ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentations
3.3. Synthesis of NiCo-LDH@CNTs-z% (z = 2, 2.5, and 3)
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shaari, N.; Kamarudin, S.K.; Bahru, R.; Osman, S.H.; Md Ishak, N.A.I. Progress and challenges: Review for direct liquid fuel cell. Int. J. Energy Res. 2021, 45, 6644–6688. [Google Scholar] [CrossRef]
- Zheng, Y.; Wan, X.; Cheng, X.; Cheng, K.; Dai, Z.; Liu, Z. Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells. Catalysts 2020, 10, 166. [Google Scholar] [CrossRef]
- Bai, J.; Liu, D.; Yang, J.; Chen, Y. Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem 2019, 12, 2117–2132. [Google Scholar] [CrossRef]
- Tan, X.; Wu, R.; Zhu, Q.; Gou, Q.; Zhang, Y.; Huang, H.; Fu, L. Pd nanoparticles anchored on carbon nanotubes/covalent organic frameworks for catalytic ethanol electrooxidation. ACS Appl. Nano Mater. 2022, 5, 597–604. [Google Scholar] [CrossRef]
- Di, Q.; Zhao, X.; Zhu, W.; Luan, Y.; Hou, Z.; Fan, X.; Zhou, Y.; Wang, S.; Quan, Z.; Zhang, J. Controllable synthesis of platinum–tin intermetallic nanoparticles with high electrocatalytic performance for ethanol oxidation. Inorg. Chem. Front. 2022, 9, 1143–1151. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, L.; Liao, Y.; Li, L.; Yang, Q.; Wu, X.; Wu, X.; He, D.; He, C.; Chen, W.; et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, 2008508. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Xue, S.; Zhang, J.; Zhao, M.; Ma, J.; Chen, S.; Zheng, Z.; Jia, J.; Wu, H. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chem. Eng. J. 2021, 408, 127271. [Google Scholar] [CrossRef]
- Xiang, Q.; Xu, Y.; Chen, R.; Yang, C.; Li, X.; Li, G.; Wu, D.; Xie, X.; Zhu, W.; Wang, L. Electrodeposition of Pt3Sn nano-alloy on NiFe-layered double hydroxide with “Card-house” structure for enhancing the electrocatalytic oxidation performance of ethanol. ChemNanoMat 2021, 7, 314–322. [Google Scholar] [CrossRef]
- Zhu, Y.; Bu, L.; Shao, Q.; Huang, X. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Z.; Chen, X.; Qu, Z.; Li, F.; Yang, W. Ultrathin layered double hydroxide nanosheets with Ni(Ⅲ) active species obtained by exfoliation for highly efficient ethanol electrooxidation. Electrochim. Acta 2018, 260, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Xue, H.; Gong, H.; Bai, M.; Tang, D.; Ma, R.; Sasaki, T. 2D layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett. 2020, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Wang, M.; Wang, X.; Wang, H.; Wang, L.; Mu, Y.; Lv, B. N-doped amorphous MoSi for the hydrogen evolution reaction. Nanoscale 2019, 11, 11217–11226. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Jin Fan, H.; Fan, Z.; Gong, C.; et al. Recent progress on two-dimensional materials. Acta Phys.-Chim. Sin. 2021, 37, 2108017. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 2021, 1, 69–74. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Martins, P.R.; Angnes, L.; Araki, K. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction. New J. Chem. 2020, 44, 9981–9997. [Google Scholar] [CrossRef]
- Gao, X.; Wang, P.; Pan, Z.; Claverie, J.P.; Wang, J. Recent progress in two-dimensional layered double hydroxides and their derivatives for supercapacitors. ChemSusChem 2020, 13, 1226–1254. [Google Scholar] [CrossRef]
- Chen, C.; Tao, L.; Du, S.; Chen, W.; Wang, Y.; Zou, Y.; Wang, S. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage. Adv. Funct. Mater. 2020, 30, 1909832. [Google Scholar] [CrossRef]
- Yang, H.; Guo, T.; Qin, K.; Liu, Q. Different interlayer anions controlled zinc cobalt layered double hydroxide nanosheets for ethanol electrocatalytic oxidation. J. Phys. Chem. C 2021, 125, 24867–24875. [Google Scholar] [CrossRef]
- Yang, X.; Gao, Y.; Zhao, Z.; Tian, Y.; Kong, X.; Lei, X.; Zhang, F. Three-dimensional spherical composite of layered double hydroxides/carbon nanotube for ethanol electrocatalysis. Appl. Clay Sci. 2021, 202, 105964. [Google Scholar] [CrossRef]
- Zheng, K.; Xu, J.; Ruan, J.; Li, X.; Yuan, Z.; Yang, M.; Chen, J.; Xie, F.; Jin, Y.; Wang, N.; et al. Rapid synthesis of porous Ni/Co/Fe-LDHs nanosheets for effective electrochemical oxygen evolution reaction and zinc-air batteries. Int. J. Hydrogen Energy 2022, 47, 26865–26870. [Google Scholar] [CrossRef]
- Song, Y.; Ji, K.; Duan, H.; Shao, M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 2021, 1, 20210050. [Google Scholar] [CrossRef]
- Yang, N.; Chen, D.; Cui, P.; Lu, T.; Liu, H.; Hu, C.; Xu, L.; Yang, J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat 2021, 2, 234–245. [Google Scholar] [CrossRef]
- Laipan, M.; Yu, J.; Zhu, R.; Zhu, J.; Smith, A.T.; He, H.; O’Hare, D.; Sun, L. Functionalized layered double hydroxides for innovative applications. Mater. Horiz. 2020, 7, 715–745. [Google Scholar] [CrossRef]
- Huang, M.; Wang, L.; Pei, K.; You, W.; Yu, X.; Wu, Z.; Che, R. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, e2000158. [Google Scholar] [CrossRef]
- Kundu, A.; Samanta, A.; Raj, C.R. Hierarchical hollow MOF-derived bamboo-like N-doped carbon nanotube-encapsulated Co(0.25)Ni(0.75) alloy: An efficient bifunctional oxygen electrocatalyst for zinc-air battery. ACS Appl. Mater. Interfaces 2021, 13, 30486–30496. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, H.; Ma, L.; Lin, Y.; Zong, H.; Wen, B.; Bai, X.; Wang, M. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 581, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tong, Z.; Liu, C.; Ye, L.; Zhou, Y.; Meng, Q.; Zhang, G.; Gao, C. Functionalized MOF-derived nanoporous carbon as compatible nanofiller to fabricate defect-free PDMS-based mixed matrix pervaporation membranes. ACS Omega 2022, 7, 15786–15794. [Google Scholar] [CrossRef]
- Xu, Z.; Li, L.; Chen, X.; Fang, C.; Xiao, G. Mesoporous zeolitic imidazolate frameworks. CCS Chem. 2022, 4, 2906–2913. [Google Scholar] [CrossRef]
- An, J.; Shen, T.; Chang, W.; Zhao, Y.; Qi, B.; Song, Y.-F. Defect engineering of NiCo-layered double hydroxide hollow nanocages for highly selective photoreduction of CO2 to CH4 with suppressing H2 evolution. Inorg. Chem. Front. 2021, 8, 996–1004. [Google Scholar] [CrossRef]
- Huang, L.; Jadoon, S.; Wang, Z.; Niu, H.; Xia, B.Y. Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys.-Chim. Sin. 2021, 37, 202009035. [Google Scholar] [CrossRef]
- Duan, M.; Qiu, M.; Sun, S.; Guo, X.; Liu, Y.; Zheng, X.; Cao, F.; Kong, Q.; Zhang, J. Intercalating assembly of NiFe LDH nanosheets/CNTs composite as high-performance electrocatalyst for oxygen evolution reaction. Appl. Clay Sci. 2022, 216, 106360. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Hu, Y.; Guan, M.; Xu, L.; Li, H.; Bao, J.; Li, H. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B Environ. 2020, 272, 118959. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Zhong, Y.; Cui, L.; Yang, W.; Razal, J.M.; Barrow, C.J.; Liu, J. Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors. J. Power Source 2021, 484, 229288. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, H.; Peng, C.K.; Bu, L.; Chiang, C.L.; Tian, K.; Zhao, Y.; Zhao, J.; Lin, Y.G.; Lee, J.M.; et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426. [Google Scholar] [CrossRef]
- Hou, C.; Li, T.; Zhang, Z.; Chang, C.; An, L. Nickel-cobalt layered double hydroxide hollow nanocages anchored on carbon nanotubes as electrode for supercapacitors. Mater. Lett. 2022, 309, 131361. [Google Scholar] [CrossRef]
- Tong, Y.; Liang, Y.; Hu, Y.; Shamsaei, E.; Wei, J.; Hao, Y.; Mei, W.; Chen, X.; Shi, Y.; Wang, H. Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. J. Alloys Compnd. 2020, 816, 152684. [Google Scholar] [CrossRef]
- Elkashef, M.; Wang, K.; Abou-Zeid, M.N. Acid-treated carbon nanotubes and their effects on mortar strength. Front. Struct. Civ. Eng. 2015, 10, 180–188. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pieotti, R.A.; Rouquerol, J.; Siemienewska, T. Reporting physisorption data for gas/systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, J.; He, Z.; Gao, Z.; Song, Y.-Y. Direct access to NiCo-LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity. Energy Storage Mater. 2022, 48, 487–496. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, W.; Liu, Y.; Shi, W. Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem. Eng. J. 2020, 383, 123150. [Google Scholar] [CrossRef]
- Zhang, L.; Li, F. Synthesis of carbon nanotubes/metal oxide composites over layered double hydroxides and application in electrooxidation of ethanol. Appl. Clay Sci. 2010, 50, 64–72. [Google Scholar] [CrossRef]
- Yin, P.; Wu, G.; Wang, X.; Liu, S.; Zhou, F.; Dai, L.; Wang, X.; Yang, B.; Yu, Z.-Q. NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Res. 2021, 14, 4783–4788. [Google Scholar] [CrossRef]
- Nguyen, M.T.X.; Nguyen, M.-K.; Pham, P.T.T.; Huynh, H.K.P.; Pham, H.H.; Vo, C.C.; Nguyen, S.T. High-performance Pd-coated Ni nanowire electrocatalysts for alkaline direct ethanol fuel cells. J. Electroanal. Chem. 2021, 888, 115180. [Google Scholar] [CrossRef]
- Maya-Cornejo, J.; Diaz-Real, J.A.; Lopez-Miranda, J.L.; Álvarez-Contreras, L.; Esparza, R.; Arjona, N.; Estévez, M. Formation of Cu@Pd core@shell nanocatalysts with high activity for ethanol electro-oxidation in alkaline medium. Appl. Surf. Sci. 2021, 538, 148119. [Google Scholar] [CrossRef]
- Zhao, Y.; Maswadeh, Y.; Shan, S.; Cronk, H.; Skeete, Z.; Prasai, B.; Luo, J.; Petkov, V.; Zhong, C.-J. Composition-structure-activity correlation of platinum-ruthenium nanoalloy catalysts for ethanol oxidation reaction. J. Phys. Chem. C 2017, 121, 17077–17087. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Dang, N.K.; Park, H.J.; Sultan, S.; Kim, M.G.; Haiyan, J.; Lee, Z.; Kim, K.S. Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium-cobalt phosphide nanoparticles. Nano Energy 2020, 78, 105166. [Google Scholar] [CrossRef]
- Akhairi, M.A.F.; Kamarudin, S.K. Catalysts in direct ethanol fuel cell (DEFC): An overview. Int. J. Hydrogen Energy 2016, 41, 4214–4228. [Google Scholar] [CrossRef]
- Guo, Y.; Li, B.; Shen, S.; Luo, L.; Wang, G.; Zhang, J. Potential-dependent mechanistic study of ethanol electro-oxidation on palladium. ACS Appl. Mater. Interfaces 2021, 13, 16602–16610. [Google Scholar] [CrossRef]
- Sheng, T.; Qiu, C.; Lin, X.; Lin, W.-F.; Sun, S.-G. Insights into ethanol electro-oxidation over solvated Pt(100): Origin of selectivity and kinetics revealed by DFT. Appl. Surf. Sci. 2020, 533, 147505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, Y.; Li, C.; Zhu, W.; Chen, W.; Zhao, Y.; Liu, R.; Wang, L. ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction. Molecules 2023, 28, 1173. https://doi.org/10.3390/molecules28031173
Li Y, Xu Y, Li C, Zhu W, Chen W, Zhao Y, Liu R, Wang L. ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction. Molecules. 2023; 28(3):1173. https://doi.org/10.3390/molecules28031173
Chicago/Turabian StyleLi, Yixuan, Yanqi Xu, Cunjun Li, Wenfeng Zhu, Wei Chen, Yufei Zhao, Ruping Liu, and Linjiang Wang. 2023. "ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction" Molecules 28, no. 3: 1173. https://doi.org/10.3390/molecules28031173
APA StyleLi, Y., Xu, Y., Li, C., Zhu, W., Chen, W., Zhao, Y., Liu, R., & Wang, L. (2023). ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction. Molecules, 28(3), 1173. https://doi.org/10.3390/molecules28031173