 1076 | 1068 | Camphene | 0.4 |
4 | 1118 | 1111 | β-pinene | 3.1 |
5 | 1159 | 1157 | δ-3-Carene | 12.1 |
6 | 1173 | 1174 | Myrcene | 1.1 |
7 | 1203 | 1201 | Limonene | 0.8 |
8 | 1474 | 1473 | Trans-Sabinene hydrate | 11.6 |
Total hydrogenated monoterpenes | 87.3 | |||
Total oxygenated monoterpenes | 11.6 | |||
Total identified | 98.9 |
No. | RIL a | RI b | Compounds | Percentage Occurrence (%) |
---|---|---|---|---|
1 | 1577 | 1576 | α-Cedrene | 2.0 |
2 | 1610 | 1601 | β-Gurjunene | 0.1 |
3 | 1612 | 1616 | β-Caryophyllene | 0.7 |
4 | 1651 | 1652 | Sabina ketone | 0.4 |
5 | 1688 | 1689 | Selina-4,11-diene | 0.5 |
6 | 1786 | 1779 | Ar-Curcumene | 0.3 |
7 | 2008 | 2010 | Caryophyllene oxide | 0.4 |
8 | 2050 | 2050 | (E)-Nerolidol | 0.7 |
9 | 2088 | 2084 | Cubenol | 0.4 |
10 | 2170 | 2162 | β-Bisabolol | 1.7 |
11 | 2182 | 2184 | α-Cedrol | 2.2 |
12 | 2187 | 2192 | T-Cadinol | 1.7 |
13 | 2232 | 2231 | α-Bisabolol | 10.0 |
13 | 2250 | 2257 | β-Eudesmol | 8.3 |
15 | 2291 | 2293 | 1,4-Dimethyl azulene | 3.7 |
16 | 2348 | 2340 | Widdrol | 4.9 |
17 | 2411 | 2413 | 4-Iso propil-6-methyl-1-tetra-1-one | 7.0 |
18 | 2540 | 2436 | Cedr-8-en-15-ol | 28.7 |
19 | 2530 | 2528 | Cedr-8-en-13-ol | 5.3 |
20 | 3000 | 3000 | Triacontane | 20.1 |
Total sesquiterpene hydrocarbons | 4.0 | |||
Total oxygenated sesquiterpenes | 64.3 | |||
Others | 30.8 | |||
Total identified | 99.1 |
No. | RIL a | RI b | Compounds | Percentage Occurrence (%) |
---|---|---|---|---|
1 | 1032 | 1023 | α-Pinene | 5.0 |
2 | 1159 | 1157 | δ-3-Carene | 1.3 |
3 | 1577 | 1576 | α-Cedrene | 1.3 |
4 | 1600 | 1600 | β-Elemene | 1.6 |
5 | 1610 | 1601 | β-Gurjunene | 7.4 |
6 | 1651 | 1652 | Sabina ketone | 2.6 |
7 | 1686 | 1685 | Lavandulol | 26.6 |
8 | 1708 | 1713 | Ledene ((+)-Viridiflorene) | 3.5 |
9 | 1726 | 1727 | Germacrene | 1.7 |
10 | 1727 | 1730 | 7-Epi-1,2-dehydrosesquicineole | 4.8 |
11 | 1773 | 1778 | γ-Cadinene | 1.6 |
12 | 2008 | 2010 | Caryophyllene oxide | 18.4 |
13 | 2104 | 2100 | Viridiflorol | 1.9 |
13 | 2187 | 2192 | T-Cadinol | 1.4 |
15 | 2219 | 2208 | T-Muurolol | 1.1 |
16 | 2232 | 2231 | α-Bisabolol | 3.6 |
17 | 2255 | 2250 | α-Cadinol | 2.4 |
18 | 2298 | 2273 | Capric acid | 3.2 |
19 | 2384 | 2381 | Farnesyl acetone | 8.0 |
Total hydrogenated monoterpenes | 6.3 | |||
Total oxygenated monoterpenes | 26.6 | |||
Total sesquiterpene hydrocarbons | 17.1 | |||
Total oxygenated sesquiterpenes | 41.5 | |||
Others | 5.8 | |||
Total identified | 97.3 |
Plant Name | DPPH (mg TE */g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | MCA (mg EDTAE **/g) | PBD (mmol TE/g) |
---|---|---|---|---|---|---|
C. obtusa fruit | na | 20.6 ± 0.9 a | 125.1 ± 3.2 b | 71.0 ± 0.6 b | 37.7 ± 1.9 a | 51.5 ± 0.1 a |
C. nigritanus root | 1.4 ± 0.3 a | 12.8 ± 0.9 c | 188.4 ± 0.7 a | 120.1 ± 0.3 a | 39.2 ± 2.9 a | 19.5 ± 0.0 b |
L. coronopifolia aerial part | 0.6 ± 0.1 b | 17.5 ± 1.0 b | 73.5 ± 1.9 c | 30.2 ± 0.5 c | 33.0 ± 0.7 b | 7.2 ± 0.2 c |
Plant Name | AChE (mg GALAE/g) * | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) ** | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) *** |
---|---|---|---|---|---|
C. obtusa fruit | 2.5 ± 0.1 a | 2.2 ± 0.2 b | na | 0.5 ± 0.0 a | na |
C. nigritanus root | na | 3.3 ± 0.0 a | na | 0.5 ± 0.0 b | na |
L. coronopifolia aerial part | 1.8 ± 0.1 b | na | 34.3 ± 0.7 | 0.5 ± 0.0 a | 1.4 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltayeb, L.M.H.; Yagi, S.; Mohamed, H.M.M.; Zengin, G.; Shariati, M.A.; Rebezov, M.; Uba, A.I.; Lorenzo, J.M. Essential Oils Composition and Biological Activity of Chamaecyparis obtusa, Chrysopogon nigritanus and Lavandula coronopifolia Grown Wild in Sudan. Molecules 2023, 28, 1005. https://doi.org/10.3390/molecules28031005
Eltayeb LMH, Yagi S, Mohamed HMM, Zengin G, Shariati MA, Rebezov M, Uba AI, Lorenzo JM. Essential Oils Composition and Biological Activity of Chamaecyparis obtusa, Chrysopogon nigritanus and Lavandula coronopifolia Grown Wild in Sudan. Molecules. 2023; 28(3):1005. https://doi.org/10.3390/molecules28031005
Chicago/Turabian StyleEltayeb, Loai M. H., Sakina Yagi, Hanan M. M. Mohamed, Gokhan Zengin, Mohammad Ali Shariati, Maksim Rebezov, Abdullah Ibrahim Uba, and Jose Manuel Lorenzo. 2023. "Essential Oils Composition and Biological Activity of Chamaecyparis obtusa, Chrysopogon nigritanus and Lavandula coronopifolia Grown Wild in Sudan" Molecules 28, no. 3: 1005. https://doi.org/10.3390/molecules28031005
APA StyleEltayeb, L. M. H., Yagi, S., Mohamed, H. M. M., Zengin, G., Shariati, M. A., Rebezov, M., Uba, A. I., & Lorenzo, J. M. (2023). Essential Oils Composition and Biological Activity of Chamaecyparis obtusa, Chrysopogon nigritanus and Lavandula coronopifolia Grown Wild in Sudan. Molecules, 28(3), 1005. https://doi.org/10.3390/molecules28031005