Lutein Isomers: Preparation, Separation, Structure Elucidation, and Occurrence in 20 Medicinal Plants
Abstract
:1. Introduction
2. Results
2.1. Identification of Lutein Isomers
2.1.1. (9′Z)-Lutein
2.1.2. (13′Z)-Lutein
2.2. Analysis of Flowers
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Pigment Extraction and Determination of Carotenoid Content
4.2.1. High-Performance Liquid Chromatography
4.2.2. Identification of the Peaks
4.3. Isomerization of Lutein
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
References
- Young, A.; Britton, G. Carotenoids in Photosynthesis; Chapmann & Hall: London, UK, 1993. [Google Scholar]
- Khachik, F.; Spangler, C.J.; Smith, J.C.; Canfield, L.M.; Steck, A.; Pfander, H. Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal Chem. 1997, 69, 1873–1881. [Google Scholar] [CrossRef]
- Davies, N.P.; Morland, A.B. Macular pigments: Their characteristics and putative role. Prog. Retin. Eye Res. 2004, 23, 533–559. [Google Scholar] [CrossRef]
- Pap, R.; Pandur, E.; Jánosa, G.; Sipos, K.; Agócs, A.; Deli, J. Lutein exerts antioxidant and anti-inflammatory effects and influences iron utilization of BV-2 microglia. Antioxidants 2021, 10, 363. [Google Scholar] [CrossRef] [PubMed]
- Pap, R.; Pandur, E.; Jánosa, G.; Sipos, K.; Nagy, T.; Agócs, A.; Deli, J. Lutein decreases inflammation and oxidative stress and prevents iron accumulation and lipid peroxidation at glutamate-induced neurotoxicity. Antioxidants 2022, 11, 2269. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Smith, S.J.; Drummond, P.D. The Effects of lutein and zeaxanthin supplementation on cognitive function in adults with self-reported mild cognitive complaints: A randomized, double-blind, placebo-controlled study. Front. Nutr. 2022, 9, 843512. [Google Scholar] [CrossRef] [PubMed]
- Wilstatter, R.; Mieg, W. Untersuchungen über Chlorophyll; IV. Ueber die gelben Begleiter des Chlorophylls. Liebigs Ann. Chem. 1907, 355, 1–28. [Google Scholar] [CrossRef]
- Linden, A.; Bürgi, B.; Eugster, C.H. Confirmation of the structures of lutein and zeaxanthin. Helvetica Chim. Acta 2004, 87, 1254–1269. [Google Scholar] [CrossRef]
- Buchecker, R.; Eugster, C.H.; Weber, A. Absolute Konfiguration von α-Doradexanthin und von Fritschiellaxanthin, einem neuen Carotinoid aus Fritschiella tuberosa IYENG. Helvetica Chim. Acta 1978, 61, 1962–1968. [Google Scholar] [CrossRef]
- Dabbagh, A.G.; Egger, K.Z. Calthaxanthin—Ein Stereoisomeres des Luteins aus Caltha palustris. Pflanzenphysiologie 1974, 72, 177–180. [Google Scholar] [CrossRef]
- Buchecker, R.; Eugster, C.H. Eine Suche nach 3′-Epilutein (=(3R,3′S,6′R)-β,ε-Carotin-3,3′-diol) und 3′,O-Didehydrolutein (=(3R,6′R)-3-Hydroxy-β,ε-carotin-3′-on) in Eigelb, in Blüten von Caltha palustris und in Herbstblättern. Helvetica Chim. Acta 1979, 62, 2817–2824. [Google Scholar] [CrossRef]
- Molnár, P.; Deli, J.; Ősz, E.; Zsila, F.; Simonyi, M.; Tóth, G. Confirmation of the absolute (3R,3′S,6′R)-configuration of (all-E)-3′-epilutein. Helvetica Chim. Acta 2004, 87, 2159–2168. [Google Scholar] [CrossRef]
- Märki-Fischer, E.; Eugster, C.H. Eine weitere, diesmal erfolgreiche Suche nach 3′-Epilutein in Pflanzen. Helvetica Chim. Acta 1990, 73, 1205–1209. [Google Scholar] [CrossRef]
- Deli, J.; Molnár, P.; Ősz, E.; Tóth, G.; Zsila, F. Epimerisation of lutein to 3′-epilutein in processed foods. Bioorg. Med. Chem. Lett. 2004, 14, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Molnár, P.; Ősz, E.; Szabó, Z.; Oláh, P.; Tóth, G.; Deli, J. Separation and identification of lutein derivatives in processed foods. Chromatographia 2004, 60, S101–S105. [Google Scholar] [CrossRef]
- Khachik, F. An efficient conversion of (3R,3‘R,6‘R)-lutein to (3R,3‘S,6‘R)-lutein (3‘-epilutein) and (3R,3‘R)-zeaxanthin. J. Nat. Prod. 2003, 66, 67–72. [Google Scholar] [CrossRef]
- Matsuno, T.; Maoka, T.; Katsuyama, M.; Hirono, T.; Ikuno, Y.; Shimizu, M.; Komori, T. Comparative biochemical studies of carotenoids in fishes—XXIX. Isolation of new luteins, lutein F and lutein G from marine fishes. Comp. Biochem. Physiol. B 1986, 85, 77–80. [Google Scholar] [CrossRef]
- Matsuno, T.; Katsuyama, M.; Maoka, T.; Hirono, T.; Komori, T. Reductive metabolic pathways of carotenoids in fish (3S,3′S)-astaxanthin to tunaxanthin a, b and c. Comp. Biochem. Physiol. B 1985, 80, 779–789. [Google Scholar] [CrossRef]
- Khachik, F.; Steck, A.; Pfander, H. Isolation and structural elucidation of (13Z,13‘Z,3R,3‘R,6‘R)-lutein from marigold flowers, kale, and human plasma. J. Agric. Food Chem. 1999, 47, 455–461. [Google Scholar] [CrossRef]
- Baranyai, M.; Molnár, P.; Szabolcs, J.; Radics, L.; Kajtár-Peredy, M. Determination of the geometric configuration of the polyene chain of mono-cis C40 carotenoids II: A 13CNMR study of mono-cis luteins and mono-cis capsanthins. Tetrahedron 1981, 37, 203–207. [Google Scholar] [CrossRef]
- Molnár, P.; Deli, J.; Ősz, E.; Tóth, G.; Zsila, F. (E/Z)-Isomerization of 3′-epilutein. Helv. Chim. Acta 2004, 87, 2169–2179. [Google Scholar] [CrossRef]
- Molnár, P.; Ősz, E.; Tóth, G.; Zsila, F.; Deli, J. Preparation and spectroscopic characterization of (9Z,9′Z)-lutein (Neolutein C). Helv. Chim. Acta 2006, 89, 667–674. [Google Scholar] [CrossRef]
- Dachtler, M.; Glaser, T.; Kohler, K.; Albert, K. Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina. Anal. Chem. 2001, 73, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Aman, R.; Biehl, J.; Carle, R.; Conrad, J.; Beifuss, U.; Schieber, A. Application of HPLC coupled with DAD, APCI-MS and NMR to the analysis of lutein and zeaxanthin stereoisomers thermally processed vegetables. Food Chemistry 2005, 92, 753–763. [Google Scholar] [CrossRef]
- Honda, M.; Maeda, H.; Fukaya, T.; Goto, M. Effects of Z-isomerization on the bioavailability and functionality of carotenoids: A Review. In Progress in Carotenoid Research; Zepka, L.Q., Jacob-Lopesm, E., De Rosso, V.V., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, K.M.; Lewis, D.H.; Morgan, E.R. Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca (Hook). Euphytika 2003, 130, 25–34. [Google Scholar] [CrossRef]
- Ohmiya, A. Diversity of carotenoid composition in flower petals. JARQ 2011, 45, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Yamamizo, C.; Kishimoto, S.; Ohmiya, A. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. J. Exp. Bot. 2010, 61, 709–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, S.; Maoka, T.; Nakayama, M.; Ohmiya, A. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochemistry 2004, 65, 2781–2787. [Google Scholar] [CrossRef] [PubMed]
- Moehs, C.P.; Tian, L.; Osteryoung, K.W.; Dellapenna, D. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol. Biol. 2001, 45, 281–293. [Google Scholar] [CrossRef]
- Kishimoto, S.; Maoka, T.; Sumitomo, K.; Ohmiya, A. Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci. Biotechn. Biochem. 2005, 69, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S.; Sumimomo, K.; Yagi, M.; Nakayama, M.; Ohmiya, A. Three routes to orange petal color via carotenoid components in 9 compositae species. J. Japan Soc. Hort. Sci. 2007, 76, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Molnár, P.; Szabolcs, J.; Radics, L. Naturally occurring di-cis-violaxanthins from Viola tricolor: Isolation and identification by 1H NMR spectroscopy of four di-cis-isomers. Phytochemistry 1986, 25, 195–199. [Google Scholar] [CrossRef]
- Horváth, G.; Molnár, P.; Farkas, Á.; Szabó, L.G.; Turcsi, E.; Deli, J. Separation and identification of carotenoids in flowers of Chelidonium majus L. and inflorescences of Solidago canadensis L. Chromatographia 2010, 71, S103–S108. [Google Scholar] [CrossRef]
- Turcsi, E.; Nagy, V.; Deli, J. Study on the elution order of carotenoids on endcapped C18 and C30 reverse silica stationary phase. A rewiev of the database. J. Food Comp. Anal. 2016, 47, 101–112. [Google Scholar] [CrossRef]
- Englert, G. NMR Spectroscopy. In Carotenoids; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Verlag: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 1995; Volume 1B, pp. 147–260. [Google Scholar]
- Schiedt, K.; Liaaen-Jensen, S. Isolation and analysis. In Carotenoids; Britton, G., Liaaen Jensen, S., Pfander, H., Eds.; Isolation and Analysis Birkhäuser Verlag: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 1995; Volume 1A, pp. 81–108. [Google Scholar]
- Walter, M.H.; Strack, D. Carotenoids and their cleavage products: Biosynthesis and functions. Nat. Prod. Rep. 2011, 28, 663–692. [Google Scholar] [CrossRef]
- Zechmeister, L. Cis-Trans Isomeric Carotenoids, Vitamins A and Arylpolyenes; Springer: Wien, Austria, 1962. [Google Scholar]
- Molnár, P.; Szabolcs, J. (Z/E)-Photoisomerization of C40-carotenoids by iodine. J. Chem. Soc. Perkin Trans. 2 1993, 261–266. [Google Scholar] [CrossRef]
- Wasshausen, D.C. The systematics of the genus Pachystachys (Acanthaceae). Proc. Biol. Soc. Washington 1986, 99, 162–163. [Google Scholar]
- Paulsen, E.; Andersen, S.L.; Andersen, K.E. Occupational contact dermatitis from golden shrimp plant (Pachystachys lutea). Contact Dermat. 2009, 60, 293–294. [Google Scholar] [CrossRef] [PubMed]
- WFO. Glottiphyllum cruciatum (Haw.) N.E.Br. 2022. Available online: http://www.worldfloraonline.org/taxon/wfo-0000704128 (accessed on 10 October 2022).
- Nazari, F. Propagation of endemic and endangered Sternbergia lutea with a high ornamental value by bulb chipping and plant growth regulators. Acta Sci. Pol. Hortorum. Cultus 2019, 18, 123–131. [Google Scholar] [CrossRef]
- Gurbuz, B.; Khawar, K.M.; Arslan, N.; Ipek, A.; Sarıhan, E.O.; Ozcan, S.; Parmaksız, I.; Mirici, S. Adaptation of endemic Mediterranean Sternbergia candida Mathew Et T. Baytop in the continental climate of Central Anatolia. Sci. Hortic. 2009, 123, 99–103. [Google Scholar] [CrossRef]
- Vaverkova, S.; Habán, M.; Eerna, K. Qualitative properties of Anthemis tinctoria and Anthemis nobilis (Chamaemelum nobile) under different environmental conditions, ecophysiology of plant production processes in stress conditions. In Proceedings of the Fourth International Conference, Pribylina, Slovakia, 12–14 September 2001; pp. 1–2. [Google Scholar]
- WFO. Coreopsis pubescens Elliott. 2022. Available online: http://www.worldfloraonline.org/taxon/wfo-0000009404 (accessed on 10 October 2022).
- WFO. Coreopsis verticillata L. 2022. Available online: https://wfoplantlist.org/plant-list/taxon/wfo-0000117214-2022-06 (accessed on 19 October 2022).
- Cao, C.; Kindscher, K. The medicinal chemistry of Echinacea species. In Echinacea: Herbal Medicine with a Wild History; Kindscher, K., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 127–145. [Google Scholar]
- Tang, F.; Hao, Y.; Zhang, X.; Qin, J. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy. Drug Des. Devel. Ther. 2017, 11, 2813–2826. [Google Scholar] [CrossRef]
- WFO. Echinacea paradoxa Britton. 2022. Available online: http://www.worldfloraonline.org/taxon/wfo-0000018862 (accessed on 10 October 2022).
- Borchers, A.T.; Keen, C.L.; Stern, J.S.; Gershwin, M.E. Inflammation and Native American medicine: The role of botanicals. Am. J. Clin. Nutr. 2000, 72, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WFO. Helianthus angustifolius L. 2022. Available online: http://www.worldfloraonline.org/taxon/wfo-0000066553 (accessed on 10 October 2022).
- Filep, R.; Balogh, L.; Balázs, V.L.; Farkas, Á.; Pal, R.W.; Czigle, S.; Czégényi, D.; Papp, N. Helianthus tuberosus L. agg. in the Carpathian Basin: A blessing or a curse? Genet. Resour. Crop. Evol. 2018, 65, 865–879. [Google Scholar] [CrossRef]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; Cziáky, Z.; Fári, M.; Domokos-Szabolcsy, É. Identification of bioactive phytochemicals in leaf protein concentrate of Jerusalem Artichoke (Helianthus tuberosus L.). Plants 2020, 9, 889. [Google Scholar] [CrossRef]
- Kumari, P.; Ujala; Bhargava, B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods 2021, 78, 104375. [Google Scholar] [CrossRef]
- Leonardi, M.; Ambryszewska, K.E.; Melai, B.; Flamini, G.; Cioni, P.L.; Parri, F.; Pistelli, L. Essential-oil composition of Helichrysum italicum (Roth) G. Don ssp. italicum from Elba Island (Tuscany, Italy). Chem. Biodivers. 2013, 10, 343–355. [Google Scholar] [CrossRef]
- Chaney, R.L.; Angle, J.S.; Baker, A.J.M.; Li, Y.M. Method for Phytomining of Nickel, Cobalt, and Other Metals from Soil. U.S. Patent 5,711,784, Jan. 27, 1998. [Google Scholar]
- Barina, Z. Brassicaceae. In New Hungarian Herbal. The Vascular Plants of Hungary; Király, G., Ed.; Aggteleki Nemzeti Park Igazgatóság: Jósvafő, Hungary, 2009; p. 615. [Google Scholar]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmondson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Cambridge University Press: Cambridge, UK, 1993; Volume 1. [Google Scholar]
- Vergun, O.; Kačániová, M.; Rakhmetov, D.; Shymanska, O.; Bondarchuk, O.; Brindza, J.; Ivanišová, E. Antioxidant and antimicrobial activity of Bunias orientalis L. and Scorzonera hispanica L. ethanol Extracts. Agrobiodiversity Improv. Nutr. Health Life Qual. 2018, 2, 29–38. [Google Scholar] [CrossRef]
- WFO. Cheiranthus cheiri (L.) 2022. Available online: http://worldfloraonline.org/taxon/wfo-0000600195;jsessionid=65D326B684A7A384D5F8177C2B6CCB29 (accessed on 10 October 2022).
- Bleeker, W. Hybridization and Rorippa austriaca (Brassicaceae) invasion in Germany. Mol. Ecol. 2003, 12, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Király, G. Euphorbiaceae. In New Hungarian Herbal. The Vascular Plants of Hungary; Király, G., Ed.; Aggteleki Nemzeti Park Igazgatóság: Jósvafő, Hungary, 2009; p. 615. [Google Scholar]
- Bhakta, T.; Mukherjee, P.K.; Saha, K.; Pal, M.; Saha, B.P.; Mandal, S.C. Evaluation of anti-inflammatory effects of Cassia fistula (Leguminosae) leaf extract on rats. J. Herbs Spices Med. Plants 2000, 6, 67–72. [Google Scholar] [CrossRef]
- Padgett, D.J. A monograph of Nuphar (Nymphaeaceae). Rhodora 2007, 109, 1–95. [Google Scholar] [CrossRef]
(all-E)-Lutein | (9′Z)-Lutein | (13′Z)-Lutein | |||||||
---|---|---|---|---|---|---|---|---|---|
Position | δ(H) [ppm] | J [Hz] | δ(C) [ppm] | δ(H) [ppm] | J [Hz] | δ(C) [ppm] | δ(H) [ppm] | J [Hz] | δ(C) [ppm] |
1 | - | - | 37.1 | - | - | 37.1 | - | - | 37.1 |
2 | α: 1.77 (dt) | 12.1, 3.1 | 48.5 | α: 1.79–1.75 (m) | - | 48.5 | α: 1.77 (pd) | 12.9 | 48.5 |
β: 1.48 (t) | 11.9 | β: 1.48 (t) | 11.9 | β: 1.48 (t) | 11.8 | ||||
3 | 4.03–3.97 (m) | - | 65.1 | 4.03–3.97 (m) | - | 65.1 | 4.06–3.96 (m) | - | 65.1 |
4 | α: 2.39 (dd) | 15.7, 5.1 | 42.6 | α: 2.39 (dd) | 16.4, 4.8 | 42.6 | α: 2.40 (dd) | 5.8 | 42.6 |
β: 2.04 (dd) | 16.6, 9.7 | β: 2.05 (dd) | 16.9, 9.7 | β: 2.05 (dd) | 16.5, 9.4 | ||||
5 | - | - | 126.2 | - | - | 126.2 | - | - | 126.1 |
6 | - | - | 137.8 | - | - | 137.8 | - | - | 137.8 j |
7 | 6.09 (d) * | 16.7 | 125.6 | 6.10 (d) * | 16.9 | 125.6 | 6.09 (d) * | 16.6 | 125.5 |
8 | 6.10 (m) * | - | 138.5 | 6.12 (brs) * | - | 138.5 | 6.12 (brs) * | - | 138.5 |
9 | - | - | 135.7 | - | - | 135.7 | - | - | 135.6 k |
10 | 6.15 (d) * | 10.5 | 131.3 | 6.16 (d) * | 11.4 | 131.3 | 6.10–6.17 (m) * | - | 131.3 |
11 | 6.67–6.58 (m) | - | 124.9 b | 6.77–6.71 (m) f | - | 124.9g | 6.66–6.53 (m) | - | 124.8 |
12 | 6.36 (d) a | 14.9 | 137.57 c | 6.36 (d) | 14.9 | 137.6 | 6.38 (d) | 15.0 | 137.6 |
13 | - | - | 136.5 d | - | - | 136.4 h | - | - | 136.3 |
14 | 6.25 (d) | 9.5 | 132.6 | 6.25 (pd) * | - | 132.6 | 6.24 (d) | 11.6 | 132.4 |
15 | 6.67–6.58 (m) | - | 130.09 e | 6.68–6.62 (m) | - | 130.0 i | 6.66–6.53 (m) | - | 129.2 |
16 | 1.07 (s) | - | 30.3 | 1.07 (s) | - | 30.3 | 1.07 (s) | - | 30.3 |
17 | 1.07 (s) | - | 28.7 | 1.07 (s) | - | 28.8 | 1.07 (s) | - | 28.7 |
18 | 1.73 (s) | - | 21.6 | 1.74 (s) | - | 21.6 | 1.74 (s) | - | 21.6 |
19 | 1.97 (s) | - | 12.81 l | 1.973 (s) m | - | 12.9 n | 1.97 (s) | - | 12.7 |
20 | 1.97 (s) | - | 12.75 l | 1.968 (s) m | - | 12.82 n | 1.98 (s) | - | 12.7 |
1′ | - | - | 34.0 | - | - | 34.0 | - | - | 34.0 |
2′ | α: 1.84 (dd) | 13.2, 5.9 | 44.6 | α: 1.86 (dd) | 13.2, 5.9 | 44.8 | α: 1.85 (dd) | 13.2, 6.0 | 44.6 |
β: 1.36 (dd) | 13.1, 6.8 | β: 1.38 (dd) | 13.0, 6.9 | β: 1.37 (dd) | 13.0, 6.8 | ||||
3′ | 4.25 (brs) | - | 65.1 | 4.27 (brs) | - | 65.9 | 4.25 (brs) | 65.9 | |
4′ | 5.54 (s) | - | 124.5 | 5.56 (s) | - | 123.6 | 5.55 (s) | - | 124.5 |
5′ | - | - | 138.0 | - | - | 137.8 | - | - | 137.9 j |
6′ | 2.40 (d) | 14.5 | 55.0 | 2.47 (d) | 10.0 | 55.3 | 2.42 (d) | 9.2 | 55.0 |
7′ | 5.43 (dd) | 15.4, 9.9 | 128.7 | 5.46 (dd) | 15.3, 10.0 | 130.9 | 5.45 (dd) | 15.3, 10.0 | 129.1 |
8′ | 6.13 (d) * | 16.7 | 137.7 | 6.68–6.62 (m) * | - | 130.1 | 6.10–6.17 (m) | - | 137.7 |
9′ | - | - | 135.1 | - | - | 133.7 | - | - | 135.8 k |
10′ | 6.10 (m) * | - | 130.8 | 6.02 (d) | 11.3 | 129.3 | 6.17 (d) * | ~13.0 | 130.9 |
11′ | 6.67–6.58 (m) | - | 124.8 b | 6.77–6.71 (m) f | - | 124.6 g | 6.66–6.53 (m) | - | 126.1 |
12′ | 6.35 (d) a | 14.9 | 137.56 c | 6.29 (d) | 14.9 | 136.9 | 6.88 (d) | 14.7 | 129.4 |
13′ | - | - | 136.4 d | - | - | 136.3 h | - | - | 134.8 |
14′ | 6.25 (d) | 9.5 | 132.6 | 6.25 (pd) * | - | 132.5 | 6.10–6.17 (m) * | - | 130.8 |
15′ | 6.67–6.58 (m) | - | 130.04e | 6.68–6.62 (m) | - | 129.9 i | 6.79 (pt) | 12.5 | 128.7 |
16′ | 0.85 (s) | - | 24.3 | 0.86 (s) | - | 24.3 | 0.85 (s) | - | 24.3 |
17′ | 1.00 (s) | - | 29.5 | 1.03 (s) | - | 29.5 | 1.00 (s) | - | 29.5 |
18′ | 1.62 (s) | - | 22.28 | 1.65 (s) | - | 22.9 | 1.63 (s) | - | 22.8 |
19′ | 1.91 (s) | - | 13.1 | 1.91 (s) | - | 21.1 | 1.92 (s) | - | 13.1 |
20′ | 1.97 (s) | - | 12.81 l | 1.99 (s) m | - | 12.75 n | 1.97 (s) | - | 20.7 |
Peak No. | Carotenoid | Retention Time (min) | UV-Vis λmax (nm) | Plant Source: MS (m/z) | Golden Marguerite (Anthemis tinctoria) | Immortelle (Helichrysum italicum) | Jerusalem Artichoke (Helianthus tuberosus) | Narrowleaf Sunflower (Helianthus angustiflius) | Star Tickseed (Coreopsis pubescens) | Whorled Tickseed (Coreopsis verticillata) | Yellow Coneflower (Echinacea paradoxa) | Water Lily (Nuphar lutea) | Golden Shrimp (Pachystachys lutea) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Neoxanthin | 6.77 | 416, 440, 468 | 601 [M + H]+ | 1.68 | 1.34 | 0.48 | 0.44 | 0 | 0 | 0.23 | 0 | 1.37 | 0 | 1.57 | tr |
2 | Violaxanthin | 7.49 | 416, 440, 468 | 601 [M + H]+ | 2.98 | 2.00 | 1.61 | 2.18 | 0.50 | 9.35 | 1.97 | 1.29 | 0 | 0 | 9.76 | 9.12 |
3 | (9′Z)-Neoxanthin | 8.35 | 411, 434, 463 | 601 [M + H]+ | 0.70 | 5.13 | 0.65 | 0.46 | 2.21 | 0 | 0.41 | 0 | 3.39 | 0 | tr | 1.20 |
4 | Unidentified mixture | 9.16 | 1.62 | 1.34 | 2.14 | 5.01 | 3.69 | 10.70 * | 2.36 * | 1.45 | 0.90 | 0 | 5.25 | 0 | ||
5 | (9Z)-Violaxanthin | 11.01 | 411, 434, 463 | 601 [M + H]+ | 3.51 | 2.43 | 2.44 | 1.20 | 7.62 | 0 | 0 | 0 | 3.34 | 0 | 5.08 | 2.11 |
6 | (13Z)-Lutein | 11.87 | 331, 435, 463 | 551 [M-H2O + H]+ | 3.82 | 2.42 | 3.93 | 5.56 | 0 | 2.03 | 3.86 | 1.57 | 3.79 | 1.34 | 0 | 2.89 |
7 | (13′Z)-Lutein | 12.35 | 331, 438, 464 | 551 [M-H2O + H]+ | 1.38 | 1.10 | 1.32 | 1.31 | tr | 1.52 | 1.42 | 1.70 | 2.83 | 1.08 | 1.79 | 2.12 |
8 | Lutein | 13.29 | 444, 472 | 551 [M-H2O + H]+ | 36.50 | 35.20 | 35.29 | 46.68 | 29.46 | 63.21 | 58.52 | 53.43 | 76.42 | 44.48 | 57.21 | 67.94 |
9 | (9Z,9′Z)-Lutein | 14.12 | 330, 437, 464 | 551 [M-H2O + H]+ | 1.91 | 1.82 | 0 | 2.02 | 1.27 | 0 | 0 | 0 | 0 | 0.32 | 0 | 0 |
10 | Zeaxanthin | 15.47 | 450, 475 | 569 [M + H]+ | 0 | 0 | 0 | 0 | 7.11 | 8.54 | 1.67 | 1.65 | 0.95 | 6.25 | 6.33 | tr |
11 | Unidentified mixture | 16.05 | 1.98 | 1.52 | 0 | 1.34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
12 | (9Z)-Lutein | 16.77 | 331, 439, 467 | 551 [M-H2O + H]+ | 12.41 | 15.31 | 10.24 | 9.86 | 2.73 | 1.15 | 4.04 | 3.44 | 4.41 | 3.58 | 2.66 | 2.66 |
13 | (9′Z)-Lutein | 19.62 | 330, 440, 467 | 551 [M-H2O + H]+ | 27.46 | 31.40 | 28.73 | 21.22 | 29.79 | tr | 4.60 | 3.16 | 1.21 | 3.01 | 1.90 | 2.56 |
14 | α-Cryptoxanthin | 21.18 | 445, 472 | 553 [M + H]+ | 0.93 | 1.52 | 2.40 | 0.40 | 2.60 | 0.73 | 3.13 | 2.38 | tr | 3.08 | tr | 3.26 |
15 | β-Cryptoxanthin | 24.46 | 450, 476 | 553 [M + H]+ | tr | tr | 0.34 | 0 | 4.28 | tr | 1.35 | 4.70 | 0 | 1.07 | tr | 2.26 |
16 | β-Carotene 5,6-epoxide | 28.30 | 445, 471 | 553 [M + H]+ | tr | tr | tr | 0 | tr | tr | 3.06 | 5.09 | 0 | tr | tr | tr |
17 | α-Carotene | 31.51 | 445, 472 | 537 [M + H]+ | tr | tr | tr | 0 | tr | tr | 5.55 | 5.87 | tr | 17.85 | 1.85 | 3.63 |
18 | β-Carotene | 34.84 | 451, 476 | 537 [M + H]+ | 2.24 | 1.73 | 2.35 | 1.62 | 6.48 | 0.28 | 3.73 | 5.69 | 0.96 | 7.01 | 5.69 | 3.97 |
19 | (9Z)-β-Carotene | 35.42 | 444, 470 | 537 [M + H]+ | tr | 0.26 | 0.38 | 0.22 | 0.90 | 0 | 1.13 | 1.67 | 0.39 | 2.11 | 0.92 | tr |
Total carotenoid mg/g | 0.134 | 0.283 | 0.124 | 0.263 | 0.131 | 0.937 | 0.293 | 0.135 | 0.126 | 0.075 | 0.148 | 0.299 | ||||
Plant parts analyzed | i | i | i | i | i | Rayflorets | i | Rayflorets | Rayflorets | Rayflorets | Sepals | Bracts | ||||
Collection site | a | b 2021 | b 2022 | c | b | d | b | a | b | a | e | f | ||||
Peak No. | Carotenoid | Retention Time (min) | UV-Vis λmax (nm) | Plant Source: MS (m/z) | Shining Spurge (Euphorbia lucida) | Marsh Spurge (Euphorbia palustris) | Cushion Spurge (Euphorbia polychroma) | Yellow Tuft (Alyssum murale) | Warty Cabbage (Bunias orientalis) | Wallflower (Erysimum cheiri) | Austrian Yellowcress (Rorippa austriaca) | Wormwood Senna (Cassia artmisioides) | Ice Plant (Glottiphyllum cruciatum) | Autumn Crocus (Colchicum autumnale) | Autumn Daffodil (Sternbergia lutea) | |
1 | Neoxanthin | 6.77 | 416, 440, 468 | 601 [M + H]+ | 1.06 | 4.18 | 0 | 3.40 | 5.38 | 1.25 | 0.73 | 1.54 | tr | 0.14 | tr | |
2 | Violaxanthin | 7.49 | 416, 440, 468 | 601 [M + H]+ | 4.87 | 8.50 | 0 | 14.46 | 6.66 | 1.93 | 7.08 | 1.15 | tr | 1.48 | 13.31 | |
3 | (9′Z)-Neoxanthin | 8.35 | 411, 434, 463 | 601 [M + H]+ | 1.03 | 1.12 | 0 | 1.43 | 2.89 | 0.59 | 6.69 | 0 | tr | 1.03 | 0.54 | |
4 | Unidentified mixture | 9.16 | 1.88 | 0 | 0 | 1.70 | 2.53 | 7.91 | 8.06 | 0 | tr | 0 | 2.75 * | |||
5 | (9Z)-Violaxanthin | 11.01 | 411, 434, 463 | 601 [M + H]+ | 7.43 | 6.76 | 0 | 9.94 | 7.93 | 2.25 | 0 | 0 | tr | 2.73 | 3.01 | |
6 | (13Z)-Lutein | 11.87 | 331, 435, 463 | 551 [M-H2O + H]+ | 1.81 | 1.83 | 8.97 | 0 | 0 | 2.82 | 0 | 1.64 | 4.87 | 4.06 | 1.95 | |
7 | (13′Z)-Lutein | 12.35 | 331, 438, 464 | 551 [M-H2O + H]+ | 1.97 | 1.45 | 5.73 | 1.42 | 1.46 | 1.88 | 1.99 | 0.76 | 2.13 | 3.47 | 1.36 | |
8 | Lutein | 13.29 | 444, 472 | 551 [M-H2O + H]+ | 69.28 | 53.91 | 61.97 | 55.96 | 55.75 | 58.56 | 52.24 | 37.64 | 52.46 | 65.42 | 65.84 | |
9 | (9Z,9′Z)-Lutein | 14.12 | 330, 437, 464 | 551 [M-H2O + H]+ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.34 | 0 | |
10 | Zeaxanthin | 15.47 | 450, 475 | 569 [M + H]+ | 2.11 | 1.55 | 1.74 | tr | tr | 0 | 0 | 1.59 | 4.99 | 0 | 2.61 | |
11 | Unidentified mixture | 16.05 | 0 | 0 | 0.18 | tr | 0 | 0 | 1.36 | tr | 0 | 0 | 0 | |||
12 | (9Z)-Lutein | 16.77 | 331, 439, 467 | 551 [M-H2O + H]+ | 3.90 | 4.12 | 4.87 | 3.74 | 5.86 | 2.66 | 4.60 | 2.25 | 10.44 | 5.86 | 2.35 | |
13 | (9′Z)-Lutein | 19.62 | 330, 440, 467 | 551 [M-H2O + H]+ | 1.68 | 3.62 | 1.05 | 3.10 | 1.52 | 1.22 | 10.28 | 0.56 | 9.37 | 0.46 | 1.33 | |
14 | α-Cryptoxanthin | 21.18 | 445, 472 | 553 [M + H]+ | 0.54 | 0.65 | 0.93 | 0.30 | 2.15 | 2.21 | 2.10 | 15.18 | 1.62 | 0.91 | 0.84 | |
15 | β-Cryptoxanthin | 24.46 | 450, 476 | 553 [M + H]+ | 1.44 | 0.86 | tr | tr | tr | 0.41 | 0.10 | 0 | 0.40 | tr | 0.12 | |
16 | β-Carotene 5,6-epoxide | 28.30 | 445, 471 | 553 [M + H]+ | 0.48 | 0.30 | tr | tr | tr | 0.61 | tr | 0 | 0.70 | tr | tr | |
17 | α-Carotene | 31.51 | 445, 472 | 537 [M + H]+ | 0.17 | 1.64 | tr | tr | tr | 7.09 | 0.23 | 4.42 | 0.44 | 0.15 | 0.15 | |
18 | β-Carotene | 34.84 | 451, 476 | 537 [M + H]+ | 7.48 | 6.71 | 2.96 | 3.93 | 6.17 | 6.49 | 0.75 | 27.54 | 6.57 | 0.18 | 2.06 | |
19 | (9Z)-β-Carotene | 35.42 | 444, 470 | 537 [M + H]+ | 1.28 | 1.72 | 0.88 | 0.61 | 1.24 | 0.71 | 0.16 | 3.37 | 2.01 | tr | 0.82 | |
Total carotenoid mg/g | 0.253 | 0.141 | 0.266 | 0.432 | 0.208 | 0.492 | 0.951 | 0.289 | 0.029 | 0.344 | 0.393 | |||||
Plant parts analyzed | Bracts | Bracts | Bracts | Petals | Petals | Petals | Petals, Stamina | Petals | Petals | Stamina | Sepals | |||||
Collection site | g | h | b | b | i | b | j | b | b | d | f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, V.; Agócs, A.; Balázs, V.L.; Purger, D.; Filep, R.; Sándor, V.; Turcsi, E.; Gulyás-Fekete, G.; Deli, J. Lutein Isomers: Preparation, Separation, Structure Elucidation, and Occurrence in 20 Medicinal Plants. Molecules 2023, 28, 1187. https://doi.org/10.3390/molecules28031187
Nagy V, Agócs A, Balázs VL, Purger D, Filep R, Sándor V, Turcsi E, Gulyás-Fekete G, Deli J. Lutein Isomers: Preparation, Separation, Structure Elucidation, and Occurrence in 20 Medicinal Plants. Molecules. 2023; 28(3):1187. https://doi.org/10.3390/molecules28031187
Chicago/Turabian StyleNagy, Veronika, Attila Agócs, Viktória L. Balázs, Dragica Purger, Rita Filep, Viktor Sándor, Erika Turcsi, Gergely Gulyás-Fekete, and József Deli. 2023. "Lutein Isomers: Preparation, Separation, Structure Elucidation, and Occurrence in 20 Medicinal Plants" Molecules 28, no. 3: 1187. https://doi.org/10.3390/molecules28031187
APA StyleNagy, V., Agócs, A., Balázs, V. L., Purger, D., Filep, R., Sándor, V., Turcsi, E., Gulyás-Fekete, G., & Deli, J. (2023). Lutein Isomers: Preparation, Separation, Structure Elucidation, and Occurrence in 20 Medicinal Plants. Molecules, 28(3), 1187. https://doi.org/10.3390/molecules28031187