Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics
Abstract
:1. Introduction
2. Results and Discussions
2.1. TXRF Analysis
2.2. Factor Analysis and Principal Component Analysis (PCA)
2.3. Generalized Cluster Analysis by k-Means (k-Means CA)
2.4. Support Vector Machines (SVMs)
3. Materials and Methods
3.1. Sample Description
3.2. Sample Preparation
3.3. Spectra Acquisition
3.4. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tite, M.S. Ceramic production, provenance and use—A review. Archaeometry 2008, 50, 216–231. [Google Scholar] [CrossRef]
- Glascock, M.D. Compositional Analysis in Archaeology. In Online Only—Archaeology; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Hein, A.; Tsolakidou, A.; Iliopoulos, I.; Mommsen, H.; Buxeda i Garrigós, J.; Montana, G.; Kilikoglou, V. Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: An inter laboratory calibration study. Analyst 2002, 127, 542–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vleeschouwer, F.; Renson, V.; Claeys, P.; Nys, K.; Bindler, R. Quantitative WD-XRF calibration for small ceramic samples and their source material. Geoarchaeology 2011, 26, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Georgakopoulou, M.; Hein, A.; Müller, N.S.; Kiriatzi, E. Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics: WDXRF routine for archaeological ceramics analysis. X-Ray Spectrom. 2017, 46, 186–199. [Google Scholar] [CrossRef] [Green Version]
- Speakman, R.J.; Glascock, M.D. Acknowledging fifty years of neutron activation analysis in archaeology. Archaeometry 2007, 49, 179–183. [Google Scholar] [CrossRef]
- Wallis, N.J.; Kamenov, G.D. Challenges in the Analysis of Heterogeneous Pottery by LA–ICP–MS: A Comparison with INAA. Archaeometry 2013, 55, 893–909. [Google Scholar] [CrossRef]
- Tsolakidou, A.; Buxeda i Garrigós, J.; Kilikoglou, V. Assessment of dissolution techniques for the analysis of ceramic samples by plasma spectrometry. Anal. Chim. Acta 2002, 474, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Vannoorenberghe, M.; Teetaert, D.; Goemaere, E.; Van Acker, T.; Belza, J.; Meylemans, E.; Vanhaecke, F.; Crombé, P. Complementarity of LA-ICP-MS and petrography in the analysis of Neolithic pottery from the Scheldt River valley, Belgium. J. Archaeol. Sci. Rep. 2022, 42, 103413. [Google Scholar] [CrossRef]
- Flewett, S.; Saintenoy, T.; Sepulveda, M.; Fabian Mosso, E.; Robles, C.; Vega, K.; Gutierrez, S.; Romero, A.; Finney, L.; Maxey, E.; et al. Micro X-ray Fluorescence Study of Late Pre-Hispanic Ceramics from the Western Slopes of the South Central Andes Region in the Arica y Parinacota Region, Chile: A New Methodological Approach. Appl. Spectrosc. 2016, 70, 1759–1769. [Google Scholar] [CrossRef]
- Andrić, V.; Gajić-Kvaščev, M.; Crkvenjakov, D.K.; Marić-Stojanović, M.; Gadžurić, S. Evaluation of Pattern Recognition Techniques for the Attribution of Cultural Heritage Objects Based on the Qualitative XRF Data. Microchem. J. 2021, 167, 106267. [Google Scholar] [CrossRef]
- Odelli, E.; Palleschi, V.; Legnaioli, S.; Cantini, F.; Raneri, S. Graph Clustering and Portable X-Ray Fluorescence: An Application for in Situ, Fast and Preliminary Classification of Transport Amphoras. Spectrochim. Acta Part B At. Spectrosc. 2020, 172, 105966. [Google Scholar] [CrossRef]
- Emmitt, J.J.; McAlister, A.J.; Phillipps, R.S.; Holdaway, S.J. Sourcing without Sources: Measuring Ceramic Variability with PXRF. J. Archaeol. Sci. Rep. 2018, 17, 422–432. [Google Scholar] [CrossRef]
- Fornacelli, C.; Volpi, V.; Ponta, E.; Russo, L.; Briano, A.; Donati, A.; Giamello, M.; Bianchi, G. Grouping Ceramic Variability with PXRF for Pottery Trade and Trends in Early Medieval Southern Tuscany. Preliminary Results from the Vetricella Case Study (Grosseto, Italy). Appl. Sci. 2021, 11, 11859. [Google Scholar] [CrossRef]
- Braekmans, D.; Boschloos, V.; Hameeuw, H.; Van der Perre, A. Tracing the Provenance of Unfired Ancient Egyptian Clay Figurines from Saqqara through Non-Destructive X-Ray Fluorescence Spectrometry. Microchem. J. 2019, 145, 1207–1217. [Google Scholar] [CrossRef]
- Panchuk, V.; Yaroshenko, I.; Legin, A.; Semenov, V.; Kirsanov, D. Application of Chemometric Methods to XRF-Data—A Tutorial Review. Anal. Chim. Acta 2018, 1040, 19–32. [Google Scholar] [CrossRef]
- Barone, G.; Mazzoleni, P.; Spagnolo, G.V.; Raneri, S. Artificial Neural Network for the Provenance Study of Archaeological Ceramics Using Clay Sediment Database. J. Cult. Herit. 2019, 38, 147–157. [Google Scholar] [CrossRef]
- Calparsoro, E.; Maguregui, M.; Morillas, H.; Arana, G.; Iñañez, J.G. Non-Destructive Screening Methodology Based on ED-XRF for the Classification of Medieval and Post-Medieval Archaeological Ceramics. Ceram. Int. 2019, 45, 10672–10683. [Google Scholar] [CrossRef]
- Anglisano, A.; Casas, L.; Anglisano, M.; Queralt, I. Application of Supervised Machine-Learning Methods for Attesting Provenance in Catalan Traditional Pottery Industry. Minerals 2019, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Seetha, D.; Velraj, G. Spectroscopic and Statistical Approach of Archaeological Artifacts Recently Excavated from Tamilnadu, South India. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 59–68. [Google Scholar] [CrossRef]
- Seetha, D.; Velraj, G. FT-IR, XRD, SEM-EDS, EDXRF and Chemometric Analyses of Archaeological Artifacts Recently Excavated from Chandravalli in Karnataka State, South India. Radiat. Phys. Chem. 2019, 162, 114–120. [Google Scholar] [CrossRef]
- Araujo, C.S.; Appoloni, C.R.; Ikeoka, R.A.; Symanski, L.C.P. Study of Ceramics from Brazilian Slave Quarters of the XVIII and XIX Centuries by EDXRF and Multivariate Analysis. Appl. Radiat. Isot. 2023, 191, 110560. [Google Scholar] [CrossRef] [PubMed]
- Papachristodoulou, C.; Gravani, K.; Oikonomou, A.; Ioannides, K. On the Provenance and Manufacture of Red-Slipped Fine Ware from Ancient Cassope (NW Greece): Evidence by X-Ray Analytical Methods. J. Archaeol. Sci. 2010, 37, 2146–2154. [Google Scholar] [CrossRef]
- Fernández-Ruiz, R.; Garcia-Heras, M. Analysis of Archaeological Ceramics by Total-Reflection X-Ray Fluorescence: Quantitative Approaches. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 975–979. [Google Scholar] [CrossRef]
- Fernández-Ruiz, R.; García-Heras, M. Study of Archaeological Ceramics by Total-Reflection X-Ray Fluorescence Spectrometry: Semi-Quantitative Approach. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1123–1129. [Google Scholar] [CrossRef]
- García-Heras, M.; Fernández-Ruiz, R.; Tornero, J.D. Analysis of archaeological ceramics by TXRF and contrasted with NAA. J. Archaeol. Sci. 1997, 24, 1003–1014. [Google Scholar] [CrossRef]
- Cariati, F.; Fermo, P.; Gilardoni, S.; Galli, A.; Milazzo, M. A new approach for archaeological ceramics analysis using total reflection X-ray fluorescence spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 177–184. [Google Scholar] [CrossRef]
- Horcajada, P.; Roldán, C.; Vidal, C.; Rodenas, I.; Carballo, J.; Murcia, S.; Juanes, D. Archaeometric study of ceramic figurines from the Maya settlement of La Blanca (Petén, Guatemala). Radiat. Phys. Chem. 2015, 97, 275–283. [Google Scholar] [CrossRef]
- Szczerbowska-Boruchowska, M.; Surowka, A.D.; Ostachowicz, B.; Piana, K.; Spaleniak, A.; Wrobel, P.; Dudala, J.; Ziomber-Lisiak, A. Combined Spectroscopic, Biochemical and Chemometric Approach toward Finding of Biochemical Markers of Obesity. Biochim. Biophys. Acta-Gen. Subj. 2023, 1867, 130279. [Google Scholar] [CrossRef]
- Allegretta, I.; Squeo, G.; Gattullo, C.E.; Porfido, C.; Cicchetti, A.; Caponio, F.; Cesco, S.; Nicoletto, C.; Terzano, R. TXRF Spectral Information Enhanced by Multivariate Analysis: A New Strategy for Food Fingerprint. Food Chem. 2023, 401, 134124. [Google Scholar] [CrossRef]
- Vitali Čepo, D.; Karoglan, M.; Borgese, L.; Depero, L.E.; Marguí, E.; Jablan, J. Application of Benchtop Total-Reflection X-Ray Fluorescence Spectrometry and Chemometrics in Classification of Origin and Type of Croatian Wines. Food Chem. X 2022, 13, 100209. [Google Scholar] [CrossRef]
- Ferreira, L.; Nascentes, C.; Valladão, F.; Lordeiro, R. Feasibility of a New Method for Identification and Discrimination of Gunshot Residues by Total Reflection X-Ray Fluorescence and Principal Component Analysis. J. Braz. Chem. Soc. 2019, 30, 2582–2589. [Google Scholar] [CrossRef]
- Duarte, B.; Mamede, R.; Carreiras, J.; Duarte, I.A.; Caçador, I.; Reis-Santos, P.; Vasconcelos, R.P.; Gameiro, C.; Ré, P.; Tanner, S.E.; et al. Harnessing the Full Power of Chemometric-Based Analysis of Total Reflection X-Ray Fluorescence Spectral Data to Boost the Identification of Seafood Provenance and Fishing Areas. Foods 2022, 11, 2699. [Google Scholar] [CrossRef] [PubMed]
- Duarte, B.; Mamede, R.; Duarte, I.A.; Caçador, I.; Tanner, S.E.; Silva, M.; Jacinto, D.; Cruz, T.; Fonseca, V.F. Elemental Chemometrics as Tools to Depict Stalked Barnacle (Pollicipes Pollicipes) Harvest Locations and Food Safety. Molecules 2022, 27, 1298. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, A.S.; Pashkova, G.V.; Fernández-Ruiz, R.; Demonterova, E.I.; Shuliumova, A.N.; Umarova, N.N.; Shergin, D.L.; Mukhamedova, M.M.; Chubarov, V.M.; Mikheeva, E.A. Characterization of Archaeological Ceramics from Eastern Siberia by Total-Reflection X-Ray Fluorescence Spectrometry and Principal Component Analysis. Spectrochim. Acta Part B At. Spectrosc. 2021, 175, 106012. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Klockenkämper, R.; von Bohlen, A. Total-Reflection X-ray Fluorescence Analysis and Related Methods, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Pashkova, G.; Statkus, M.; Mukhamedova, M.; Finkelshtein, A.; Abdrashitova, I.; Belozerova, O.; Chubarov, V.; Amosova, A.; Maltsev, A.; Demonterova, E.; et al. A Workflow for Uncertainty Assessment in Elemental Analysis of Archaeological Ceramics. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
Archaeological Site (Number of Samples) | Concentration Range (mg/kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
V | Cr | Ni | Cu | Zn | Ga | Rb | Sr | Y | Pb | |
Popovsky Lug (45) | 31–152 | 57–172 | 9–82 | 9–62 | 26–943 | 8–19 | 13–76 | 36–203 | 7–57 | 19–72 |
Ust-Yamniy (11) | 40–162 | 50–193 | 15–50 | 12–50 | 37–129 | 4–18 | 13–60 | 64–188 | 14–30 | 26–66 |
Makarovo (9) | 39–126 | 62–142 | 16–44 | 12–31 | 58–114 | 10–15 | 24–63 | 69–168 | 13–27 | 27–51 |
Ust-Karenga (8) | 0–63 | 26–98 | 6–30 | 12–61 | 38–501 | 11–23 | 20–122 | 21–201 | 3–52 | 21–180 |
Ust-Yumurchen (4) | 16–99 | 28–163 | 5–59 | 12–42 | 62–83 | 8–14 | 10–43 | 18–260 | 9–20 | 18–49 |
Shishkino (4) | 54–97 | 90–138 | 30–48 | 21–31 | 46–67 | 10–15 | 23–48 | 42–76 | 8–21 | 25–42 |
Cluster Number | 1 | 2 | 3 | 4 | 5 | 6 | Total | |
---|---|---|---|---|---|---|---|---|
Archaeological Site | ||||||||
Popovsky Lug | 0 | 0 | 45 | 0 | 0 | 0 | 45 | |
Ust-Yamniy | 0 | 0 | 0 | 0 | 0 | 11 | 11 | |
Makarovo | 0 | 0 | 0 | 9 | 0 | 0 | 9 | |
Ust-Karenga | 7 | 1 | 0 | 0 | 0 | 0 | 8 | |
Ust-Yumurchen | 0 | 1 | 0 | 0 | 2 | 1 | 4 | |
Shishkino | 0 | 0 | 1 | 0 | 0 | 3 | 4 |
Cluster Number | 1 | 2 | 3 | 4 | 5 | 6 | Total | |
---|---|---|---|---|---|---|---|---|
Type | ||||||||
Ust-Belsky | 14 | 0 | 0 | 0 | 0 | 0 | 14 | |
Posolskaya | 0 | 0 | 0 | 26 | 0 | 0 | 26 | |
Setchaty | 0 | 0 | 0 | 0 | 15 | 0 | 15 | |
Khaitinsky | 0 | 18 | 0 | 0 | 0 | 0 | 18 | |
Ust-Karenga | 0 | 0 | 6 | 0 | 0 | 2 | 8 |
Archaeological Site | Correct Attribution, Total | Correct Attribution % | Misclassification % | Incorrect Attribution Site |
---|---|---|---|---|
Popovsky Lug | 39/41 | 95% | 5% | Makarovo/Ust-Yamniy |
Ust-Yamniy | 7/11 | 64% | 36% | Makarovo/Popovsky Lug |
Makarovo | 7/9 | 78% | 22% | Popovsky Lug |
Ust-Karenga | 7/8 | 88% | 12% | Ust-Yumurchen |
Ust-Yumurchen | 1/4 | 25% | 75% | Ust-Karenga/Popovsky Lug |
Shishkino | 4/4 | 100% | 0% | - |
Archaeological Type | Correct Attribution, Total | Correct Attribution % | Misclassification % | Incorrect Attribution Type |
---|---|---|---|---|
Khaitinsky | 15/15 | 100% | 0% | - |
Setchaty | 9/15 | 60% | 40% | Khaitinsky /Posolskaya |
Ust-Belsky | 11/13 | 85% | 15% | Posolskaya |
Posolskaya | 24/24 | 100% | 0% | - |
Ust-Karenga | 8/8 | 100% | 0% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maltsev, A.S.; Umarova, N.N.; Pashkova, G.V.; Mukhamedova, M.M.; Shergin, D.L.; Panchuk, V.V.; Kirsanov, D.O.; Demonterova, E.I. Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics. Molecules 2023, 28, 1099. https://doi.org/10.3390/molecules28031099
Maltsev AS, Umarova NN, Pashkova GV, Mukhamedova MM, Shergin DL, Panchuk VV, Kirsanov DO, Demonterova EI. Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics. Molecules. 2023; 28(3):1099. https://doi.org/10.3390/molecules28031099
Chicago/Turabian StyleMaltsev, Artem S., Nailya N. Umarova, Galina V. Pashkova, Maria M. Mukhamedova, Dmitriy L. Shergin, Vitaly V. Panchuk, Dmitry O. Kirsanov, and Elena I. Demonterova. 2023. "Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics" Molecules 28, no. 3: 1099. https://doi.org/10.3390/molecules28031099
APA StyleMaltsev, A. S., Umarova, N. N., Pashkova, G. V., Mukhamedova, M. M., Shergin, D. L., Panchuk, V. V., Kirsanov, D. O., & Demonterova, E. I. (2023). Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics. Molecules, 28(3), 1099. https://doi.org/10.3390/molecules28031099