Dextran Formulations as Effective Delivery Systems of Therapeutic Agents
Abstract
:1. Introduction
2. DEX Obtained by Biosynthesis from LAB Fermentation
3. Biomedical Applications of Modified DEX
3.1. Acetalated Dextran (Ac-DEX)
3.2. Oxidized Dextran (oDEX)
3.3. Carboxymethyl Dextran (CMD)
3.4. Dextran Sulphate Sodium (DSS)
3.5. Diethylaminoethyl-Dextran (DEAE-DEX)
4. Dextran Used in Drug-Delivery Systems
4.1. DEX as a Hydrogel Component
4.2. Dextran as NP Component or Coating Agent
4.3. Dextran as Nanocarrier Component
4.4. Dextran as Micelles’ Component
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortesi, R.; Esposito, E.; Osti, M.; Squarzoni, G.; Menegatti, E.; Davis, S.S.; Nastruzzi, C. Dextran cross-linked gelatin microspheres as a drug delivery system. Eur. J. Pharm. Biopharm. 1999, 47, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Constantin, M.; Bucatariu, S.; Harabagiu, V.; Ascenzi, P.; Fundueanu, G. Do cyclodextrins bound to dextran microspheres act as sustained delivery systems of drugs? Int. J. Pharm. 2014, 469, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Liang, W.; Xiong, Q.; Zhao, Y.; Cheng, J.; Li, X.; Zhao, J. Acetalated dextran microparticles for the smart delivery of pyraclostrobin to control Sclerotinia diseases. Carbohydr. Polym. 2022, 291, 119576. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, K.J.; Kanthamneni, N.; Meenach, S.A.; Pierson, B.C.; Bachelder, E.M.; Ainslie, K.M. Optimization of rapamycin-loaded acetalated dextran microparticles for immunosuppression. Int. J. Pharm. 2012, 422, 356–363. [Google Scholar] [CrossRef]
- Huang, S.; Huang, G. Preparation and drug delivery of dextran-drug complex. Drug Deliv. 2019, 26, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Zamani, R.; Bizari, D.; Heiat, M. Synthesis and characterization of phase shift dextran stabilized nanodroplets for ultrasound-induced cancer therapy: A novel nanobiotechnology approach. J. Biotechnol. 2022, 350, 17–23. [Google Scholar] [CrossRef]
- Mufamadi, M.S.; Pillay, V.; Choonara, Y.E.; Du Toit, L.C.; Modi, G.; Naidoo, D.; Ndesendo, V.M.K. A Review on Composite Liposomal Technologies for Specialized Drug Delivery. J. Drug Deliv. 2011, 2011, 939851. [Google Scholar] [CrossRef]
- Malekhosseini, S.; Rezaie, A.; Khaledian, S.; Abdoli, M.; Zangeneh, M.M.; Hosseini, A.; Behbood, L. Fabrication and characterization of hydrocortisone loaded Dextran-Poly Lactic-co-Glycolic acid micelle. Heliyon 2020, 6, e03975. [Google Scholar] [CrossRef]
- Shaki, H.; Ganji, F.; Kempen, P.J.; Dolatshahi-Pirouz, A.; Vasheghani-Farahani, E. Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin. J. Drug Deliv. Sci. Technol. 2018, 44, 333–341. [Google Scholar] [CrossRef]
- Qu, J.; Liang, Y.; Shi, M.; Guo, B.; Gao, Y.; Yin, Z. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int. J. Biol. Macromol. 2019, 140, 255–264. [Google Scholar] [CrossRef]
- Rangel Euzcateguy, G.; Parajua-Sejil, C.; Marchal, P.; Chapron, D.; Averlant-Petit, M.C.; Stefan, L.; Pickaert, G.; Durand, A. Rheological investigation of the influence of dextran on the self-assembly of lysine derivatives in water/dimethylsulfoxide mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126908. [Google Scholar] [CrossRef]
- Zhou, L.L.; Zhou, L.L.; Wei, C.; Guo, R. A bioactive dextran-based hydrogel promote the healing of infected wounds via antibacterial and immunomodulatory. Carbohydr. Polym. 2022, 291, 119558. [Google Scholar] [CrossRef] [PubMed]
- Delvart, A.; Moreau, C.; D’Orlando, A.; Falourd, X.; Cathala, B. Dextran-based polyelectrolyte multilayers: Effect of charge density on film build-up and morphology. Colloids Surf. B Biointerfaces 2022, 210, 112258. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Han, Y.; Park, J.H. Enhanced deposition of Fe(III)-tannic acid complex nanofilm by Fe(III)-embedded dextran nanocoating. Appl. Surf. Sci. 2022, 573, 151598. [Google Scholar] [CrossRef]
- Raganato, L.; Del Giudice, A.; Ceccucci, A.; Sciubba, F.; Casciardi, S.; Sennato, S.; Scipioni, A.; Masci, G. Self-assembling nanowires from a linear l,d-peptide conjugated to the dextran end group. Int. J. Biol. Macromol. 2022, 207, 656–665. [Google Scholar] [CrossRef]
- Joshy, K.S.; George, A.; Snigdha, S.; Joseph, B.; Kalarikkal, N.; Pothen, L.A.; Thomas, S. Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery. Mater. Sci. Eng. C 2018, 93, 864–872. [Google Scholar] [CrossRef]
- Hyon, W.; Shibata, S.; Ozaki, E.; Fujimura, M.; Hyon, S.H.; Matsumura, K. Elucidating the degradation mechanism of a self-degradable dextran-based medical adhesive. Carbohydr. Polym. 2022, 278, 118949. [Google Scholar] [CrossRef]
- Moydeen, A.M.; Ali Padusha, M.S.; Aboelfetoh, E.F.; Al-Deyab, S.S.; El-Newehy, M.H. Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: Kinetics and in vitro release study. Int. J. Biol. Macromol. 2018, 116, 1250–1259. [Google Scholar] [CrossRef]
- Banerjee, S.; Szepes, M.; Dibbert, N.; Rios-Camacho, J.C.; Kirschning, A.; Gruh, I.; Dräger, G. Dextran-based scaffolds for in-situ hydrogelation: Use for next generation of bioartificial cardiac tissues. Carbohydr. Polym. 2021, 262, 117924. [Google Scholar] [CrossRef]
- Pawlak, A.; Michely, L.; Belbekhouche, S. Multilayer dextran derivative based capsules fighting bacteria resistant to Antibiotic: Case of Kanamycin-Resistant Escherichia coli. Int. J. Biol. Macromol. 2022, 200, 242–246. [Google Scholar] [CrossRef]
- Odeniyi, M.; Omoteso, O.; Adepoju, A.; Jaiyeoba, K. Starch nanoparticles in drug delivery: A review. Polym. Med. 2019, 48, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.; Emeje, M. Recent applications of starch derivatives in nanodrug delivery. Carbohydr. Polym. 2012, 87, 987–994. [Google Scholar] [CrossRef]
- Zhong, H.; Gao, X.; Cheng, C.; Liu, C.; Wang, Q.; Han, X. The Structural Characteristics of Seaweed Polysaccharides and Their Application in Gel Drug Delivery Systems. Mar. Drugs 2020, 18, 658. [Google Scholar] [CrossRef]
- Oprea, M.; Voicu, S.I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 2020, 247, 116683. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Wang, H.; Zhang, Y.; Cai, H.; Zhang, P.; Li, L.; Zhou, J.; Yin, T. Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J. Control. Release 2020, 321, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; He, L.; Tang, Y.; Yang, L.; Wu, B.; Ni, J. Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation. J. Photochem. Photobiol. B Biol. 2019, 197, 111530. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; İspirli, H.; Taylan, O.; Taşdemir, V.; Sagdic, O.; Dertli, E. Characterisation and functional roles of a highly branched dextran produced by a bee pollen isolate Leuconostoc mesenteroides BI-20. Food Biosci. 2022, 45, 101330. [Google Scholar] [CrossRef]
- dos Santos Campos, F.; Cassimiro, D.L.; Crespi, M.S.; Almeida, A.E.; Daflon Gremião, M.P. Preparation and characterisation of Dextran-70 hydrogel for controlled release of praziquantel. Brazilian J. Pharm. Sci. 2013, 49, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Jamwal, S.; Ram, B.; Ranote, S.; Dharela, R.; Chauhan, G.S. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int. J. Biol. Macromol. 2019, 123, 968–978. [Google Scholar] [CrossRef]
- Tiryaki, E.; Başaran Elalmış, Y.; Karakuzu İkizler, B.; Yücel, S. Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels. J. Drug Deliv. Sci. Technol. 2020, 56, 101517. [Google Scholar] [CrossRef]
- Han, J.; Hang, F.; Guo, B.; Liu, Z.; You, C.; Wu, Z. Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. Carbohydr. Polym. 2014, 112, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Maina, N.H.; Coda, R.; Katina, K. Challenges and opportunities for wheat alternative grains in breadmaking: Ex-situ- versus in-situ-produced dextran. Trends Food Sci. Technol. 2021, 113, 232–244. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Tian, Z.; Yang, Y.; Yang, Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir. Carbohydr. Polym. 2015, 125, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Maingret, V.; Chartier, C.; Six, J.L.; Schmitt, V.; Héroguez, V. Pickering emulsions stabilized by biodegradable dextran-based nanoparticles featuring enzyme responsiveness and co-encapsulation of actives. Carbohydr. Polym. 2022, 284, 119146. [Google Scholar] [CrossRef] [PubMed]
- Rosca, I.; Petrovici, A.R.; Peptanariu, D.; Nicolescu, A.; Dodi, G.; Avadanei, M.; Ivanov, I.C.; Bostanaru, A.C.; Mares, M.; Ciolacu, D. Biosynthesis of dextran by Weissella confusa and its In vitro functional characteristics. Int. J. Biol. Macromol. 2018, 107, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Kasaai, M.R. Dilute solution properties and degree of chain branching for dextran. Carbohydr. Polym. 2012, 88, 373–381. [Google Scholar] [CrossRef]
- Padmanabhan, P.A.; Kim, D.S. Production of insoluble dextran using cell-bound dextransucrase of Leuconostoc mesenteroides NRRL B-523. Carbohydr. Res. 2002, 337, 1529–1533. [Google Scholar] [CrossRef]
- Paúrová, M.; Taboubi, O.; Šeděnková, I.; Hromádková, J.; Matouš, P.; Herynek, V.; Šefc, L.; Babič, M. Role of dextran in stabilization of polypyrrole nanoparticles for photoacoustic imaging. Eur. Polym. J. 2021, 157, 110634. [Google Scholar] [CrossRef]
- Hu, P.; Lei, Q.; Duan, S.; Fu, Y.; Pan, H.; Chang, C.; Zheng, Z.; Wu, Y.; Zhang, Z.; Li, R.; et al. In-situ formable dextran/chitosan-based hydrogels functionalized with collagen and EGF for diabetic wounds healing. Biomater. Adv. 2022, 136, 212773. [Google Scholar] [CrossRef]
- Bakrania, A.K.; Variya, B.C.; Madan, P.; Patel, S.S. Repeated dose 28-day oral toxicity study of DEAE-Dextran in mice: An advancement in safety chemotherapeutics. Regul. Toxicol. Pharmacol. 2017, 88, 262–272. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Y.; Pan, W.; Tong, X.; Zeng, Q.; Su, T.; Qi, X.; Shen, J. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydr. Polym. 2021, 253, 117213. [Google Scholar] [CrossRef] [PubMed]
- Chechushkov, A.; Zaitseva, N.; Vorontsova, E.; Kozhin, P.; Menshchikova, E.; Shkurupiy, V. Dextran loading protects macrophages from lipid peroxidation and induces a Keap1/Nrf2/ARE-dependent antioxidant response. Life Sci. 2016, 166, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.V.; Campbell, K.; Painter, G.F.; Young, S.L.; Walker, G.F. Data on the uptake of CpG-loaded amino-dextran nanoparticles by antigen-presenting cells. Data Br. 2021, 35, 106883. [Google Scholar] [CrossRef] [PubMed]
- Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym. 2017, 155, 218–229. [Google Scholar] [CrossRef]
- Park, G.S.; Hong, S.J.; Jung, B.K.; Lee, C.; Park, C.K.; Shin, J.H. The complete genome sequence of a lactic acid bacterium Leuconostoc mesenteroides ssp. dextranicum strain DSM 20484T. J. Biotechnol. 2016, 219, 3–4. [Google Scholar] [CrossRef]
- Du, R.; Pei, F.; Kang, J.; Zhang, W.; Wang, S.; Ping, W.; Ling, H.; Ge, J. Analysis of the structure and properties of dextran produced by Weissella confusa. Int. J. Biol. Macromol. 2022, 204, 677–684. [Google Scholar] [CrossRef]
- Robyt, J.F.; Kimble, B.K.; Walseth, T.F. The mechanism of dextransucrase action. Direction of dextran biosynthesis. Arch. Biochem. Biophys. 1974, 165, 634–640. [Google Scholar] [CrossRef]
- Robyt, J.F.; Yoon, S.H.; Mukerjea, R. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr. Res. 2008, 343, 3039–3048. [Google Scholar] [CrossRef]
- Lazić, M.L.; Veljković, V.B.; Vučetić, J.I.; Vrvić, M.M. Effect of pH and aeration on dextran production by Leuconostoc mesenteroides. Enzyme Microb. Technol. 1993, 15, 334–338. [Google Scholar] [CrossRef]
- Falconer, D.J.; Mukerjea, R.; Robyt, J.F. Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydr. Res. 2011, 346, 280–284. [Google Scholar] [CrossRef]
- Schmid, J. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr. Opin. Biotechnol. 2018, 53, 130–136. [Google Scholar] [CrossRef]
- Pintado, A.I.E.; Ferreira, J.A.; Pintado, M.M.E.; Gomes, A.M.P.; Malcata, F.X.; Coimbra, M.A. Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media. Carbohydr. Polym. 2020, 231, 115703. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, C.; Pulkkinen, M.; Edelmann, M.; Chamlagain, B.; Coda, R.; Sandell, M.; Piironen, V.; Maina, N.H.; Katina, K. In situ production of vitamin B12 and dextran in soya flour and rice bran: A tool to improve flavour and texture of B12-fortified bread. LWT 2022, 161, 113407. [Google Scholar] [CrossRef]
- Petrovici, A.R.; Nicolescu, A.; Silion, M.; Roșca, I.; Ciolacu, D. Biopolymer biosynthesis by lactic acid bacteria strain in four different culture media. Rev. Roum. Chim. 2018, 63, 637–642. [Google Scholar]
- Dimofte, A.; Simionescu, N.; Petrovici, A.R.; Spiridon, I. Probiotic Properties of Weissella confusa PP29 on Hibiscus sabdariffa L. Media. Fermentation 2022, 8, 553. [Google Scholar] [CrossRef]
- Petrovici, A.R.; Roşca, I.; Dodi, G.; Nicolescu, A.; Avǎdanei, M.; Varganici, C.D.; Ciolacu, D. Effects of culture medium composition on biosynthesis of exopolysaccharides. Cellul. Chem. Technol. 2017, 51, 821–830. [Google Scholar]
- Zhu, Y.; Wang, C.; Jia, S.; Wang, B.; Zhou, K.; Chen, S.; Yang, Y.; Liu, S. Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from Sichuan paocai. Int. J. Biol. Macromol. 2018, 115, 820–828. [Google Scholar] [CrossRef]
- Du, R.; Qiao, X.; Zhao, F.; Song, Q.; Zhou, Q.; Wang, Y.; Pan, L.; Han, Y.; Zhou, Z. Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine. Carbohydr. Polym. 2018, 198, 529–536. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; İspirli, H.; Taylan, O.; Bilgrami, A.L.; Dertli, E. Structural and bioactive characteristics of a dextran produced by Lactobacillus kunkeei AK1. Int. J. Biol. Macromol. 2022, 200, 293–302. [Google Scholar] [CrossRef]
- Li, J.; Ai, L.; Xu, F.; Hu, X.; Yao, Y.; Wang, L. Structural characterization of exopolysaccharides from Weissella cibaria NC516.11 in distiller grains and its improvement in gluten-free dough. Int. J. Biol. Macromol. 2022, 199, 17–23. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Wei, Y.; Hu, M.; Dong, B.; Fang, H.; Chen, Q. Super-resolution imaging reveals the subcellular distribution of dextran at the nanoscale in living cells. Chin. Chem. Lett. 2022, 33, 1865–1869. [Google Scholar] [CrossRef]
- Konhäuser, M.; Kannaujiya, V.K.; Steiert, E.; Schwickert, K.; Schirmeister, T.; Wich, P.R. Co-encapsulation of l-asparaginase and etoposide in dextran nanoparticles for synergistic effect in chronic myeloid leukemia cells. Int. J. Pharm. 2022, 622, 121796. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Bai, Z.; Levkin, P.A. Boronate-dextran: An acid-responsive biodegradable polymer for drug delivery. Biomaterials 2013, 34, 8504–8510. [Google Scholar] [CrossRef] [PubMed]
- Bachelder, E.M.; Pino, E.N.; Ainslie, K.M. Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications. Chem. Rev. 2017, 117, 1915–1926. [Google Scholar] [CrossRef]
- Kauffman, K.J.; Do, C.; Sharma, S.; Gallovic, M.D.; Bachelder, E.M.; Ainslie, K.M. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl. Mater. Interfaces 2012, 4, 4149–4155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meenach, S.A.; Kim, Y.J.; Kauffman, K.J.; Kanthamneni, N.; Bachelder, E.M.; Ainslie, K.M. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery. Mol. Pharm. 2012, 9, 290–298. [Google Scholar] [CrossRef]
- Wang, Z.; Gupta, S.K.; Meenach, S.A. Development and physicochemical characterization of acetalated dextran aerosol particle systems for deep lung delivery. Int. J. Pharm. 2017, 525, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Collier, M.A.; Gallovic, M.D.; Collins, G.C.; Sanchez, C.C.; Fernandes, E.Q.; Bachelder, E.M.; Ainslie, K.M. Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight. Int. J. Pharm. 2016, 512, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Borteh, H.M.; Gallovic, M.D.; Sharma, S.; Peine, K.J.; Miao, S.; Brackman, D.J.; Gregg, K.; Xu, Y.; Guo, X.; Guan, J.; et al. Electrospun acetalated dextran scaffolds for temporal release of therapeutics. Langmuir 2013, 29, 7957–7965. [Google Scholar] [CrossRef]
- Curcio, M.; Cirillo, G.; Paolì, A.; Naimo, G.D.; Mauro, L.; Amantea, D.; Leggio, A.; Nicoletta, F.P.; Iemma, F. Self-assembling Dextran prodrug for redox- and pH-responsive co-delivery of therapeutics in cancer cells. Colloids Surf. B Biointerfaces 2020, 185, 110537. [Google Scholar] [CrossRef]
- Jalalvandi, E.; Hanton, L.R.; Moratti, S.C. Preparation of a pH sensitive hydrogel based on dextran and polyhydrazide for release of 5-flurouracil, an anticancer drug. J. Drug Deliv. Sci. Technol. 2018, 44, 146–152. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Wang, S.; Dong, C.; Zhang, X.; Zhang, R.; Yang, L. Dextran and peptide-based pH-sensitive hydrogel boosts healing process in multidrug-resistant bacteria-infected wounds. Carbohydr. Polym. 2022, 278, 118994. [Google Scholar] [CrossRef] [PubMed]
- Thambi, T.; You, D.G.; Han, H.S.; Deepagan, V.G.; Jeon, S.M.; Suh, Y.D.; Choi, K.Y.; Kim, K.; Kwon, I.C.; Yi, G.R.; et al. Bioreducible Carboxymethyl Dextran Nanoparticles for Tumor-Targeted Drug Delivery. Adv. Healthc. Mater. 2014, 3, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Korcová, J.; Machová, E.; Filip, J.; Bystrický, S. Biophysical properties of carboxymethyl derivatives of mannan and dextran. Carbohydr. Polym. 2015, 134, 6–11. [Google Scholar] [CrossRef]
- Um, W.; Kumar, E.K.P.; Song, Y.; Lee, J.; An, J.Y.; Joo, H.; You, D.G.; Park, J.H. Carboxymethyl dextran-based nanocomposites for enhanced chemo-sonodynamic therapy of cancer. Carbohydr. Polym. 2021, 273, 118488. [Google Scholar] [CrossRef]
- Liu, G.; Hong, R.Y.; Guo, L.; Li, Y.G.; Li, H.Z. Preparation, characterization and MRI application of carboxymethyl dextran coated magnetic nanoparticles. Appl. Surf. Sci. 2011, 257, 6711–6717. [Google Scholar] [CrossRef]
- Das, M.; Oyarzabal, E.A.; Chen, L.; Lee, S.H.; Shah, N.; Gerlach, G.; Zhang, W.; Chao, T.H.H.; Van Den Berge, N.; Liu, C.; et al. One-pot synthesis of carboxymethyl-dextran coated iron oxide nanoparticles (CION) for preclinical fMRI and MRA applications. Neuroimage 2021, 238, 118213. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Li, M.; Xia, N.; Huang, Q.; Do, H.; Liu, Y.N.; Zhou, F. Carboxymethylated dextran-coated magnetic iron oxide nanoparticles for regenerable bioseparation. J. Nanosci. Nanotechnol. 2011, 11, 10187–10192. [Google Scholar] [CrossRef]
- Gaowa, A.; Horibe, T.; Kohno, M.; Tabata, Y.; Harada, H.; Hiraoka, M.; Kawakami, K. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers. Eur. J. Pharm. Biopharm. 2015, 92, 228–236. [Google Scholar] [CrossRef]
- Vasić, K.; Knez, Ž.; Konstantinova, E.A.; Kokorin, A.I.; Gyergyek, S.; Leitgeb, M. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: From characterization to immobilization application. React. Funct. Polym. 2020, 148, 104481. [Google Scholar] [CrossRef]
- Cha, H.; Lee, S.; Hwan Kim, S.; Kim, H.; Lee, D.S.; Lee, H.S.; Lee, J.H.; Park, J.W. Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis. Redox Biol. 2017, 13, 32–38. [Google Scholar] [CrossRef]
- Chen, Y.; Mohanraj, V.J.; Wang, F.; Benson, H.A.E. Designing chitosan-dextran sulfate nanoparticles using charge ratios. Aaps PharmSciTech 2007, 8, 131–139. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, Y.; Wang, Q.; Sun, Y.; Huang, K.; Yao, Z. Rapid and sensitive detection of dextran sulfate sodium based on supramolecular self-assembly of a perylene diimide derivative in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120760. [Google Scholar] [CrossRef]
- Arafa, H.M.M.; Hemeida, R.A.; El-Bahrawy, A.I.M.; Hamada, F.M.A. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem. Toxicol. 2009, 47, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Balaha, M.; Kandeel, S.; Elwan, W. Garlic oil inhibits dextran sodium sulfate-induced ulcerative colitis in rats. Life Sci. 2016, 146, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Arigesavan, K.; Sudhandiran, G. Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1,2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochem. Biophys. Res. Commun. 2015, 461, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, J.Y.; Liu, L.; Li, Y.X.; Xun, A.Y.; Zeng, W.S.; Jia, C.H.; Wei, X.X.; Feng, J.L.; Zhao, L.; et al. Anti-oxidant Effects of Resveratrol on Mice with DSS-induced Ulcerative Colitis. Arch. Med. Res. 2010, 41, 288–294. [Google Scholar] [CrossRef]
- Hong, C.O.; Rhee, C.H.; Pyo, M.C.; Lee, K.W. Anti-inflammatory effect of glucose-lysine Maillard reaction products on intestinal inflammation model in vivo. Int. Immunopharmacol. 2017, 52, 324–332. [Google Scholar] [CrossRef]
- Liu, D.; Gao, L.; Zhang, J.; Huo, X.; Ni, H.; Cao, L. Anti-inflammatory and Anti-oxidant Effects of Licorice Flavonoids on Ulcerative Colitis in Mouse Model. Chin. Herb. Med. 2017, 9, 358–368. [Google Scholar] [CrossRef]
- Seo, S.; Shin, J.S.; Lee, W.S.; Rhee, Y.K.; Cho, C.W.; Do Hong, H.; Lee, K.T. Anti-colitis effect of Lactobacillus sakei K040706 via suppression of inflammatory responses in the dextran sulfate sodium-induced colitis mice model. J. Funct. Foods 2017, 29, 256–268. [Google Scholar] [CrossRef]
- Asari, T.; Kikuchi, H.; Kawaguchi, S.; Sakuraba, H.; Yoshida, S.; Akemoto, Y.; Maeda, T.; Shinji, O.; Murai, Y.; Higuchi, N.; et al. Polygonum tinctorium leaves suppress sodium dextran sulfate-induced colitis through interleukin-10-related pathway. Biochem. Biophys. Rep. 2022, 30, 101272. [Google Scholar] [CrossRef] [PubMed]
- Wieber, A.; Selzer, T.; Kreuter, J. Characterisation and stability studies of a hydrophilic decapeptide in different adjuvant drug delivery systems: A comparative study of PLGA nanoparticles versus chitosan-dextran sulphate microparticles versus DOTAP-liposomes. Int. J. Pharm. 2011, 421, 151–159. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Tang, X.; Huang, K.; Chen, L. Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery. Colloids Surf. B Biointerfaces 2020, 190, 110925. [Google Scholar] [CrossRef] [PubMed]
- Lalani, J.; Misra, A. Gene Delivery Using Chemical Methods. In Challenges in Delivery of Therapeutic Genomics and Proteomics; Elsevier: Amsterdam, The Netherlands, 2011; pp. 127–206. ISBN 9780123849649. [Google Scholar]
- Siewert, C.; Haas, H.; Nawroth, T.; Ziller, A.; Nogueira, S.S.; Schroer, M.A.; Blanchet, C.E.; Svergun, D.I.; Radulescu, A.; Bates, F.; et al. Investigation of charge ratio variation in mRNA—DEAE-dextran polyplex delivery systems. Biomaterials 2019, 192, 612–620. [Google Scholar] [CrossRef]
- Ju, X.; Šmíd, B.; Johánek, V.; Khalakhan, I.; Yakovlev, Y.; Matolínová, I.; Matolín, V. Investigation of dextran adsorption on polycrystalline cerium oxide surfaces. Appl. Surf. Sci. 2021, 544, 148890. [Google Scholar] [CrossRef]
- Piazza, R.D.; da Nunes, E.S.; Viali, W.R.; da Silva, S.W.; Aragón, F.H.; Coaquira, J.A.H.; de Morais, P.C.; Marques, R.F.C.; Jafelicci, M. Magnetic nanohydrogel obtained by miniemulsion polymerization of poly(acrylic acid) grafted onto derivatized dextran. Carbohydr. Polym. 2017, 178, 378–385. [Google Scholar] [CrossRef]
- Curcio, M.; Diaz-Gomez, L.; Cirillo, G.; Concheiro, A.; Iemma, F.; Alvarez-Lorenzo, C. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur. J. Pharm. Biopharm. 2017, 117, 324–332. [Google Scholar] [CrossRef]
- He, L.; Zheng, R.; Min, J.; Lu, F.; Wu, C.; Zhi, Y.; Shan, S.; Su, H. Preparation of magnetic microgels based on dextran for stimuli-responsive release of doxorubicin. J. Magn. Magn. Mater. 2021, 517, 167394. [Google Scholar] [CrossRef]
- Yu, K.; Yang, X.; He, L.; Zheng, R.; Min, J.; Su, H.; Shan, S.; Jia, Q. Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin. Polymer 2020, 200, 122585. [Google Scholar] [CrossRef]
- Almeida, J.F.; Ferreira, P.; Alves, P.; Lopes, A.; Gil, M.H. Synthesis of a dextran based thermo-sensitive drug delivery system by gamma irradiation. Int. J. Biol. Macromol. 2013, 61, 150–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacelli, S.; Di Muzio, L.; Paolicelli, P.; Fortunati, V.; Petralito, S.; Trilli, J.; Casadei, M.A. Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery. Int. J. Biol. Macromol. 2021, 166, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Prusty, K.; Swain, S.K. Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Mater. Sci. Eng. C 2018, 85, 130–141. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Teng, F.; Chen, H.; Wu, C.; Huang, Y.Y.; Li, Y. Fabrication of soy protein isolate-succinic anhydride-dextran nanogels: Properties, performance, and controlled release of curcumin. LWT 2022, 160, 113259. [Google Scholar] [CrossRef]
- Zhang, Q.; Yue, W.; Zhao, D.; Chen, L.; Xu, Z.; Lin, D.; Qin, W. Preparation and characterization of soybean protein isolate-dextran conjugate-based nanogels. Food Chem. 2022, 384, 132556. [Google Scholar] [CrossRef] [PubMed]
- Matsushige, C.; Xu, X.; Miyagi, M.; Zuo, Y.Y.; Yamazaki, Y. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology 2022, 183, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jalili, S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. Int. J. Biol. Macromol. 2022, 207, 666–682. [Google Scholar] [CrossRef]
- Su, H.; Zheng, R.; Jiang, L.; Zeng, N.; Yu, K.; Zhi, Y.; Shan, S. Dextran hydrogels via disulfide-containing Schiff base formation: Synthesis, stimuli-sensitive degradation and release behaviors. Carbohydr. Polym. 2021, 265, 118085. [Google Scholar] [CrossRef]
- Dhaneshwar, S.S.; Kandpal, M.; Gairola, N.; Kadam, S.S. Dextran: A promising macromolecular drug carrier. Indian J. Pharm. Sci. 2006, 68, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Rai, G.; Lodhi, S.; Jain, A.P.; Yadav, A.K. In-vitro and in-vivo assessment of dextran-appended cellulose acetate phthalate nanoparticles for transdermal delivery of 5-fluorouracil. Drug Deliv. 2014, 23, 1525–1535. [Google Scholar] [CrossRef]
- Tiyaboonchai, W.; Woiszwillo, J.; Middaugh, C.R. Formulation and characterization of amphotericin B–polyethylenimine–dextran sulfate nanoparticles. J. Pharm. Sci. 2001, 90, 902–914. [Google Scholar] [CrossRef]
- Abid, M.; Naveed, M.; Azeem, I.; Faisal, A.; Faizan Nazar, M.; Yameen, B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int. J. Pharm. 2020, 586, 119605. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, L.; Shi, G.; Ni, C. Zwitterionic pH/redox nanoparticles based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. Mater. Sci. Eng. C 2016, 61, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Du, M.; Liu, Y.; Liu, G.; Liu, Q.; Zhang, X. Folic acid-conjugated glucose and dextran coated iron oxide nanoparticles as MRI contrast agents for diagnosis and treatment response of rheumatoid arthritis. J. Mater. Chem. B 2014, 2, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Kaewprapan, K.; Inprakhon, P.; Marie, E.; Durand, A. Enzymatically degradable nanoparticles of dextran esters as potential drug delivery systems. Carbohydr. Polym. 2012, 88, 875–881. [Google Scholar] [CrossRef]
- Ferrari, P.F.; Zattera, E.; Pastorino, L.; Perego, P.; Palombo, D. Dextran/poly-L-arginine multi-layered CaCO3-based nanosystem for vascular drug delivery. Int. J. Biol. Macromol. 2021, 177, 548–558. [Google Scholar] [CrossRef]
- Lungoci, A.L.; Pinteala, M.; Petrovici, A.R.; Rosca, I.; Turin-Moleavin, I.A.; Fifere, A. Biosynthesized dextran coated magnetic nanoparticles with antifungal activity. Rev. Roum. Chim. 2018, 63, 497–503. [Google Scholar]
- Anghelache, M.; Turtoi, M.; Petrovici, A.R.; Fifere, A.; Pinteala, M.; Calin, M. Development of Dextran-Coated Magnetic Nanoparticles Loaded with Protocatechuic Acid for Vascular Inflammation Therapy. Pharmaceutics 2021, 13, 1414. [Google Scholar] [CrossRef]
- Wasiak, I.; Kulikowska, A.; Janczewska, M.; Michalak, M.; Cymerman, I.A.; Nagalski, A.; Kallinger, P.; Szymanski, W.W.; Ciach, T. Dextran nanoparticle synthesis and properties. PLoS ONE 2016, 11, e0146237. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, J.; Kuang, Y.; Li, Q.; Zheng, D.W.; Song, Q.; Chen, H.; Chen, X.; Xu, Y.; Li, C.; et al. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. Int. J. Biol. Macromol. 2017, 98, 691–700. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Lei, Q.; Yang, B.; Jia, H.Z.; Qiu, W.X.; Wang, X.; Zeng, X.; Zhuo, R.X.; Feng, J.; Zhang, X.Z. Efficient nuclear drug translocation and improved drug efficacy mediated by acidity-responsive boronate-linked dextran/cholesterol nanoassembly. Biomaterials 2015, 52, 281–290. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Z.; Su, J.; Wei, L.; Yuan, W.; Jin, T. Development of dextran nanoparticles for stabilizing delicate proteins. Nanoscale Res. Lett. 2013, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract. 2018, 136, 52–77. [Google Scholar] [CrossRef] [PubMed]
- El Founi, M.; Soliman, S.M.A.; Vanderesse, R.; Acherar, S.; Guedon, E.; Chevalot, I.; Babin, J.; Six, J.L. Light-sensitive dextran-covered PNBA nanoparticles as triggered drug delivery systems: Formulation, characteristics and cytotoxicity. J. Colloid Interface Sci. 2018, 514, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Medhat, D.; Hussein, J.; El-Naggar, M.E.; Attia, M.F.; Anwar, M.; Latif, Y.A.; Booles, H.F.; Morsy, S.; Farrag, A.R.; Khalil, W.K.B.; et al. Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations. Biomed. Pharmacother. 2017, 91, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.S.; Sajid, M.I.; Parang, K.; Tiwari, R.K. Synthesis, characterization, and cytotoxicity evaluation of dextran-myristoyl-ECGKRK peptide conjugate. Int. J. Biol. Macromol. 2021, 191, 1204–1211. [Google Scholar] [CrossRef]
- Kashyap, A.; Kaur, R.; Baldi, A.; Jain, U.K.; Chandra, R.; Madan, J. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. Int. J. Biol. Macromol. 2018, 114, 161–168. [Google Scholar] [CrossRef]
- Sampath, M.; Pichaimani, A.; Kumpati, P.; Sengottuvelan, B. The remarkable role of emulsifier and chitosan, dextran and PEG as capping agents in the enhanced delivery of curcumin by nanoparticles in breast cancer cells. Int. J. Biol. Macromol. 2020, 162, 748–761. [Google Scholar] [CrossRef]
- Remya, N.S.; Syama, S.; Sabareeswaran, A.; Mohanan, P.V. Toxicity, toxicokinetics and biodistribution of dextran stabilized Iron oxide Nanoparticles for biomedical applications. Int. J. Pharm. 2016, 511, 586–598. [Google Scholar] [CrossRef]
- Bai, S.; Gao, Y.E.; Ma, X.; Shi, X.; Hou, M.; Xue, P.; Kang, Y.; Xu, Z. Reduction stimuli-responsive unimolecular polymeric prodrug based on amphiphilic dextran-framework for antitumor drug delivery. Carbohydr. Polym. 2018, 182, 235–244. [Google Scholar] [CrossRef]
- Chen, Z.; Krishnamachary, B.; Bhujwalla, Z.M. Degradable dextran nanopolymer as a carrier for choline kinase (Chok) siRNA cancer therapy. Nanomaterials 2016, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Bhaw-Luximon, A.; Goonoo, N.; Jhurry, D. Nanotherapeutics promises for colorectal cancer and pancreatic ductal adenocarcinoma. In Nanobiomaterials in Cancer Therapy: Applications of Nanobiomaterials; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 147–201. ISBN 9780323428866. [Google Scholar]
- Manju, S.; Sreenivasan, K. Functionalised nanoparticles for targeted drug delivery. In Biointegration of Medical Implant Materials: Science and Design; Woodhead Publishing: Sawston, UK, 2010; pp. 267–297. ISBN 9781845695095. [Google Scholar]
- Jiang, L.; Li, S.; Wang, N.; Zhao, S.; Chen, Y.; Chen, Y. Preparation of dextran-casein phosphopeptide conjugates, evaluation of its calcium binding capacity and digestion in vitro. Food Chem. 2021, 352, 129332. [Google Scholar] [CrossRef] [PubMed]
- Parhizkar, E.; Samani, S.M.; Sakhteman, A.; Daneshamouz, S.; Parhizkar, G.; Ahmadi, F. Synthesis, cytotoxicity assay, pharmacokinetics, biodistribution and modeling study of cabazitaxel-dextran nanoconjugates: Targeted vs non targeted delivery. Colloids Surf. B Biointerfaces 2022, 209, 112187. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Yang, Y.; Kim, D.; Jeong, S.; Yoo, J.W.; Yoon, J.H.; Jung, Y. Conjugation of metronidazole with dextran: A potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes. Drug Des. Devel. Ther. 2017, 11, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, T.; Ma, X.; Wang, Y.; Lu, Y.; Jia, D.; Huang, X.; Chen, J.; Xu, Z.; Wen, F. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J. Pharm. Sci. 2020, 15, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Guo, X.; Dong, L.; Xie, E.; Cao, A. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy. Colloids Surf. B Biointerfaces 2017, 158, 47–56. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhang, X.; Jiang, J.; Ren, J.; Wang, S.; Hu, H.; Zhao, Y.; Chen, L.; Zhao, K.; et al. Ultra-stable dextran conjugated prodrug micelles for oxidative stress and glycometabolic abnormality combination treatment of Alzheimer’s disease. Int. J. Biol. Macromol. 2022, 203, 430–444. [Google Scholar] [CrossRef]
Strain | Culture Media | Fermentation Conditions | Dry DEX Amount, g/L | Molecular Mass, Da | References |
---|---|---|---|---|---|
Leuconostoc mesenteroides ZDRAVLJE SR-P | Sucrose, yeast extract, barley malt extract, Na2HPO4 • 12 H2O, MgSO4 • 7 H2O, KCI, supplemented with 12% sucrose | 200 rpm | 54.9 | [49] | |
Leuconostoc mesenteroides BD1710 | Tomato juice with 15% sucrose | 48 h at 28 °C | 32.0 | 6.35 × 105 | [31] |
Weissella confusa PP29 | MRS, sucrose (80) dissolved in UHT milk | 48 h at 33 °C | 25.2 | 1.2 × 106 | [35] |
LAB-PP15 | MRS, sucrose (80) dissolved in UHT milk | 48 h at 33 °C, 100 rpm | 9.0 | 1.9 × 105 | [56] |
W. confusa H2 | MRS | 48 h at 30 °C | 2.705 × 106 | [46] | |
W. cibaria SJ14 | Modified MRS semi-defined medium | 34 h at 37 °C | 0.33 | 7.12 × 104 | [57] |
Leu. pseudomesenteroides DRP-5 | MRS agar | 36 h at 30 °C | 6.23 × 106 | [58] | |
Leuconostoc mesenteroides BI-20, | FYP broth with 3% sucrose | 48 h at 30 °C | 1 × 108 | [27] | |
Weissella confusa A16 | Soya flour or rice bran with 10% sucrose | 24 h at 25 °C, 150 rpm | 58.0 | [53] | |
Lactobacillus kunkeei AK1 | FYP broth with 3% sucrose | 48 h at 30 °C | 45 × 103 | [59] | |
Weissella cibaria NC516.11 | Distiller grains of Fenjiu | 24–48 h at 37 °C | 2.82 × 106 | [60] |
DDS Type | Drug Loaded | Targeted Disease/Applications | Observations | Reference |
---|---|---|---|---|
Hydrogel | Polydopamine | Multidrug-resistant bacterial infections | Good physical and chemical properties; low cytotoxicity against mouse fibroblast cells; precise in vivo antibacterial and wound-healing performance | [41] |
Nanohydrogel matrix | Maghemite | Magnetic properties; high drug loading and stability in the circulatory system | [97] | |
Hydrogel | Aniline trimer elastomer | Smart DDS for localised drug release | Controllable swelling ratio; stable rheological properties; good conductivity; electric stimuli-dependent activity | [10] |
Nanogel | Methotrexate | HeLa cells | Sensitive to the variation of the pH and redox environment; high release rate at pH 5.0; suitable carriers for cancer chemotherapeutics | [98] |
Magnetic microgels | Doxorubicin | Promising results for further studies | [99] | |
Nanogels | Doxorubicin | H1299 cancer cell line | The indisputable results promote this system for further in vivo testing | [100] |
Hydrogels | Praziquantel | Anthelmintic disease | Good in vitro results | [28] |
Hydrogels | OndansetronTM | Antiemetic following chemotherapy | Good release kinetics’ curve | [101] |
Cryogels | Vitamin B12 | Vitamin B12 deficiencies | Suitable carriers for water-soluble biomolecules’ delivery | [102] |
Micro-hydrogel | Indole; 3-nitrophenol; hydroxybenzoic acid; diclofenac; | Very satisfactory release kinetics’ curve | [2] | |
Nanohydrogels | Ornidazole | Clostridium sp. infections | Very good in vitro antibiotic effect | [103] |
Nanogel | Curcumin | New foods development | In vitro simulations showed sustained drug release | [104] |
Nanogel | Food ingredient preparation | High potential for hydrophobic bioactive compounds’ encapsulation | [105] | |
Hydrogels | Arginine-glycine-aspartic acid (RGD) sequences | Artificial cardiac tissues | Promising system for building cardiac grafts | [19] |
Hydrogels | RGD and activin A | Ovarian tissue culture | Significantly improves follicular oocytes’ in vitro maturation and development; synergistic effects in 3D tissue culture development | [106] |
DDS Type | Drug Loaded | Targeted Disease/Application | Observations | Reference |
---|---|---|---|---|
NP | Lidocaine | Very good drug-release results | [115] | |
NP | Model protein and antibodies | Cardiovascular pathologies | A promising tool for further in vivo tests | [116] |
Magnetic NP-DEX coated | Protocatechuic acid | Vascular inflammation | Very good in silico results | [117] |
Magnetic NP-DEX coated | Protocatechuic acid | Vascular inflammation | Very good in vitro results | [118] |
NP | 5-fluorouracil | Skin damage | Less immunogenic compared with other systems | [110] |
NP | 5-fluorouracil | Colorectal cancer | The HCT116 colon cancer cell line treatment was efficient. | [112] |
NP | Doxorubicin | pH/redox-responsive, self-assembly in aqueous solutions; excellent plasmatic stability and anti-protein adsorption ability for tumour cellular uptake. | [113] | |
NP | Dodecilamine and doxorubicin | pH-sensitive drug release | [119] | |
NP | Doxorubicin | pH-sensitive intracellular drug release in HeLa cells | [120] | |
NP | Doxorubicin | Acid-responsive NP in water; loaded system toxicity on HeLa cells is comparable to the drug’s; | [63] | |
NP | Doxorubicin | Human cervix carcinoma cells (HeLa) | No DDS cytotoxicity and structural stability under the simulated physiological conditions; drug release in acidic conditions; very good in vivo results | [121] |
NP | Amphotericin B | Candida albicans infection | No loaded DDS toxicity compared with free drug. Very good results | [111] |
NP | Bovine serum albumin, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), β-galactosidase and myoglobin | Protein stabilization for pharmaceuticals applications | DEX NPs can preserve the protein’s bioactivity during the preparation process; DEX NPs attenuate the acidic microenvironment by means of the dilution effect; | [122] |
NP | Insulin | Diabetes | Very good results | [123] |
Magnetic NP-DEX coated | Propiconazole | Candida albicans infection | Direct interaction with the cell wall in both planktonic and biofilm phases; 77% biofilm breakdown | [117] |
Magnetic NP-DEX coated | Folic acid | Magnetic resonance imaging | Negative contrast agent for antigen allowed arthritis visualisation in a rat model and measuring the treatment response | [114] |
NP-DEX coated | Human epithelial colorectal adenocarcinoma cells | Good anticancer effect | [124] | |
Gold NP-DEX coated | Solid carcinoma and Ehrlich ascites carcinoma transplanted on mice | Significant antitumour effects; Improvement of body functions; increased liver antioxidant properties; increased the B-cell lymphoma 2 gene expression level; suppressed the apoptotic pathway | [125] | |
NP-DEX coated | Zidovudine | Viral infection | Increased drug half-life; well internalized in the neural cells | [16] |
NP | Myristoyl- ECGKRK peptide | Cancer therapies | Satisfactory results obtained | [126] |
NP | Chloroquine diphosphate | Plasmodium falciparum malaria infection | Very good antimicrobial effects obtained DDS suitable for in vivo tests | [127] |
NP | Curcumin | Breast cancer | DDS has good drug-loading and delivery performance; very effective against MCF-7 cell line | [128] |
DDS Type | Drug Loaded | Targeted Disease/Applications | Observations | Reference |
---|---|---|---|---|
NC | Camptothecin | Cancer therapies | High drug-loading rate; superior stability in aqueous solutions; notable in vitro antitumour activity against HeLa and MCF-7 cells | [130] |
NC | Choline kinase siRNA | siRNA cancer therapy | Successful delivery of siRNA | [131] |
DEX-coated graphene oxide NP | Curcumin | MCF-7 breast cancer cell lines | Very good results obtained; potential DDS for chemotherapy application | [44] |
NC | Paclitaxel and silybin | A549 lung cancer cells | Excellent encapsulation efficiency of both active substances; employs synergistic effects through chemotherapy sensitization and microenvironment modulation, improving the efficacy of cancer therapy; in vivo tests confirmed tumour growth inhibition | [25] |
Conjugate | Calcium ions | Calcium supplements’ carrier | Could be used as an effective carrier for new calcium supplements | [134] |
Nanowires | Pharmaceutical applications | Useful biomaterial for medical applications | [15] | |
NC | Cabazitaxel | Prostatic cancer | Promising DDS as a substitution for the current market formulation | [135] |
Conjugate | Metronidazole | Protozoa infection | Very good in vivo results | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovici, A.R.; Pinteala, M.; Simionescu, N. Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023, 28, 1086. https://doi.org/10.3390/molecules28031086
Petrovici AR, Pinteala M, Simionescu N. Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules. 2023; 28(3):1086. https://doi.org/10.3390/molecules28031086
Chicago/Turabian StylePetrovici, Anca Roxana, Mariana Pinteala, and Natalia Simionescu. 2023. "Dextran Formulations as Effective Delivery Systems of Therapeutic Agents" Molecules 28, no. 3: 1086. https://doi.org/10.3390/molecules28031086
APA StylePetrovici, A. R., Pinteala, M., & Simionescu, N. (2023). Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules, 28(3), 1086. https://doi.org/10.3390/molecules28031086