A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of RP Content without ZB
2.2. Influences of RP Content on ZB-One
2.3. Influence of RP Content on ZB-Two
2.4. Reducing EBM Content in EVA/EXACT 8201/CLNA08400 Formulations—One
2.5. Reducing EBM Content in EVA/EXAT 8201/CLNA08400 Formulations—Two
3. Experimental Section
3.1. Materials
3.2. Methods
3.3. Characterizations
4. Conclusions
- (1)
- Influence of RP content without ZB
- (2)
- Influences of RP Content on ZB
- (3)
- Reducing EBM Content in EVA/EXAT 8201/CLNA08400 Formulations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ren, S.J.; Sun, Q.H. The Law of Insulation Failure of ZR-VV Cables under the Circumstances of Different Thermal Environments. Procedia Eng. 2016, 135, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Courty, L.; Garo, J.P. External heating of electrical cables and auto-ignition investigation. J. Hazard. Mater. 2017, 321, 528–536. [Google Scholar] [CrossRef]
- Witkowski, A.; Girardin, B.; Foersth, M.; Hewitt, F.; Fontaine, G.; Duquesne, S.; Bourbigot, S.; Hull, T.R. Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials. Polym. Degrad. Stab. 2015, 113, 208–217. [Google Scholar] [CrossRef]
- Meinier, R.; Sonnier, R. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater. 2018, 135, 3069–3083. [Google Scholar] [CrossRef] [PubMed]
- Martinka, J.; Rantuch, P.; Sulová, J.; Martinka, F. Assessing the fire risk of electrical cables using a cone calorimeter. J. Therm. Anal. Calorim. 2019, 342, 306–316. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, S.; Liu, G. A THEIC-based polyphosphate melamine intumescent flame retardant and its flame retardancy properties for polylactide. J. Anal. Appl. Pyrolysis 2016, 122, 24–34. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Ding, A.; Ni, A.; Chen, H. Flame retardancy and mechanical properties of glass fibre reinforced polyethylene composites filled with novel intumescent flame retardant. Compos. Part B 2019, 179, 107555. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, K.; Hu, Y.; Gui, Z. Thermal degradation of flame-retarded polyethylene/magnesium hydroxide/poly (ethylene-co-propylene) elastomer composites. Polym. Int. 2003, 52, 1016–1020. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, B.; Fan, W.; Huang, P. Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. J. Appl. Polym. Sci. 2001, 81, 206–214. [Google Scholar] [CrossRef]
- Ahamad, A.; Patil, C.B.; Mahulikar, P.P.; Hundiwale, D.G.; Gite, V.V. Studies on the flame retardant, mechanical and thermal properties of ternary magnesium hydroxide/clay/EVA nanocomposites. J. Elastomers Plast. 2012, 44, 251–261. [Google Scholar] [CrossRef]
- Baldissera, A.F.; Silveira, M.R.; Beraldo, C.H.; Tocchetto, N.S.; Ferreira, C.A. Evaluation of the expandable graphite/polyaniline combination in intumescent coatings. Synth. Met. 2019, 256, 116141. [Google Scholar] [CrossRef]
- Yuan, K.; Zhou, Y.; Sun, W.; Fang, X.; Zhang, Z. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability. Compos. Sci. Technol. 2018, 156, 78–86. [Google Scholar] [CrossRef]
- Makhlouf, G.; Hassan, M.; Nour, M.; Abdel-Monem, Y.K.; Abdelkhalik, A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J. Therm. Anal. Calorim. 2017, 130, 1031–1041. [Google Scholar] [CrossRef]
- Makhlouf, G.; Hassan, M.; Nour, M.; Abdel-Monem, Y.K.; Abdelkhalik, A. A novel intumescent flame retardant: Synthesis and its application for linear low-density polyethylene. Arabian J. Sci. Eng. 2017, 42, 4339–4349. [Google Scholar] [CrossRef]
- Li, Y.; Qi, L.; Liu, Y.; Qiao, J.; Wang, M.; Liu, X.; Li, S. Recent advances in halogen-free flame retardants for polyolefin cable sheath materials. Polymers 2022, 14, 2876. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chai, W.; Liu, Y.; Su, X.; Liao, C.; Gao, M.; Zheng, Z. Facile fabrication of starch-based, synergistic intumescent and halogen-free flame retardant strategy with expandable graphite in enhancing the fire safety of polypropylene. Ind. Crops Prod. 2022, 184, 115002. [Google Scholar] [CrossRef]
- Morgan, A.A.B.; Wilkie, C.A. Practical issues and future trends in polymer nanocomposite flammability research. In Flame Retardant Polymer Nanocomposites; Morgan, A.A.B., Wilkie, C.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 355–356. [Google Scholar]
- Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Zhang, J.; Hereid, J.; Hagen, M.; Bakirtzis, D.; Delichatsios, M.A.; Fina, A.; Castrovinci, A.; Camino, G.; Samyn, F.; Bourbigot, S. Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVAandLDPE. Fire Saf. J. 2009, 44, 504–513. [Google Scholar] [CrossRef]
- Sanchez-Olivares, G.; Sanchez-Solis, A.; Manero, O.; Pérez-Chávez, R.; Jaramillo, M.; Alongi, J.; Carosio, F.J.M. Improving Mechanical Properties and Reaction to Fire of EVA/LLDPE Blends for Cable Applications with Melamine Triazine and Bentonite Clay. Materials 2019, 12, 2393. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Olivares, G.; Sanchez-Solis, A.; Calderas, F.; Medina-Torres, L.; Herrera-Valencia, E.E.; Castro-Aranda, J.I.; Manero, O.; Di Blasio, A.; Alongi, J. Flame retardant high density polyethylene optimized by on-line ultrasound extrusion. Polym. Degrad. Stab. 2013, 98, 2153–2160. [Google Scholar] [CrossRef]
- Basfar, A.A. Advanced Halogen Free Flame Retardant Composition for Heat Shrinkable Material and Method of Making the Same. U.S. Patent No. 20140018481A1, 16 January 2014. [Google Scholar]
- Basfar, A.A.; Bae, H.J. Influence of magnesium hydroxide and huntite hydromagnesite on mechanical properties of ethylene vinyl acetate compounds cross-linked by dicumyl peroxide and ionizing radiation. J. Fire Sci. 2010, 28, 161–180. [Google Scholar] [CrossRef]
- Caramitu, A.; Zaharescu, T.; Mitrea, S.; Tsakiris, V.; Sbarcea, G.; Patroi, D.; Avadanei, L. Study Regarding Mechanical, Thermal and Structural Properties of Some Elastomeric Polyamide Blends Destined to Cable Insulating. In Proceedings of the 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 28–29 November 2014; IEEE: Piscataway, NI, USA, 2014; pp. 1–6. [Google Scholar]
- Kuila, T.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym. Test. 2012, 31, 282–289. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; He, M.; Guo, S.; Luo, Z.; Lu, S. Effects of zinc borate and microcapsulated red phosphorus on mechanical properties and flame retardancy of polypropylene/magnesium hydroxide composites. J. Polym. Res. 2009, 16, 357–362. [Google Scholar] [CrossRef]
- Savas, L.A.; Deniz, T.K.; Tayfun, U.; Dogan, M. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polym. Degrad. Stab. 2017, 135, 121–129. [Google Scholar]
- Li, D.; Li, J.; Hu, X.; Li, L. Effects of ethylene vinyl acetate content on physical and mechanical properties of wood-plastic composites. BioResources 2012, 7, 2916–2932. [Google Scholar]
- Dike, A.S.; Yilmazer, U. Mechanical, thermal and rheological characterization of polystyrene/organoclay nanocomposites containing aliphatic elastomer modifiers. Mater. Res. Express 2020, 7, 015055. [Google Scholar] [CrossRef]
- Huang, W.; Wang, K.; Tu, C.; Xu, X.; Tian, Q.; Ma, C.; Fu, Q.; Yan, W. Synergistic effects of dopo-based derivative and organo-montmorillonite on flame retardancy, thermal stability and mechanical properties of polypropylene. Polymers 2022, 14, 2372. [Google Scholar] [CrossRef]
- Liang, J.; Feng, J.; Tsui, C.P.; Tang, C.Y.; Liu, D.; Zhang, S.; Huang, W. Mechanical properties and flame-retardant of PP/MRP/Mg(OH)2/Al(OH)3 composites. Compos. Part B 2015, 71, 74–81. [Google Scholar] [CrossRef]
- Faghihi, J.; Morshedian, J.; Ahmadi, S. Effect of fillers on the fire retardant properties of intumescent polypropylene compounds. Polym. Polym. Compos. 2008, 16, 315–322. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Chen, W.; Huang, J.; Liu, H. Flame retardancy and thermal degradation of intumescent flame retardant EVA composite with efficient charring agent. J. Anal. Appl. Pyrolysis 2015, 113, 266–273. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.H.; Shim, S.B.; Lee, J.E. Mechanical properties of polypropylene-based flame retardant composites by surface modification of flame retardants. Polymers 2022, 14, 3524. [Google Scholar] [CrossRef] [PubMed]
- Hobson, J.; Yin, G.Z.; Yu, X.; Zhou, X.; Prolongo, S.G.; Ao, X.; Wang, D.Y. Synergistic effect of cerium oxide for improving the fire-retardant, mechanical and ultraviolet-blocking properties of EVA/magnesium hydroxide composites. Materials 2022, 15, 5867. [Google Scholar] [CrossRef] [PubMed]
- Sain, M.; Park, S.H.; Suhara, F.; Law, S. Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 2004, 83, 363–367. [Google Scholar] [CrossRef]
- Zaikov, G.E.; Lomakin, S.M. Ecological issue of polymer flame retardancy. J. Appl. Polym. Sci. 2002, 86, 2449–2462. [Google Scholar] [CrossRef]
- Nie, S.B.; Hu, Y.; Song, L.; He, Q.L.; Yang, D.D.; Chen, H. Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym. Adv. Technol. 2008, 19, 1077–1083. [Google Scholar] [CrossRef]
- Si, G.; Li, D.; You, Y.; Hu, X. Investigation of the influence of red phosphorus, expansible graphite and zinc borate on flame retardancy and wear performance of glass fiber reinforced PA6 composites. Polym. Compos. 2017, 38, 2090–2097. [Google Scholar] [CrossRef]
- Yue, L.; Li, J.; Zhou, X.; Sun, Y.; Gao, M.; Zhu, T.; Zhang, X.; Feng, T.; Shi, Z.; Liu, Y. Flame retardancy and thermal behavior of an unsaturated polyester modified with kaolinite–urea intercalation complexes. Molecules 2020, 25, 4731. [Google Scholar] [CrossRef]
- Shen, J.; Liang, J.; Lin, X.; Lin, H.; Yu, J.; Wang, S. The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering. Polymers 2021, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.; Zhang, W.; Ahmed, S.; Ali, M.; Xu, S. Effects of intumescent flame retardant system consisting of tris (2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites. Compos. Part A 2018, 112, 444–451. [Google Scholar] [CrossRef]
- Li, S.; Li, B. Effect of elastomer on flame retardancy, thermal degradation, and mechanical properties of intumescent flame-retardant polyethylene. J. Elastomers Plast. 2011, 43, 257–273. [Google Scholar]
- Niu, M.; Zhang, Z.; Wei, Z.; Wang, W. Effect of a novel flame retardant on the mechanical, thermal and combustion properties of poly (lactic acid). Polymers 2020, 12, 2407. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, H.; Shu, Z.; Lu, L. Impact of selective dispersion of intumescent flame retardant on properties of polypropylene blends. J. Mater. Sci. 2017, 52, 3269–3280. [Google Scholar] [CrossRef]
- Basfar, A.A.; Hun, J.B. Clean Flame Retardant Insulation Composition to Enhance Mechanical Properties and Flame Retardancy for Wire and Cable. U.S. Patent No. 8,173,255, 8 May 2012. [Google Scholar]
Content/Property | Ingredients | AP-587 | AP-662 | AP-663 | AP-664 | AP-665 |
---|---|---|---|---|---|---|
Matrix polymers | EVA (%) | 80 | 80 | 80 | 80 | 80 |
LLDPE 118W (%) | 20 | 20 | 20 | 20 | 20 | |
Flame retardants | MH (phr) | 120 | 119 | 118 | 117 | 116 |
RP (phr) | - | 1 | 2 | 3 | 4 | |
Coloring agent | Carbon black (phr) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Antioxidant | Naugard Q (phr) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Room temperature | Tensile strength (MPa) | 12.0 ± 0.3 | 12.5 ± 0.2 | 12.1 ± 0.1 | 12.1 ± 0.2 | 12.1 ± 0.0 |
Elongation at break (%) | 160 ± 16 | 175 ± 7 | 162 ± 13 | 162 ± 9 | 159 ± 9 | |
LOI (%) | 38.5 | 42.5 | 43.5 | 45.5 | 45.5 | |
UL-94 test | - | V-2 | V-2 | V-2 | V-1 | |
Volume resistivity (Ωcm) | - | 1.6 × 1015 | 1.6 × 1015 | 1.5 × 1015 | 1.6 × 1015 |
Content/Property | Ingredients | AP-651 | AP-670 | AP-671 | AP-672 | AP-673 |
---|---|---|---|---|---|---|
EVA (%) | 75 | 75 | 75 | 75 | 75 | |
Matrix polymers | EXACT 8201 (%) | 10 | 10 | 10 | 10 | 10 |
CLNA-8400 (%) | 6 | 6 | 6 | 6 | 6 | |
EBM (%) | 9 | 9 | 9 | 9 | 9 | |
MH (phr) | 120 | 114 | 114 | 114 | 114 | |
Flame retardants | RP (phr) | - | 2 | 3 | 4 | 5 |
ZB (phr) | - | 6 | 6 | 6 | 6 | |
Coloring agent | Carbon black (phr) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Antioxidant | Naugard Q (phr) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Room temperature | Tensile strength (MPa) | 13.7 ± 0.2 | 13.6 ± 0.2 | 13.3 ± 0.2 | 12.9 ± 0.4 | 12.8 ± 0.4 |
Elongation at break (%) | 228 ± 3 | 194 ± 10 | 198 ± 7 | 187 ± 15 | 194 ± 4 | |
Thermal aging at 100 °C for 168 h | Tensile strength (MPa) | 13.5 ± 0.1 | 13.6 ± 0.8 | 13.0 ± 0.3 | 13.6 ± 0.3 | 13.4 ± 0.2 |
Retention of tensile strength (%) | 98.5 | 100 | 97.7 | 105.4 | 104.7 | |
Elongation at break (%) | 208 ± 9 | 186 ± 7 | 182 ± 6 | 180 ± 7 | 176 ± 9 | |
Retention of elongation at break (%) | 91.2 | 95.9 | 91.9 | 96.3 | 90.7 | |
LOI (%) | 29.5 | 31.5 | 32.5 | 33.5 | 34.5 | |
UL-94 test | - | V-0 | V-0 | V-0 | V-0 | |
Volume resistivity (Ωcm) | - | 7.2 × 1013 | 7.3 × 1013 | 7.2 × 1013 | 7.3 × 1013 | |
Cone calorimeter | TTI (s) | 28 | NP | 27 | NP | 28 |
PHRR (KW/m2) | 243 | 275 | 214 | |||
FPI (m2s/KW) | 0.115 | 0.098 | 0.131 |
Content/Property | Ingredients | AP-656 | AP-674 | AP-675 | AP-676 | AP-677 |
---|---|---|---|---|---|---|
EVA (%) | 70 | 70 | 70 | 70 | 70 | |
Matrix polymers | Tafmer DF805 (%) | 15 | 15 | 15 | 15 | 15 |
CLNA-8400 (%) | 6 | 6 | 6 | 6 | 6 | |
EBM (%) | 9 | 9 | 9 | 9 | 9 | |
MH (phr) | 120 | 114 | 114 | 114 | 114 | |
Flame retardants | RP (phr) | - | 2 | 3 | 4 | 5 |
ZB (phr) | - | 6 | 6 | 6 | 6 | |
Coloring agent | Carbon black (phr) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Antioxidant | Naugard Q (phr) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Room temperature | Tensile strength (MPa) | 13.9 ± 0.4 | 13.3 ± 0.1 | 13.5 ± 0.4 | 13.3 ± 0.0 | 13.3 ± 0.2 |
Elongation at break (%) | 222 ± 11 | 212 ± 8 | 211 ± 6 | 193 ± 17 | 208 ± 10 | |
Thermal agingat 100 °C for 168 h | Tensile strength (MPa) | 13.2 ± 0.1 | 13.4 ± 0.2 | 13.7 ± 0.3 | 13.6 ± 0.3 | 14.0 ± 0.4 |
Retention of tensile strength (%) | 95.0 | 100.7 | 101.5 | 102.3 | 105.3 | |
Elongation at break (%) | 229 ± 9 | 187 ± 7 | 192 ± 3 | 190 ± 3 | 183 ± 7 | |
Retention of elongation at break (%) | 103.2 | 88.2 | 91.0 | 98.4 | 88.0 | |
LOI (%) | 30.0 | 32.0 | 32.5 | 33.0 | 34.0 | |
UL-94 test | V-0 | V-0 | V-0 | V-0 | ||
Volume resistivity (Ωcm) | 7.4 × 1013 | 8.0 × 1013 | 9.1 × 1013 | 8.4 × 1013 | ||
Cone calorimeter | TTI (s) | 29 | NP | 28 | NP | 27 |
PHRR (KW/m2) | 291 | 224 | 215 | |||
FPI (m2s/KW) | 0.100 | 0.125 | 0.126 |
Content/Property | Ingredients | AP-673 | AP-686 | AP-687 | AP-688 | AP-689 |
---|---|---|---|---|---|---|
EVA (%) | 75 | 75 | 75 | 75 | 75 | |
Matrix polymers | EXACT 8201 (%) | 10 | 10 | 10 | 10 | 10 |
CLNA-8400 (%) | 6 | 8 | 10 | 12 | 14 | |
EBM (%) | 9 | 7 | 5 | 3 | 1 | |
MH (phr) | 114 | 114 | 114 | 114 | 114 | |
Flame retardants | RP (phr) | 5 | 5 | 5 | 5 | 5 |
ZB (phr) | 6 | 6 | 6 | 6 | 6 | |
Coloring agent | Carbon black (phr) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Antioxidant | Naugard Q (phr) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Room temperature | Tensile strength (MPa) | 12.8 ± 0.4 | 12.6 ± 0.5 | 11.6 ± 0.5 | 11.4 ± 0.7 | 11.4 ± 0.3 |
Elongation at break (%) | 194 ± 4 | 184 ± 7 | 186 ± 5 | 163 ± 17 | 152 ± 11 | |
Tensile strength (MPa) | 13.4 ± 0.2 | 12.5 ± 0.2 | 11.9 ± 0.1 | 11.5 ± 0.2 | 11.4 ± 0.2 | |
Thermal aging at 100 °C for 168 h | Retention of tensile strength (%) | 105 | 99 | 103 | 101 | 100 |
Elongation at break (%) | 176 ± 9 | 183 ± 4 | 168 ± 15 | 173 ± 8 | 159 ± 10 | |
Retention of elongation at break (%) | 91 | 99 | 90 | 106 | 105 | |
LOI (%) | 34.5 | 35.5 | 35.5 | 36.0 | 37.5 | |
UL-94 test | V-0 | V-0 | V-0 | V-0 | V-0 | |
Volume resistivity (Ωcm) | 7.3 × 1013 | 7.3 × 1013 | 1.6 × 1014 | 3.1 × 1014 | 1.0 × 1015 | |
TTI (s) | 28 | NP | 27 | NP | 26 | |
Cone calorimeter | PHRR (KW/m2) | 214 | 216 | 265 | ||
FPI (m2s/KW) | 0.131 | 0.125 | 0.098 |
Content/Property | Ingredients | AP-730 | AP-731 | AP-732 | AP-733 | AP-734 |
---|---|---|---|---|---|---|
EVA (%) | 75 | 75 | 75 | 75 | 75 | |
Matrix polymers | EXACT 8201 (%) | 10 | 10 | 10 | 10 | 10 |
CLNA-8400 (%) | 13 | 11 | 9 | 7 | 6 | |
EBM (%) | 2 | 4 | 6 | 8 | 9 | |
MH (phr) | 114 | 114 | 114 | 114 | 114 | |
Flame retardants | RP (phr) | 5 | 5 | 5 | 5 | 5 |
ZB (phr) | 6 | 6 | 6 | 6 | 6 | |
Coloring agent | Carbon black (phr) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Antioxidant | Naugard Q (phr) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Room temperature | Tensile strength (MPa) | 12.0 ± 0.1 | 12.3 ± 0.1 | 12.5 ± 0.2 | 13.3 ± 0.2 | 12.8 ± 0.4 |
Elongation at break (%) | 170 ± 6 | 186 ± 14 | 184 ± 4 | 188 ± 7 | 194 ± 4 | |
Thermal aging at 100 °C for 168 h | Tensile strength (MPa) | 10.5 ± 0.1 | 10.7 ± 0.3 | 10.9 ± 0.3 | 11.5 ± 0.2 | 13.4 ± 0.2 |
Retention of tensile strength (%) | 87 | 87 | 87 | 86 | 105 | |
Elongation at break (%) | 164 ± 2 | 187 ± 9 | 183 ± 10 | 196 ± 4 | 176 ± 9 | |
Retention of elongation at break (%) | 96 | 100 | 99 | 104 | 91 | |
LOI (%) | 36.0 | 35.0 | 35.0 | 35.0 | 34.5 | |
UL-94 test | V-0 | V-0 | V-0 | V-0 | V-0 | |
Volume resistivity (Ωcm) | 8.3 × 1014 | 1.6 × 1014 | 7.9 × 1013 | 6.6 × 1013 | 7.3 × 1013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alosime, E.M.; Basfar, A.A. A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends. Molecules 2023, 28, 1023. https://doi.org/10.3390/molecules28031023
Alosime EM, Basfar AA. A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends. Molecules. 2023; 28(3):1023. https://doi.org/10.3390/molecules28031023
Chicago/Turabian StyleAlosime, Eid M., and Ahmed A. Basfar. 2023. "A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends" Molecules 28, no. 3: 1023. https://doi.org/10.3390/molecules28031023
APA StyleAlosime, E. M., & Basfar, A. A. (2023). A Systematic Investigation on the Influence of Intumescent Flame Retardants on the Properties of Ethylene Vinyl Acetate (EVA)/Liner Low Density Polyethylene (LLDPE) Blends. Molecules, 28(3), 1023. https://doi.org/10.3390/molecules28031023