Zinc-Catalyzed Enantioselective [3 + 3] Annulation for Synthesis of Chiral Spiro[indoline-3,4′-thiopyrano[2,3-b]indole] Derivatives
Abstract
:1. Introduction
2. Results
2.1. Optimization of Reaction Conditions
2.2. Substrate Scope
2.3. X-ray Diffraction Analysis
2.4. Gram-Scale Reaction and Derivation
2.5. Plausible Mechanism
3. Conclusions
4. Materials and Methods
4.1. General Information
4.2. Materials
4.3. Procedure for the Asymmetric Synthesis of Compound 3
4.4. Procedure for the Scaled-Up Synthesis of Compound 3a
4.5. Procedure for the Synthesis of Compound 4
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chauhan, P.; Mahajan, S.; Enders, D. Organocatalytic Carbon-Sulfur Bond-Forming Reactions. Chem. Rev. 2014, 114, 8807–8864. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, K.C.; Ponra, S.; Ghosh, T. Green approach to highly functionalized thiopyrano derivatives via domino multi-component reaction in water. RSC Adv. 2012, 2, 1144–1152. [Google Scholar] [CrossRef]
- Yang, Y.J.; Yang, Y.N.; Jiang, J.S.; Feng, Z.M.; Liu, H.Y.; Pan, X.D.; Zhang, P.C. Synthesis and cytotoxic activity of heterocycle-substituted phthalimide derivatives. Chin. Chem. Lett. 2010, 21, 902–904. [Google Scholar] [CrossRef]
- Takada, S.; Makisumi, Y. Studies on Fused Indoles. I. Novel Synthesis of 4-Aminomethyltetrahydrothiopyrano [2,3-b] indoles through a Thio-Claisen Rearrangement. Chem. Pharm. Bull. 1984, 32, 872–876. [Google Scholar] [CrossRef] [Green Version]
- Takada, S.; Ishizuka, N.; Sasatani, T.; Makisumi, Y.; Jyoyama, H.; Hatakeyama, H.; Asanuma, F.; Hirose, K. Studies on Fused Indoles. II. Structural Modifications and Analgesic Activity of 4-Aminomethyltetrahydrothiopyrano [2,3-b] indoles. Chem. Pharm. Bull. 1984, 32, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Ishizuka, N.; Sato, T.; Makisumi, Y. Indole Grignard Reaction. III. Synthesis, Crystal Structure, and Aalgesic Activity of (R)-and (S)-3-Amino-2, 3, 4, 9-tetrahydrothiopyrano [2,3-b]indoles. Chem. Pharm. Bull. 1990, 38, 1396–1399. [Google Scholar] [CrossRef] [Green Version]
- Mei, G.-J.; Shi, F. Catalytic Asymmetric Synthesis of Spirooxindoles: Recent Developments. Chem. Commun. 2018, 54, 6607–6621. [Google Scholar] [CrossRef]
- Singh, G.S.; Desta, Z.Y. Isatins as Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks. Chem. Rev. 2012, 112, 6104–6155. [Google Scholar] [CrossRef]
- Gicquel, M.; Gomez, C.; Garcia Alvarez, M.C.; Pamlard, O.; Guérineau, V.; Jacquet, E.; Bignon, J.; Voituriez, A.; Marinetti, A. Inhibition of p53-Murine Double Minute 2 (MDM2) Interactions with 3,3′-Spirocyclopentene Oxindole Derivatives. J. Med. Chem. 2018, 61, 9386–9392. [Google Scholar] [CrossRef]
- Arun, Y.; Saranraj, K.; Balachandran, C.; Perumal, P.T. Novel spirooxindole-pyrrolidine compounds: Synthesis, anticancer and molecular docking studies. Eur. J. Med. Chem. 2014, 74, 50–64. [Google Scholar] [CrossRef]
- Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P.T. Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur. J. Med. Chem. 2012, 51, 79–91. [Google Scholar] [CrossRef] [PubMed]
- You, S.L.; Cai, Q.; Zeng, M. Chiral Brønsted acid catalyzed Friedel-Crafts alkylation reactions. Chem. Soc. Rev. 2009, 38, 2190–2201. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, T.B.; Jørgensen, K.A. Catalytic Asymmetric Friedel-Crafts Alkylation Reactions—Copper Showed the Way. Chem. Rev. 2008, 108, 2903–2915. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, J.; Gu, W.; Li, N.; Zha, Z.; Wang, Z. Lewis acid-catalyzed enantioselective Friedel-Crafts reaction of pyrazole-4,5-diones with β-naphthol. Chin. Chem. Lett. 2022, 33, 4048–4052. [Google Scholar] [CrossRef]
- Bao, R.L.-Y.; Shi, L.; Fu, K. Highly enantioselective construction of CF3-bearing all-carbon quaternary stereocenters: Chiral spiro-fused bisoxazoline ligands with 1,1′-binaphthyl sidearm for asymmetric Michael-type Friedel-Crafts reaction. Chin. Chem. Lett. 2022, 33, 2415–2419. [Google Scholar] [CrossRef]
- Trost, B.M.; Bartlett, M.J. ProPhenol-Catalyzed Asymmetric Additions by Spontaneously Assembled Dinuclear Main Group Metal Complexes. Acc. Chem. Res. 2015, 48, 688–701. [Google Scholar] [CrossRef] [Green Version]
- Trost, B.M.; Hung, C.I.J.; Mata, G. Dinuclear Metal-ProPhenol Catalysts: Development and Synthetic Applications. Angew. Chem. Int. Ed. Engl. 2020, 59, 4240–4261. [Google Scholar] [CrossRef]
- Sokolovicz, Y.C.A.; Buonerba, A.; Capacchione, C.; Dagorne, S.; Grassi, A. Perfluoroaryl Zinc Catalysts Active in Cyclohexene Oxide Homopolymerization and Alternating Copolymerization with Carbon Dioxide. Catalysts 2022, 12, 970. [Google Scholar] [CrossRef]
- Trost, B.M.; Müller, C. Asymmetric Friedel-Crafts Alkylation of Pyrroles with Nitroalkenes Using a Dinuclear Zinc Catalyst. J. Am. Chem. Soc. 2008, 130, 2438–2439. [Google Scholar] [CrossRef]
- Hua, Y.-Z.; Han, X.-W.; Yang, X.-C.; Song, X.; Wang, M.-C.; Chang, J.-B. Enantioselective Friedel-Crafts Alkylation of Pyrrole with Chalcones Catalyzed by a Dinuclear Zinc Catalyst. J. Org. Chem. 2014, 79, 11690–11699. [Google Scholar] [CrossRef]
- Wang, B.L.; Li, N.K.; Zhang, J.X.; Liu, G.G.; Shen, Q.; Wang, X.W. Dinuclear zinc catalyzed asymmetric Friedel-Crafts amidoalkylation of indoles with aryl aldimines. Org. Biomol. Chem. 2011, 9, 2614–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-W.; Hua, Y.-Z.; Wang, M.-C. Synthesis of 3-Indolylglycine Derivatives via Dinuclear Zinc Catalytic Asymmetric Friedel-Crafts Alkylation Reaction. J. Org. Chem. 2016, 81, 9227–9234. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.Z.; Chen, J.W.; Yang, H.; Wang, M.C. Asymmetric Friedel-Crafts Alkylation of Indoles with Trifluoromethyl Pyruvate Catalyzed by a Dinuclear Zinc Catalyst. J. Org. Chem. 2018, 83, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Jia, S.-K.; Geng, Y.-H.; Han, J.-J.; Hua, Y.-Z.; Wang, M.-C. Dinuclear zinc-catalyzed asymmetric Friedel-Crafts alkylation/cyclization of 3-aminophenols with α,α-dicyanoolefins. Chem. Commun. 2021, 57, 9854–9857. [Google Scholar] [CrossRef]
- Jagodziński, T.S. Thioamides as Useful Synthons in the Synthesis of Heterocycles. Chem. Rev. 2003, 103, 197–227. [Google Scholar] [CrossRef]
- Iwata, M.; Yazaki, R.; Suzuki, Y.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-Polyols. J. Am. Chem. Soc. 2009, 131, 18244–18245. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yazaki, R.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Mannich-Type Reaction of Thioamides. Angew. Chem. Int. Ed. Engl. 2009, 48, 5026–5029. [Google Scholar] [CrossRef]
- Iwata, M.; Yazaki, R.; Chen, I.-H.; Sureshkumar, D.; Kumagai, N.; Shibasaki, M. Direct Catalytic Enantio- and Diastereoselective Aldol Reaction of Thioamides. J. Am. Chem. Soc. 2011, 133, 5554–5560. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yazaki, R.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Intramolecular Conjugate Addition of Thioamide to α,β-Unsaturated Esters. Chem. Eur. J. 2011, 17, 11998–12001. [Google Scholar] [CrossRef]
- Sureshkumar, D.; Kawato, Y.; Iwata, M.; Kumagai, N.; Shibasaki, M. Anti-Selective Direct Catalytic Asymmetric Aldol Reaction of Thiolactams. Org. Lett. 2012, 14, 3108–3111. [Google Scholar] [CrossRef]
- Majumdar, N.; Saito, A.; Yin, L.; Kumagai, N.; Shibasaki, M. Direct Catalytic Asymmetric Conjugate Addition of Saturated and Unsaturated Thioamides. Org. Lett. 2015, 17, 3362–3365. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Kumagai, N.; Shibasaki, M. Managing the retro-pathway in direct catalytic asymmetric aldol reactions of thioamides. Chem. Sci. 2015, 6, 6124–6132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alagiri, K.; Lin, S.; Kumagai, N.; Shibasaki, M. Iterative Direct Aldol Strategy for Polypropionates: Enantioselective Total Synthesis of (−)-Membrenone A and B. Org. Lett. 2014, 16, 5301–5303. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Hazra, C.; Baiju, T.V.; Namboothiri, I.N.N. Synthesis of tetrahydrothiopyrano[2,3-b]indoles via [3 + 3] annulation of nitroallylic acetates with indoline-2-thiones. New J. Chem. 2020, 44, 1389–1399. [Google Scholar] [CrossRef]
- Ni, C.-J.; Zhang, Y.-W.; Hou, Y.-D.; Tong, X.-F. Access to thiopyrano[2,3-b]indole via tertiary amine-catalyzed formal (3 + 3) annulations of β′-acetoxy allenoates with indoline-2-thiones. Chem. Commun. 2017, 53, 2567–2570. [Google Scholar] [CrossRef]
- Majumdar, K.; Ponra, S.; Nandi, R.K. One-pot efficient green synthesis of spirooxindole-annulated thiopyran derivatives via Knoevenagel condensation followed by Michael addition. Tetrahedron Lett. 2012, 53, 1732–1737. [Google Scholar] [CrossRef]
- Chen, X.; Qi, Z.-H.; Zhang, S.-Y.; Kong, L.-P.; Wang, Y.; Wang, X.-W. Enantioselective Construction of Functionalized Thiopyrano-Indole Annulated Heterocycles via a Formal Thio [3 + 3]-Cyclization. Org. Lett. 2015, 17, 42–45. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.-Q.; Yin, S.-J.; Li, H.-Y.; Zhou, W.-Q.; Wang, X.-W. Asymmetric Construction of Spiro[thiopyranoindolebenzoisothiazole] Scaffold via a Formal [3 + 3] Spiroannulation. Org. Lett. 2015, 17, 4188–4191. [Google Scholar] [CrossRef]
- Sun, X.; Fei, J.; Zou, C.; Lu, M.; Ye, J. Remote stereocontrolled asymmetric 1,6-addition/1,4-addition cascade reactions between cyclic dienones and 2-indolinethiones. RSC Adv. 2016, 6, 106676–106679. [Google Scholar] [CrossRef]
- Chen, S.; Pan, J.; Wang, Y.; Zhou, Z. ChemInform Abstract: Stereocontrolled Construction of the 3,4-Dihydrothiacarbazol-2(9H)-One Skeleton by Using Bifunctional Squaramide-Catalyzed Cascade Reactions. Eur. J. Org. Chem. 2014, 2014, 7940–7947. [Google Scholar] [CrossRef]
- Yi, L.; Chen, K.-Q.; Liang, Z.-Q.; Sun, D.-Q.; Ye, S. N-Heterocyclic Carbene-Catalyzed [3 + 3] Annulation of Indoline-2-thiones with Bromoenals: Synthesis of Indolo[2,3-b]dihydrothiopyranones. Adv. Synth. Catal. 2017, 359, 44–48. [Google Scholar] [CrossRef]
- Wu, L.-L.; Zheng, Y.; Wang, Y.-M.; Zhou, Z.-H. Organocatalyzed enantioselective [3 + 3] annulation for the direct synthesis of conformationally constrained cyclic tryptophan derivatives. RSC Adv. 2016, 6, 11602–11608. [Google Scholar] [CrossRef]
- Jin, J.-H.; Li, X.-Y.; Luo, X.; Deng, W.-P. Enantioselective synthesis of indolo[2,3-b]-dihydrothiopyranones via [3 + 3] cycloaddition of chiral α,β-unsaturated acylammonium salts. Tetrahedron 2018, 74, 6804–6808. [Google Scholar] [CrossRef]
- Chang, X.; Che, C.; Wang, Z.-F.; Wang, C.-J. Palladium-Catalyzed Asymmetric Allylic Alkylation/α-Iminol Rearrangement: A Facile Access to 2-Spirocyclic-Indoline Derivatives. CCS Chem. 2022, 4, 1414–1428. [Google Scholar] [CrossRef]
- Xiao, L.; Chang, X.; Xu, H.; Xiong, Q.; Dang, Y.; Wang, C.J. Cooperative Catalyst-Enabled Regio- and Stereodivergent Synthesis of α-Quaternary α-Amino Acids via Asymmetric Allylic Alkylation of Aldimine Esters with Racemic Allylic Alcohols. Angew. Chem. Int. Ed. Engl. 2022, 61, e202212948. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Miao, Y.-H.; Mei, G.-J.; Hua, Y.-Z.; Jia, S.-K.; Wang, M.-C. Dinuclear zinc catalyzed asymmetric [3 + 2] spiro-annulation for the synthesis of diverse bispirocyclic saccharines. Org. Chem. Front. 2022, 9, 5010–5015. [Google Scholar] [CrossRef]
- Han, J.-J.; Zhang, C.; Mei, G.-J.; Hua, Y.-Z.; Jia, S.-K.; Wang, M.-C. Zinc-catalyzed asymmetric [3 + 2] annulations for construction of chiral spiro[1-indanone-γ-butyrolactones] via a C-N bond cleavage process. Org. Chem. Front. 2022, 9, 5819–5824. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, Y.; Yao, J.; Cao, Y.; Kai, M.; He, N.; Zhang, X.; Wang, Y.; Wang, R. Core Scaffold-Inspired Concise Synthesis of Chiral Spirooxindole-Pyranopyrimidines with Broad-Spectrum Anticancer Potency. Adv. Synth. Catal. 2012, 354, 917–925. [Google Scholar] [CrossRef]
- Pan, F.F.; Yu, W.; Qi, Z.H.; Qiao, C.; Wang, X.W. Efficient Construction of Chiral Spiro[benzo[g]chromene-oxindole] Derivatives via Organocatalytic Asymmetric Cascade Cyclization. Synthesis 2014, 46, 1143–1156. [Google Scholar] [CrossRef]
- Xie, J.; Xing, X.Y.; Sha, F.; Wu, Z.Y.; Wu, X.Y. Enantioselective synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives via an organocatalytic asymmetric Michael/cyclization cascade reaction. Org. Biomol. Chem. 2016, 14, 8346–8355. [Google Scholar] [CrossRef]
- Hu, J.-L.; Sha, F.; Li, Q.; Wu, X.-Y. Highly enantioselective Michael/cyclization tandem reaction between dimedone and isatylidene malononitriles. Tetrahedron 2018, 74, 7148–7155. [Google Scholar] [CrossRef]
- CCDC 2177975 (3g) Contains the Supplementary Crystallographic Data for this Paper. The Cambridge Crystallographic Data Centre. Available online: www.ccdc.cam.ac.uk/data_request/cif (accessed on 9 June 2022).
- Xiao, Y.; Wang, Z.; Ding, K. Copolymerization of Cyclohexene Oxide with CO2 by Using Intramolecular Dinuclear Zinc Catalysts. Chem. A Eur. J. 2005, 11, 3668–3678. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lin, X.; Zhang, Y.; Cao, W.; Liu, X.; Feng, X. Nickel(ii)-catalyzed asymmetric thio-Claisen rearrangement of α-diazo pyrazoleamides with thioindoles. Chem. Commun. 2020, 56, 10002–10005. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhao, B.-L.; Du, D.-M. Bifunctional Squaramide-Catalyzed Asymmetric [3+2] Cyclization of 2-(1-Methyl-2-Oxoindolin-3-yl) Malononitriles with Unsaturated Pyrazolones to Construct Spirooxindole-Fused Spiropyra-Zolones. J. Org. Chem. 2019, 84, 10209–10220. [Google Scholar] [CrossRef] [PubMed]
Entry | Ligand | Yield b | Ee c (%) |
---|---|---|---|
1 | L1 | 57 | 80 |
2 | L2 | 41 | 63 |
3 | L3 | 78 | 99 |
4 | L4 | 85 | 99 |
5 | L5 | 43 | 34 |
6 | L6 | 57 | 68 |
7 | L7 | 36 | 23 |
8 | L8 | 40 | 37 |
9 | L9 | 72 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-T.; Chen, Y.; Mei, G.-J.; Hua, Y.-Z.; Jia, S.-K.; Wang, M.-C. Zinc-Catalyzed Enantioselective [3 + 3] Annulation for Synthesis of Chiral Spiro[indoline-3,4′-thiopyrano[2,3-b]indole] Derivatives. Molecules 2023, 28, 1056. https://doi.org/10.3390/molecules28031056
Liu T-T, Chen Y, Mei G-J, Hua Y-Z, Jia S-K, Wang M-C. Zinc-Catalyzed Enantioselective [3 + 3] Annulation for Synthesis of Chiral Spiro[indoline-3,4′-thiopyrano[2,3-b]indole] Derivatives. Molecules. 2023; 28(3):1056. https://doi.org/10.3390/molecules28031056
Chicago/Turabian StyleLiu, Tian-Tian, Yu Chen, Guang-Jian Mei, Yuan-Zhao Hua, Shi-Kun Jia, and Min-Can Wang. 2023. "Zinc-Catalyzed Enantioselective [3 + 3] Annulation for Synthesis of Chiral Spiro[indoline-3,4′-thiopyrano[2,3-b]indole] Derivatives" Molecules 28, no. 3: 1056. https://doi.org/10.3390/molecules28031056
APA StyleLiu, T. -T., Chen, Y., Mei, G. -J., Hua, Y. -Z., Jia, S. -K., & Wang, M. -C. (2023). Zinc-Catalyzed Enantioselective [3 + 3] Annulation for Synthesis of Chiral Spiro[indoline-3,4′-thiopyrano[2,3-b]indole] Derivatives. Molecules, 28(3), 1056. https://doi.org/10.3390/molecules28031056