Next Article in Journal
MOZART, a QSAR Multi-Target Web-Based Tool to Predict Multiple Drug–Enzyme Interactions
Next Article in Special Issue
Homoleptic Complexes of Heterocyclic Curcuminoids with Mg(II) and Cu(II): First Conformationally Heteroleptic Case, Crystal Structures, and Biological Properties
Previous Article in Journal
Tetranuclear Copper(I) and Silver(I) Pyrazolate Adducts with 1,1′-Dimethyl-2,2’-bibenzimidazole: Influence of Structure on Photophysics
Previous Article in Special Issue
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential

by
Marcos Rodrigo Beltrão Carneiro
1,2,
Lóide Oliveira Sallum
1,
José Luís Rodrigues Martins
1,
Josana de Castro Peixoto
1,2,
Hamilton Barbosa Napolitano
1,2 and
Lucimar Pinheiro Rosseto
1,*
1
Campus Arthur Wesley Archibald, Evangelical University of Goiás, Anápolis 75083-515, Brazil
2
Campus Central, State University of Goiás, Anápolis 75132-400, Brazil
*
Author to whom correspondence should be addressed.
Molecules 2023, 28(3), 1190; https://doi.org/10.3390/molecules28031190
Submission received: 31 October 2022 / Revised: 19 December 2022 / Accepted: 30 December 2022 / Published: 25 January 2023

Abstract

:
The genus Justicia has more than 600 species distributed in both hemispheres, in the tropics and temperate regions, and it is used in the treatment of numerous pathologies. This study presents a review of the biological activities of plant extracts and isolated chemical constituents of Justicia (ACANTHACEAE), identified in the period from May 2011 to August 2022. We analyzed over 176 articles with various biological activities and chemical compound descriptions present in the 29 species of Justicia. These have a variety of applications, such as antioxidant and antimicrobial, with alkaloids and flavonoids (e.g., naringenin) the most frequently identified secondary metabolites. The most observed species were Justicia gendarussa Burm., Justicia procumbens L., Justicia adhatoda L., Justicia spicigera Schltdl, and Justicia pectoralis Jacq. The frontier molecular orbitals carried out using density functional theory (M062X and basis set 6-311++G(d,p) indicate reactive sites for naringenin compound and a chemical reaction on phytomedicine activity. The energy gap (206.99 kcal/mol) and dimer solid state packing point to chemical stability. Due to the wide variety of pharmacological uses of these species, this review points toward the development of new phytomedicines.

1. Introduction

The Cerrado is a highly heterogeneous landscape, and some of it is subject to severe threats and deserves special attention, including the Cerrado-Amazon transition, which coincides with an “arc of deforestation”, and rupestrian fields [1]. The region called Cerrado, located in the central portion of Brazilian territory, has changed abruptly in environmental, social and economic aspects. These changes were caused by the intense process of human occupation to which this ecosystem has been subjected, due to a sum of political interventions, natural features of the landscape and technological advances in agriculture [2]. The Cerrado is considered a Biodiversity Hotspot, which supports high species richness and thousands of endemic species [3]. Part of this huge biodiversity can be associated with the diversity of native vegetation types (e.g., grasslands, shrublands, typical savannas, and woodland savannas) that differ in grass cover, percentage of canopy cover, and dominant plant species, as well as fire dynamics and water availability [4]. Among the plant biodiversity, the ACANTHACEAE family has pantropical distribution, reaching some temperate areas, with approximately 240 genera and approximately 3250 species [5]. In Brazil, it is estimated that there are approximately 40 genera and 449 species, of which at least 254 are endemic, with a high concentration of species in the southeast and central-west regions [6].
The genus Justicia (Figure 1) comprises herbaceous plants or erect ascending shrubs with opposite leaves of crenate or entire maple. Terminal or axillary inflorescences with sessile or pedunculated flowers, solitary or cymosal in the axils of the bracts, are arranged in spikes or panicles. The 4-5-parted calyx and corolla are of varying colors (purple, red, lilac, white, yellow, or orange), lipped limbus, rear inner lip in pre-flowering, usually narrow, erect or curved. Sometimes concave, with entire apex, bifid or frontal lip slightly more bilobed, wider, more or less patent or curved, trilobed. Two stamens with filaments inserted near or above the middle of the filiform tube or slightly dilated at the base; anthers bitec, theca oblong, sometimes slightly curved or kidney-shaped. Two eggs in each locale. Capsule-like fruit with oblong, elliptical or obovate contour, with solid basal portion and laterally compressed and the upper part cylindrical, ovoid or subspherical portion [7].
The genus Justicia has more than 600 species widely distributed in both hemispheres, especially in the tropics, extending to temperate regions [7]. Justicia species are used in folk medicine for the treatment of numerous pathologies, such as depression, anemia, epilepsy, kidney infection, respiratory problems, gastrointestinal diseases, arthritis and fever [8]. Other biological activities have been determined from the plant extracts of Justicia, such as antioxidant [9,10,11,12,13,14,15,16,17,18,19,20,21], antimutagenic [18,19], anticancer [22,23,24,25], anti-HIV [26,27,28,29,30,31], antimicrobial [32,33,34,35,36,37,38,39,40,41,42], antidiabetic [43,44,45], among others. It is worth mentioning that there is currently relevant interest among research groups in evaluating a possible analgesic, anti-inflammatory and antiulcerogenic activity. A diversity of special metabolites is found in Justicia, mainly alkaloids [46,47,48,49,50,51], steroids [52,53,54], tannins [32,41,46,51], terpenoids [47,48,51,54,55,56,57,58], lignans [59,60,61,62,63,64] and flavonoids [16,20,21,22,23,24,31,32,51,65,66,67].
Many of the medicines currently available are derived from natural sources. In additional to their physiological roles in plants, flavonoids are important components of the human diet, although they are not considered nutrients. Flavonoids are an important class of plant secondary metabolites that serve several functions, including pigments and antioxidant activity. The biological activities from flavonoids make Cerrado plants good candidates for phytochemical studies, mainly naringenin, which belongs to the class of chalcones [68]. Naringenin is a naturally occurring flavonone (flavonoid) known to have a bioactive effect on human health, and it is found primarily in fruits (grapefruit and orange) and vegetables. Naringenin has several biological functions, such as antidiabetic, antiatherogenic, antidepressant, immunomodulatory, antitumor, anti-inflammatory, DNA protective, hypolipidemic, antioxidant, activator of peroxisome proliferator-activated receptors (PPARs) and memory enhancer. Several molecular mechanisms underlying their beneficial activities have been elucidated [69]. These have been found in several species of the genus Justicia, mainly Justicia gendarussa Burm, one of the species found in the Cerrado. This review evaluates the biological activities of plant extracts and chemical constituents of Justicia (ACANTHACEAE) in the period between May 2011 and August 2022.

2. Results and Discussion

2.1. Species, Compounds and Their Effects

We identified 29 species of the genus: Justicia acuminatissima (Miq.) Bremek, Justicia adhatoda L., Justicia beddomei (C.B.Clarcke) Bennet, Justicia betonica L., Justicia brandegeeana Wassh. & L.B. Sm., Justicia carnea Hook. Ex Nees, Justicia extensa T. Anderson, Justicia flava Vahl, Justicia gangetica L., Justicia gendarussa Burm, Justicia graciliflora (Standndl.) D.N. Gibson, Justicia hypocrateriformis Vahl, Justicia insularis T. Anderson, Justicia neesii Ramamoorthy, Justicia nodicaulis (Nees) Leonard, Justicia paracambi Braz., Justicia pectoralis Jacq., Justicia procumbens L., Justicia refractifolia (Kuntze) Leonard, Justicia schimperiana T. Anderson, Justicia secunda Vahl, Justicia simplex D. Don., Justicia spicigera Schldtl, Justicia subsessilis Oliv., Justicia thunbergioides (Lindau) Leonard, Justicia tranquebariensis L., Justicia vahlii Roth., Justicia wasshauseniana Profice and Justicia wynaadensis B Heyne. All scientific names were verified in the International Plant Name Index (IPNI). The most used plant parts were leaves, with 121 citations, followed by the aerial parts, with 29 citations, and the whole plant, with 18 citations. These values can be explained by the ease of harvesting, since the leaves are available most of the year [70].
There was a prevalence of studies carried out in India, followed by Brazil, Nigeria, and China (49, 26, 21 and 15, respectively). This is due to the fact that India has many renowned universities and institutions with a growing faculty in research, as well as investment in innovation [71]. In Table 1, the species of Justicia, parts and crude extracts used were compiled, in addition to studies related to the presence or absence of chemical and biological information. The most representative biological activities were: antioxidant, with 30 citations, and antimicrobial, with 23 citations. Methanolic extracts from the species J. adhatoda L., J. beddomei (C.B.Clarcke) Bennet, J. brandegeeana Wassh. & L.B. Sm., J. gendarussa Burm., J. pectoralis Jacq. and J. thunbergioides (Lindau) Leonard, showed antioxidant effects. Studies about the antimicrobial effects were more representative with the ethanolic extract of the species J. acuminatissima (Miq.) Bremek. (Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella typhimurium and Candida albicans), J. gendarussa Burm. (S. aureus, B. subtilis, E. coli and Klebsiella pneumoniae), J. pectoralis Jacq. (S. aureus and S. epidermidis) and J. simplex D. Don. (S. aureus, K. pneumoniae, E. coli and Pseudomonas aeruginosa).
Several compounds isolated from Justicia showed biological activities (Table 2). Steroids 1 (glycosylated β-sitosterol) and 2 glycosylated stigmasterol) isolated from the ethanolic extract of the aerial parts of J. acuminatissima (Miq.) Bremek., showed reduction of inflammatory infiltrates and edema, small to moderate injury lesion, 24 h after treatment, used topically after the administration of a gel containing the extract during the therapeutic ultrasound session, after an injury caused by the free fall of a weight of 300 g at a height of 30 cm on the calf of rats, showing a significant reduction in paw edema in rats. Terpene 3 (phytol), extracted and isolated from the leaves of J. gendarussa Burm., showed potent inflammatory inhibition (68.03%) when compared to standard dicolfenac (5 mg/Kg). Compound 4 (apigenin), an alkaloid, showed an anti-inflammatory effect through the TLR-NF-κB signaling pathway (Toll-like receptors linked to transcription factors) using hPBMCs (Peripheral Blood Mononuclear Cells) induced by LDL-ox (Oxidized Lipoprotein) in an in vitro model, reducing the release of TLR-4, receptors that stimulate the production of pro-inflammatory mediators. In addition, compounds 5 (naringenin) and 6 (kaempferol), from the methanolic extract of the roots of the same species, showed cytotoxic effects against human cancer cell lines: HT-29 (19 and 6 µg/mL), HeLa (15 and 5 µg/mL) and BxPC-3 (57 and 23 µg/mL) inhibiting their growths, respectively.
Flavonoid 7 (3,3′,4′-trihydroxyflavone) showed antimicrobial activity, maximum zone of inhibition, from the methanolic extract of leaves of J. wynaadensis B. Heyne, against Enterocytes faecalis (19 mm) and MIC = 32 µg/mL, S. aureus (18 mm) and MIC = 32 µg/mL, E. coli (17 mm) and MIC = 128 µg/mL, Enterobacter aerogenes (18 mm) and MIC = 128 µg/mL, S. epidermidis (11 mm) and K. pneumoniae (17 mm) and MIC = 64 µg/mL, from wounds of diabetics with urinary tract infection, compared to the standard chloramphenicol (19 mm) and MIC = 1024 µg/mL. The same activity showed by alkaloids 8 (vasicoline) (has greater inhibitory capacity in the biosynthesis of fatty acids and stops the activity of the mtFabH enzyme of Mycobacterium tuberculosis, being able to interrupt the infection in its initial stage) and 9 (vasicine) [inhibiting the growth of K. pneumoniae (10.2 mm) and MIC = 6.25 µg/mL, E. coli (12.5 mm) and MIC = 3.125 µg/mL, P. aeruginosa (6 mm), S. pyogenes (9.8 mm) and MIC = 25 µg/mL, S. aureus (12.8 mm) and MIC = 12.5 µg/mL, S. marcescens (8.2 mm) and MIC = 3.125 µg/mL, when compared to ofloxacin (8.8 mm, 9.1 mm, 2 mm, 9.5 mm and 7.8 mm, respectively) and A. flavus (10.5) and MIC = 3.125 µg/mL, C. albicans (14.2) and MIC = 12.5 µg/mL and C. neoformans (11.5 mm) and MIC = 25 µg/mL when compared with amphotericin (12 mm, 11 mm and 10 mm, respectively)], obtained from the extract of leaves of J. adhatoda L. Compound 9 (vasicine) also showed antioxidant effects (protecting deoxyribose from the action of free radicals with IC50 539.64 µg/mL and having a strong chelating activity) and anticancer effects [inhibitory effect on the growth of prostate cancer cells (IC50 81.11 µg/mL)].
Etamine (10), a nitrogen compound, from the ethanolic extract of the leaves of J. gendarussa Burm., exhibited DPPH radical scavenging activity with IC50 = 22.55 µM, and Quercetin as positive control, IC50 = 18.56 µM. Pyrrolidines 11 (Secundallerone B) and 12 (Secundallerone C), along with acid 13 (2-caffeoyloxy-4-hydroxy-glutaric acid) showed antidiabetic effects, such as α-glucosidase inhibitors when extracted from leaves of J. secunda Vahl., using the methanolic extract. There are compounds that have various biological activities. An example is kaepferitrin (14), an alkaloid that has shown antinociceptive, cytotoxic effects against cancer cells (against human cervical carcinoma cells, inducing apoptosis of these cells by 35% and inhibiting their growth by 53%), antidiabetic and anticonvulsant. Another alkaloid 15 (gendarussin A), isolated from the ethanolic extract of the leaves of J. gendarussa Burm., has an anti-HIV cytotoxic effect, decreasing viral load, increasing anti-HIV activity (reverse transcriptase inhibition), with an IC50 value of 235.3 ppm.
The isolated compounds that presented the highest frequency of published works were lignans. There were 38 lignans studied and surveyed, with different biological activities evidenced. Lignans 16 (6′-hydroxyl justicidin A), 17 (6′-hydroxyl justicidin B), 18 (6′-hydroxyl justicidin C), 19 (Justicidin A), 20 (Chinensinaphthol methyl ether), 21 (Taiwanin E methyl ether), 22 (Paclitaxel) and 23 (Podophyllotoxin) showed cytotoxic effects against cancer cells K652 (leukemia) and TSGH8301 (bladder carcinoma), with IC50 = 0.148 µM, IC50 = 2.356 µM, IC50 = 15.2 µM, IC50 = 1 µM, IC50 = 106.2 µM, IC50 = 100 µM, IC50 = 48 µM and IC50 = 28.5 µM, respectively, and lignans 16, 17, 18, 20, 21, 22 and 23 from the ethanolic extracts and 19 from the methanolic extract of the species J. procumbens L. On the other hand, lignans 19 and 24 (Justicidin B), 25 (Justicidin C) and 26 (Phyllamyricin C) showed anti-inflammatory and anti-allergic effects, inhibiting the infiltration of inflammatory cells in the airways of rats, to the point of decreasing bronchoconstriction, reducing the levels of IgE (91.7%), IL-4 (39.2%), IL-5 (51.7%) and eotaxin (66.5%) with values of IC50 = 0.5 µM to compound 24 and IC50 = 5 µM to compounds 25 and 26. Compounds 25 and 27 (Pronaphthalide A) showed cytotoxic activities (significant effect on cell viability, affecting the methylation, deoxidation, and glycosylation activity of BGC-823 cancer cells). In addition to these, other lignans 20, 28 (Procumbenoside J), 29 (Tuberculatin) and 30 (Diphyllin) showed suggestive effects on cytotoxicity against BGC-823 cancer cells (gastric carcinoma) with value of IC50 = 0.135 µM to compound 27 and compound 31 (Procumbenoside H) against colon cancer cells, derived from ethanolic extracts of the same species, with value of IC50 = 17.908 µM.
Compounds 30 and 41 (Justicianene D) showed cytotoxic activity against cervical (30), A549 and H460 (30), breast (41) and lung cancer cells, with value of IC50 = 90 µM, derived from the ethanolic extract of the same species. Other compounds derived from the ethanolic extract of the leaves of the species J. gendarussa Burm., (+)-pinoresinol (32), a lignin, exhibited DPPH radical scavenging activity with value of IC50 = 28.61 µM. In addition, two compounds, 33 (2’-methoxy-4”-hydroxydimetoxykobusin) and 34 (Brazoide A), showed anti-inflammatory activity in macrophages with IC50 values of 20.95 and 16.5 µM, respectively, compared to dexamethasone as a control (11.69 µM). Other lignans 35 (Justiprocumin A) and 36 (Justiprocumin B) showed cytotoxic effects against HIV viruses (reverse transcriptase inhibition), with IC50 values between 14 and 21 nM compared to AZT (Zidovudine) with IC50 between 77 and 95 nM, coming from the methanolic extract of the roots and stems of the same species.
Compound 37 (Pateniflorin A) also showed anti-HIV activity with IC50 = 26.9 nM, from methanolic extract of the stems and roots of the J. gendarussa Burm. Compound 38 (Triacontanoic ester of 5-hydroxyjustisolin), another lignin, showed no toxicity to the animals (rats) tested, increasing their survival capacity when induced to the tumor [mammary (MDA MB-231) and cervical carcinoma (HeLA), from two extracts (petroleum ether and ethanol) from aerial parts of J. simplex D. Don., with values of IC50 = 15.15 and IC50 = 11.852 µg/mL, respectively. Two terpenoid compounds identified and isolated from the methanolic extract of leaves of J. insuaris T. Anderson, 39 (16(α/β)-hydroxy-cleroda-3,13 (14)Z-dien-15,16-olide) and 40 (16-oxo-cleroda-3,13(14)E-dien-15-oic acid), showed cytotoxic activity against ovarian cancer cells (OVCAR-4 and OVCAR-8), inducing apoptosis with values of IC50 = 5.7 and IC50 = 16.6 µM, respectively, to compound 39 and IC50 = 4.4 and IC50 = 11.8 µM, respectively to compound 40. Finally, six compounds identified and isolated from the ethyl acetate extract of the aerial parts of J. spicigera Schltdl. Inhibited the activity of the enzyme tyrosine phosphatase B, a key regulator of insulin signaling cascades, evidencing a synergistic effect of all six compounds, namely 42 [2-N-(p-coumaroyl)-3H-phenoxazin-3-one, IC50 = 159.1 µM], 43 (3″-O-acetyl-kaempferitrin, IC50 = 306.7 µM), 14 (Kaempferitrin, IC50 = 306.7 µM, 44 (kaempferol 7-O-α-L-rhamnopyranoside), 45 (perisbivalvine B, IC50 = 106.6 µM) and 46 (2,5-dimethoxy-p-benzoquinone, IC50 = 455.5 µM). This was the first report of the presence of phenoxazines in the genus Justicia. In this paper, 46 compounds (Figure 2) were identified and isolated from species of the genus Justicia.

2.2. Molecular Modeling of Naringenin

Compound 5, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxy-phenyl-4H-1-benzopyran-4-one, (racemic naringenin) (Figure 3) crystallizes in the P21/c monoclinic space group, and the crystal data and refinement details are summarized in Table 3. The asymmetric unit is shown in the ORTEP (Oak Ridge Thermal Ellipsoid Plot) diagram in which the angle between the mean plane of the benzopyrone ring and hydroxyphenyl ring is approximately perpendicular with the value of 85.73°. The pyrone ring appears as half chair conformation confirmed by the ring-puckering parameters Q = 0.4215 Å and ϕ = 246.8°, as described by Cremer and Pople [191]. In addition, the hydroxyphenyl ring (C10) is bonded equatorially to this pyrone ring and its dihedral angles O1-C1-C1O-C11, C2-C1-C10-C11, C2-C1-C10-C15, and O1-C1-C10-C15 are 120.51°, −115.58°, 62.47° and −61.44°, respectively, as shown in Table 4.
The crystal structure of naringenin makes a conjugated six-membered ring, forming strong O3–H3···O2 intramolecular interactions, as shown in Table 5. The crystal packing for naringenin is formed by dimers, which are responsible for generating O4–H4···O5 intermolecular interactions, which can be described as R 2 2 (24) [192] (Figure 4a). In a two-dimensional hydrogen-bonding arrangement, there is a chain appearing in a zigzag and growing along the c-axis, which is formed by the O5–H5···O2 intermolecular interactions and can be described as C   1 1 (9) (Figure 4b). Additionally, the C15–H15···O4 intermolecular interactions also form a zigzag chain, which grows along the b-axis and can be described as C 1 1 (10) (Figure 4c). The crystal packing is formed by the dimers (involving hydroxyl groups), and the zigzag chains, which generate a two-dimensional crystalline network, as shown in Figure 4d.
We employed HS mapped over dnorm. (ranging from −0.679 to 1.270 Å) analysis to interpret the most dominant interactions responsible for crystal packing, as shown in Figure 5. These interactions are analyzed based on the distances between the internal nucleus of the HS within the molecule (di) and the external nucleus of the HS within the molecule (de), where the red dots represent the strong interactions. For naringenin, the red dots in Figure 5a correspond to a dimer formed by O4–H4···O5 intermolecular interaction. In addition, the red dots in Figure 5b are related to the O5–H5···O2 intermolecular interaction. Finally, the non-classical C15–H15···O4 intermolecular interaction is represented by the red dots on the HS, as shown in Figure 5c.
The 2D fingerprint plot of naringenin is shown in Figure 6. The 2D fingerprint plots (di vs. de) quantify the types of intermolecular contacts in the solid-state arrangement [193]. These H···H contacts make up 35.0% of the HS of naringenin because it is an organic compound [194]. The red spots represent O···H/H···O contacts, which are the second largest contributions, with 31.8% of the HS of naringenin, and it is shown as the spikes at the bottom of the 2D fingerprint plot. Finally, C···H/H···C contacts represent 23.5% of the HS of naringenin.
Naringenin has a molecular weight of 272.257 g/mol, resulting from the addition of three hydroxyl groups 4′, 5 and 7 carbons in the backbone of flavonoids, and its molecular formula is C15H12O5 [195,196]. This compound is found in high concentrations, especially in grapefruit (43.5 mg/100 mL), followed by orange juice (2.13 mg/100 mL) and lemon juice (0.38 mg/100 mL) [197]. Naringenin has a range of biological effects on human health, which include a reduction in lipid peroxidation markers, defense of metabolism, increase in antioxidants, reduction of reactive carbohydrate species, as well as modulation of the immune response [198,199]. In vitro and in vivo animal studies have reinforced evidence of the diversity of pharmacological effects of naringenin; among them, we highlight hepatoprotective, antiatherogenic, anti-inflammatory, antimutagenic, anticancer and antimicrobial activity [200]. Although we have identified in the literature that there is an enormous amount of data on the in vitro biological effects of naringenin, there are still few studies available on its therapeutic potential [201], and thus, further clinical studies are needed, aiming at the safety, efficacy and bioavailability of naringenin in humans.
The frontier molecular orbitals (FMO) taken from the natural bond orbital (NBO) analysis for compound 5 (naringenin) were carried out at the M062X/6-311+G(d,p) level of theory, and this is shown in Figure 7. The HOMO appears as a π bonding orbital, and it is localized on the phenyl π bonding region, which is characteristic of the nucleophilic region with an energy value of −194.44 kcal/mol. The LUMO orbital appears as a   π antibonding orbital, and it is localized on the π region of the pyrone ring with an energy value of 12.55 kcal/mol. The energy gap (206.99 kcal/mol) shows that compound 5 (naringenin) is chemically stable.
The MEP is a physicochemical tool that helps to predict the reactive sites to be targeted in a chemical reaction and gives information about molecular interactions. The electrostatic potential at a given point ρ ( r ) in the vicinity of a molecule can be calculated by Equation (1).
V ( r ) = α Z α | r R α | ρ ( r ) | r r | d r
where V ( r ) is the potential energy by a positive unit charge at point r ; Z α is the nuclear charge of the atom α located at position R α , and ρ ( r ) is the electron density. The tridimensional molecular electrostatic potential (3D-MEP) representation for compound 5 (naringenin) shows that the oxygen atom of the carbonyl group localizes the most negative region (red), with the value of −26.85 kcal/mol (Figure 8). On the other hand, the positive region (blue) is around the hydroxyl hydrogen atom with a value of 45.11 kcal/mol. In conclusion, due to the presence of interactions within the hydroxyl group O4–H4···O5 in the crystal structures, we can assume a nucleophilic attack within this hydroxyl region.
The root of the mean squared (RMS) value between experimental geometries and theoretical calculation was 0.0135, predicted by Mercury software. The overlapping of the X-ray (black) and M062X/6-311+G(d,p) level of theory (green) is shown in Figure 9a. The comparative graphs for the bond lengths and angles obtained for experimental geometries and theoretical calculation are shown in Figure 9b,c. The mean absolute percentage deviations (MAPD) were calculated and defined by Equation (2):
M A P D = 100 n i = 1 n | χ X R D χ D F T χ X R D | .
where χ X R D and χ D F T represents the geometric parameters for experimental geometries and theoretical calculation data, respectively. The MAPD values for bond lengths and angles were 0.86 and 0.64 for experimental geometries and theoretical calculation data of naringenin. The R2 values for bond lengths were 0.9771 and 0.9670, for experimental geometries and theoretical calculation data of naringenin, respectively.
The conformation analysis for naringenin was performed by Ávila and coworkers [202] showing two stable conformers (conformer 1 and conformer 2) obtained by molecular dynamics simulation in a DMSO solution. The conformation found in the solid state is approximate to conformer 2. Conformer 2 has the phenol ring in an equatorial position and it is 2.39 kcal/mol more stable than conformer 1. In addition, the free energy barrier is 3.75 kcal/mol for converting the conformer 1 to conformer 2 direct process and 6.15 kcal/mol for the reverse process, so a suggested conformation equilibrium can occur in the DMSO solution at 298.15 K.

3. Method

3.1. Systematic Review

The present study was carried out through a systematic review of articles, dissertations and theses published between May 2011 and August 2022. The searched electronic databases were ISI Web of Science and Scholar Google, using the following keywords: ACANTHACEAE, Justicia and Medicinal plants. The collected data were screened by analyzing titles, keywords, abstract and full texts. The literature containing information on isolation and property of different phytochemical compounds from species of the genus Justicia were included, too. More than 6500 articles, dissertations and theses were found on databases. Figure 10 shows the search and selection processes.

3.2. Molecular Modeling Analysis

The (R,S)-naringenin structure was extracted from the Cambridge Crystallography Data Centre (CCDC) with the code 1143928. Platon (2009) [203] and Mercury (2020) [204] were followed to analyze and draw the crystal supramolecular arrangement. Hirshfeld surface analysis (HS) (2009) [205] is a useful tool to understand the intermolecular contacts among atoms and crystal packing. HS is calculated based on the distances between the internal nucleus of the HS within the molecule (di) and the external nucleus of the HS within the molecule (de) [206]. The normalized contact distance (dnorm), which combines the normalized de and di with the van der Waals radius, is used to identify the most important contacts present in the molecule. Moreover, the 2D fingerprint plots provide the frequency and quantitative information about the calculated intermolecular contacts. For this purpose, we used Crystal Explorer 21.5 [207] software to generate this HS surface and to calculate the 2D fingerprint plots. The electronic structure calculations were carried out with the Gaussian 16 [207] program package for compound 5 (naringenin). Full geometry optimization was carried out using density functional theory (DFT), with exchange-correlation functional M062X and basis set 6-311++G(d,p) [206], and the electronic properties, such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and the molecular electrostatic potential (MEP), were calculated [207].

4. Conclusions

There were 29 species of the genus Justicia studied all of which presented information regarding chemical information, with 28 biological activities presented: 19 had their compounds identified, and 10 species had their compounds isolated. Alkaloids and flavonoids (e.g., naringenin) were the compounds of the active extracts that had the highest frequency of identification among the researched data. The secondary metabolites that most frequently showed biological effects were lignans. The most researched species were Justicia gendarussa Burm, Justicia adhatoda L., Justicia procubens L., Justicia spicigera Schltdl, and Justicia secunda Vahl., with frequency values of articles surveyed of 40, 20, 19, 18 and 16, respectively. Species of the genus Justicia have a range of biological uses, identified as antioxidant, antimicrobial and anticancer, among others. The first two are the most representative; however, we would suggest the need for further research. The FMO taken from NBO analysis indicates reactive sites for compound 5 (naringenin) to be targeted in a chemical reaction on phytomedical activity. The energy gap (206.99 kcal/mol) and dimer solid state packing ( R 2 2 (24) symmetry) indicates that naringenin is chemically stable.

Author Contributions

Conceptualization, M.R.B.C., J.L.R.M., J.d.C.P., L.O.S., H.B.N. and L.P.R.; methodology, M.R.B.C., L.O.S., H.B.N. and L.P.R.; software, L.O.S. and H.B.N.; writing—original draft preparation, M.R.B.C., J.d.C.P., J.L.R.M., L.O.S., H.B.N. and L.P.R.; writing—review and editing, H.B.N. and L.P.R.; supervision, L.P.R.; project administration, L.P.R.; funding acquisition, H.B.N. and L.P.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG-PD&I no. 07/2020), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Fundação Nacional de Desenvolvimento do Ensino Superior Particular (FUNADESP) and High Performance Computing Center at the Universidade Estadual de Goiás (UEG).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank Ademir João Camargo (UEG) for fruitful discussion on molecular modeling of naringenin.

Conflicts of Interest

The authors declare no conflict of interest.

Sample Availability

Not applicable.

References

  1. Colli, G.R.; Vieira, C.R.; Dianese, J.C. Biodiversity and Conservation of the Cerrado: Recet Advances and Old Challenges. Biodivers Conserv 2020, 29, 1465–1475. [Google Scholar] [CrossRef] [Green Version]
  2. Rocha, J.C.S. Dinâmica de Ocupação No Bioma Cerrado: Caracterização dos Desmatamentos e Análise Das Frentes de Expansão; Universidade Federal de Goiás: Goiânia, Brazil, 2012. [Google Scholar]
  3. Myers, N.; Mittermeier, R.A.; DaFonseca, G.A.; Kent, J. Biodiversity Hostpot for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
  4. Oliveira, P.S.; Marquis, R.J. The Cerrados of Brazil: Ecology and Atural History of a Neotropical Savanna; Columbia University Press: New York, NY, USA, 2002. [Google Scholar]
  5. Wasshausen, D.C.; Wood, J.R.I. Acanthaceae of Bolivia. Contributions from the United States National Herbarium; National Museum of Natural History: Washington, DC, USA, 2004; Volume 49. [Google Scholar]
  6. Profice, S.R.; Kameyama, C.; Côrtes, A.L.A.; Braz, D.M.; Indriunas, A.; Vilar, T.; Pessoa, C.; Ezcurra, C.; Wasshausen, D. Acanthaceae in Lista de Espécies da Flora do Brasil; Jardim Botânico do Rio de Janeiro: Rio de Janeiro, Brazil, 2015. [Google Scholar]
  7. Ezcurra, C. Systematics of Ruellia (Acanyhaceae) in Southern South America. Ann. Mo. Bot. Gard. 1999, 80, 787–845. [Google Scholar] [CrossRef]
  8. Corrêa, G.M.; Acântara, A.F.C. Chemical Constituients and Biological Activities of Species of Justicia—A Review. Rev. Bras. Farmacogn. 2012, 22, 220–238. [Google Scholar] [CrossRef]
  9. Kaur, A.; Katoch, D.; Singh, B.; Arora, S. Seclusion of vasicine—An quinazoline alkaloid from bioactive fraction of Justicia adhatoda and its antioxidant, antimutagenic and anticancerous activities. J. Glob. Biosci. 2016, 5, 3836–3850. [Google Scholar]
  10. Arvinder, K.; Davinder, K.; Saroj, A. Evaluation of Antioxidant and Antimutagenic Potential of Justicia adhatoda Leaves Extract. Afr. J. Biotechnol. 2015, 14, 1807–1819. [Google Scholar] [CrossRef] [Green Version]
  11. Cordeiro, P.M.; Fernandes, S.M.; da Fonseca, C.D.; Watanabe, M.; Lopes, S.M.; de Fatima Fernandes Vattimo, M. Effects of Justicia acuminatissima, or Amazonian Sara Tudo, on Ischemic Acute Kidney Injury: An Experimental Study. Rev. Esc. Enferm. 2019, 53, 1–6. [Google Scholar] [CrossRef] [Green Version]
  12. Verdam, M.C.S.; Guilhon-Simplicio, F.; Barbosa, G.S.; Magalhães, A.L.; Oliveira, C.I.F.B.; Almeida, P.D.O.; Machado, T.M.; Vasconcellos, M.C.; Lima, E.S.; Ohana, D.T.; et al. Anti-Inflammatory Action of Justicia acuminatissima Leaves. Rev. Bras. Farmacogn. 2015, 25, 264–268. [Google Scholar] [CrossRef] [Green Version]
  13. Jha, D.K.; Panda, L.; Ramaiah, S.; Anbarasu, A. Evaluation and Comparison of Radical Scavenging Properties of Solvent Extracts from Justicia adhatoda Leaf Using DPPH Assay. Appl. Biochem. Biotechnol. 2014, 174, 2413–2425. [Google Scholar] [CrossRef]
  14. Marathakam, A.; Kannappan, N.; Jasemine, S.; Santhiagu, A.; Sreejith, M.; Ajith, M.P. Studies on Phytochemical and In-Vitro Antioxidant Potential of Justicia beddomei (Clarke) Bennett. Free Radic. Antioxid. 2012, 2, 26–31. [Google Scholar] [CrossRef] [Green Version]
  15. Mondal, M.; Hossain, M.M.; Rahman, M.A.; Saha, S.; Uddin, N.; Hasan, M.R.; Kader, A.; Wahed, T.B.; Kundu, S.K.; Islam, M.T.; et al. Hepatoprotective and Antioxidant Activities of Justicia gendarussa Leaf Extract in Carbofuran-Induced Hepatic Damage in Rats. Chem. Res. Toxicol. 2019, 32, 2499–2508. [Google Scholar] [CrossRef]
  16. Reddy, Y.S.; Chinnala, K.M.; Vamshi, K.; Nath, S.; Mohan, E.M.; Narender, B. In Vitro Evaluation of Anti-Oxidant Activity of Different Extracts of Justicia gendarussa Leaf. Sch. Res. Libr. Pharma Chem. 2015, 7, 21–24. [Google Scholar]
  17. Dhankhar, S.; Dhankhar, S.; Ruhil, S.; Balhara, M.; Malik, V.; Chhillar, A.K. Isolation and Biological Evaluation of Novel Tetracosahexaene Hexamethyl, an Acyclic Triterpenoids Derivatives and Antioxidant from Justicia adhatoda. Comb. Chem. High Throughput Screen 2014, 17, 723–732. [Google Scholar] [CrossRef]
  18. Saran, N.; Giridharan, B.; Sakthivel, V.; Saran, N.; Anandharaj, B.; Bupesh, G.; Vasanth, S. Monitoring of Human Influenza Virus in India View Project Antiinflammatory Drugs View Project In Vitro Antioxidant Potential of Justicia adhatoda Leaf Extracts against 1,1-Diphenyl Picryl Hydrazyl, Hydroxyl, and Nitrous Oxide Free Radicals. Drug Inventig. Today 2019, 12, 1710–1736. [Google Scholar]
  19. Cassola, F.; Reis da Silva, M.H.; Borghi, A.A.; Lusa, M.G.; Sawaya, A.C.H.F.; Garcia, V.L.; Mayer, J.L.S. Morphoanatomical Characteristics, Chemical Profiles, and Antioxidant Activity of Three Species of Justicia L. (Acanthaceae) under Different Growth Conditions. Ind. Crops Prod. 2019, 131, 257–265. [Google Scholar] [CrossRef]
  20. Bhagya, N.; Chandrashekar, K.R. Evaluation of plant and callus extracts of Justicia gendarussa Burm. f. for phytochemicals and antioxidant activity. Int. J. Pharm. Pharm. Sci. 2013, 5, 82–85. [Google Scholar]
  21. Sudevan, S.; Pharm Sci, P.J.; Parasivam, R.; Sundar, S.; Velauthan, H.; Ramasamy, V. Investigation of Anti-Inflammatory and Anti-Cancer Activity of Justicia adathoda Metabolites. Pak. J. Pharm. Sci. 2019, 32, 1555–1561. [Google Scholar]
  22. Alonso-Castro, A.J.; Ortiz-Sánchez, E.; Domínguez, F.; Arana-Argáez, V.; Juárez-Vázquez, M.D.C.; Chávez, M.; Carranza-Álvarez, C.; Gaspar-Ramírez, O.; Espinosa-Reyes, G.; López-Toledo, G.; et al. Antitumor and Immunomodulatory Effects of Justicia spicigera Schltdl (Acanthaceae). J. Ethnopharmacol. 2012, 141, 888–894. [Google Scholar] [CrossRef]
  23. Ayob, Z.; Samad, A.A.; Bohari, S.P.M. Cytotoxicity Activities in Local Justicia gendarussa Crude Extracts against Human Cancer Cell Lines. J. Teknol. 2013, 64, 45–52. [Google Scholar] [CrossRef] [Green Version]
  24. Ayob, Z.; Bohari, M.S.P.; Abd Samad, A.; Jamil, S. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts. Evid.-Based Complement. Altern. Med. 2014, 2014, 732980. [Google Scholar] [CrossRef] [Green Version]
  25. Zhang, H.J.; Rumschlag-Booms, E.; Guan, Y.F.; Liu, K.L.; Wang, D.Y.; Li, W.F.; Nguyen, V.H.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H.S.; et al. Anti-HIV Diphyllin Glycosides from Justicia gendarussa. Phytochemistry 2017, 136, 94–100. [Google Scholar] [CrossRef] [Green Version]
  26. Prajogo, B.E.; Widiyanti, P.; Nasronudin; Aksono, B. The Effect of Gendarussin a Isolates of Justicia gendarussa Burm.f. Leaf in Reverse Transcriptase Inhibition of HIV Type I In Vitro. Indones. J. Trop. Infect. Dis. 2015, 5, 136–141. [Google Scholar]
  27. Sinansari, R.; Bambang Prajogo, E.W.; Widiyanti, P. In Silico Screening and Biological Evaluation of the Compounds of Justicia gendarussa Leaves Extract as Interferon Gamma Inducer: A Study of Anti Human Immunodeficiency Virus (HIV) Development. Afr. J. Infect Dis. 2018, 12, 140–147. [Google Scholar] [CrossRef] [Green Version]
  28. Widodo, A.; Widiyanti, P.; Prajogo, B. Antiviral Activity of Justicia gendarussa Burm. F. Leaves against HIV-Infected MT-4 Cells. Afr. J. Infect Dis. 2018, 12, 36–43. [Google Scholar] [CrossRef] [Green Version]
  29. Prajogo, B.; Widiyanti, P.; Riza, H. Effect of free alkaloid and non-free alkaloid ethanol 70% extract of Justicia gendarussa Burm f. leaves against reverse transcriptase HIV enzyme in vitro and chemical compound analysis. Indones. J. Trop. Infect. Dis. 2016, 6, 1–4. [Google Scholar] [CrossRef] [Green Version]
  30. Widiyanti, P.; Prajogo, B.; Widodo, A. Effect of Varying Incubation Periods on Cytotoxicity and Virucidal Activities of Justicia gendarussa Burm.F. Leaf Extract on Hiv-Infected Molt-4 Cells. Afr. J. Infect Dis. 2018, 12, 133–139. [Google Scholar] [CrossRef]
  31. Agyare, C.; Bempah, S.B.; Boakye, Y.D.; Ayande, P.G.; Adarkwa-Yiadom, M.; Mensah, K.B. Evaluation of Antimicrobial and Wound Healing Potential of Justicia flava and Lannea welwitschii. Evid.-Based Complement. Altern. Med. 2013, 2013, 632927. [Google Scholar] [CrossRef] [Green Version]
  32. Naik, S.K.; Manjula, B.L.; Balaji, M.V.; Marndi, S.; Kumar, S.; Devi, R.S. Antibacterial Activity of Justicia betonica Linn. Asian Pac. J. Health Sci. 2022, 9, 227–230. [Google Scholar] [CrossRef]
  33. Corrêa, G.M.; Abreu, V.D.G.C.; Martins, D.A.A.; Takahashi, J.A.; Fontoura, H.; Cara, D.C.; Piló-veloso, D.; Alcântara, A.F.C. Anti-inflammatory and antimicrobial activities of steroids and triterpenes isolated from aerial parts of Justicia acuminatissima (Acanthaceae). Int. J. Pharm. Pharm. Sci. 2014, 6, 75–81. [Google Scholar]
  34. Corrêa, G.M. Estudo Fitoquímico de Justicia acuminatissima (Acanthaceae): Caracterização Química, Avaliação Biológica, Contaminação Fúngica e Detecção de Produtos Radiolíticos; Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2013. [Google Scholar]
  35. Chaliha, A.K.; Gogoi, D.; Chetia, P.; Sarma, D.; Buragohain, A.K. An In Silico Approach for Identification of Potential Anti-Mycobacterial Targets of Vasicine and Related Chemical Compounds. Comb. Chem. High Throughput Screen 2016, 19, 14–24. [Google Scholar] [CrossRef]
  36. Pa, R.; Mathew, L. Antimicrobial Activity of Leaf Extracts of Justicia adhatoda L. in Comparison with Vasicine. Asian Pac. J. Trop. Biomed. 2012, 2, 1556–1560. [Google Scholar] [CrossRef]
  37. Jha, D.K.; Panda, L.; Lavanya, P.; Ramaiah, S.; Anbarasu, A. Detection and Confirmation of Alkaloids in Leaves of Justicia adhatoda and Bioinformatics Approach to Elicit Its Anti-Tuberculosis Activity. Appl. Biochem. Biotechnol. 2012, 168, 980–990. [Google Scholar] [CrossRef]
  38. Vinukonda, P.V.; Palakeerti, S.K.; Nalakurthi, C.; Dogulas Palleti, J. In silico studies of Justicia adhatoda, Ocimum sanctum plant compounds as Mycobacterium tuberculosis ftsz inhibitors. Int. J. Bioassays 2012, 1, 1–4. [Google Scholar]
  39. Vasconcelos, F.G. Caracterização Físico-Química, Avaliação Preliminar de Toxicidade e de Atividade Antimicrobiana das Folhas de Justicia Thunbergioides (Lindau) Leonard (ACANTHACEAE); Centro Universitário de Anápolis—Uni-EVANGÉLICA: Anápolis, Brazil, 2019. [Google Scholar]
  40. Subramanian, N.; Jothimanivannan, C.; Moorthy K Antimicrobial activity and preliminary phytochemical screening of Justicia gendarussa (Burm. f.) against human pathogens. Asian J. Pharm. Clin. Res. 2012, 5, 229–233. [Google Scholar]
  41. Sugumaran, P.; Kowsalya, N.; Karthic, R.; Seshadri, S. Biomass Production and Antibacterial Activity of Justicia gendarussa: A Valuable Medicinal Plant. J. Trop. Life Sci. 2013, 3, 8–13. [Google Scholar] [CrossRef] [Green Version]
  42. Ortiz-Andrade, R.; Cabañas-Wuan, A.; Arana-Argáez, V.E.; Alonso-Castro, A.J.; Zapata-Bustos, R.; Salazar-Olivo, L.A.; Domínguez, F.; Chávez, M.; Carranza-Álvarez, C.; García-Carrancá, A. Antidiabetic Effects of Justicia spicigera Schltdl (Acanthaceae). J. Ethnopharmacol. 2012, 143, 455–462. [Google Scholar] [CrossRef]
  43. Ameer, M.R.; Khalid, Z.M.; Ibrar Shinwari, M.; Ali, H. Correlation among Antidiabetic Potential, Biochemical Parameters and Gc-Ms Analysis of The Crude Extracts of Justicia adhatoda L. Pak. J. Bot. 2021, 53, 2111–2125. [Google Scholar] [CrossRef]
  44. Marathakam, A.; Kannappan, N.; Santhiagu, A. Evaluation of Hepatoprotective Activity of Methanolic Extract of Justicia beddomei (Clarke) Bennett Against INH and Rifampicin Induced Hepatotoxicity. Am. J. Pharm. Tech. Res. 2014, 4, 869–878. [Google Scholar]
  45. Rasheed, F.; Khan Kayani, W.; Mahmood, A.; Gulfraz, M. Detection of bioactive fractions of Justicia adhatoda L. leaves. Can. J. Appl. Sci. 2013, 1, 388–398. [Google Scholar] [CrossRef]
  46. Bbosa, S.G.; Kyegombe, D.B.; Lubega, A.; Musisi, N.; Ogwal-Okeng, J.; Odyek, O. Anti-Plasmodium Falciparum Activity of Aloe dawei and Justicia betonica. Afr. J. Pharm. Pharm. 2013, 7, 2258–2263. [Google Scholar] [CrossRef]
  47. Subramanian, N.; Jothimaniv, C.; Kumar, R.S.; Kameshwara, S. Evaluation of Anti-Anxiety Activity of Justicia gendarussa Burm. Pharmacologia 2013, 4, 404–407. [Google Scholar] [CrossRef] [Green Version]
  48. Souza, L.G.S.; Almeida, S.M.C.; Lemos, G.T.L.; Ribeiro, P.R.V.; Canuto, K.M.; Braz-Filho, R.; del Cistia, C.N.; Sant’Anna, C.M.R.; Barreto, F.S.; de Moraes, M.O. Brazoides A-D, New Alkaloids from Justicia gendarussa Burm. F. Species. J. Braz. Chem. Soc. 2017, 28, 1281–1287. [Google Scholar] [CrossRef]
  49. Bafor, E.E.; Ukpebor, F.; Omotuyi, O.; Ochoyama, E.; Omogiade, G.; Ekufu, J.; Edrada-Ebel, R. Tocolytic activity assessment of the methanol leaf extract of Justicia flava Vahl (Acanthaceae) on mouse myometrial contractility and preliminary mass spectrometric determination of secondary metabolities. J. of Ethnopharmacology. 2019, 243, 1–12. [Google Scholar] [CrossRef]
  50. Patel, S.S.; Zaveri, M.N. Cytotoxic Activity to Find Bioactive Compound from Justicia gendarussa Using Brine Shrimp Lethality Assay Investigation of Medicinal Plants for Development of Anti-Tuberculosis Polyherbal Formulation View Project Pharmacognostical, Phyto-Chemical and Nephro-Protecive Screening of Root of Aerva javanica View Project Sonal S Patel. Asian J. Tradit. Med. 2012, 7, 102–108. [Google Scholar]
  51. Ponnamma, S.U.; Manjunath, K. GC-MA Analysis of Phytocomponents in the Methanolic Extract of Justicia wynaadensis (Nees) T. Anders. Int. J. Pharm. Biol. Sci. 2012, 3, 570–576. [Google Scholar]
  52. Lima, A.R.S. Desenvolvimento Tecnológico de Extratos Padronizados em Cumarinas das Partes Aéreas de Justicia pectoralis Jacq. (Acanthaceae; Universidade Estadual de Goiás: Anápolis, Brazil, 2017. [Google Scholar]
  53. Yamoah, A.; Adosraku, R.K.; Amenu, J.D.; Baah, M.K.; Abaye, D.A. Evaluation of the Haematinic Activities of Extracts of Justicia secunda Vahl Leaves in Red Blood Cells of Laboratory Rats. J. Biosci. Med. 2020, 8, 48–57. [Google Scholar] [CrossRef] [Green Version]
  54. Abhishek, G.; Apurva, J.; Joshi, V.K. Pharmacognostical Study of Justicia adhatoda Linn. Leaf. Int. J. Herb. Med. 2014, 1, 1–4. [Google Scholar]
  55. Senthamari, R.; Akilandeswari, S.; Valarmathi, R. Anti Arthritic Activity of Cissus quadrangularis l and Justicia tranquebariensis in the Treatment of Rheumatism. Int. J. Pharm. Chem. Sci. 2013, 2, 1435–1440. [Google Scholar]
  56. Kowsalya, D.; Sankaranarayanan, S. Efficacies of Bactericidal Justicia gendarussa Extract Inhibiting Protein Synthesis against Methicilin Resistant Staphylococcus aureus. IOSR J. Pharm. Biol. Sci. 2012, 4, 32–41. [Google Scholar] [CrossRef]
  57. Calderón, A.I.; Hodel, A.; Wolfender, J.L.; Gupta, M.P.; Correa, M.; Hostettmann, K. LC-DAD-MS-Based Metabolite Profiling of Three Species of Justicia (Acanthaceae). Nat. Prod. Res. 2012, 27, 1335–1342. [Google Scholar] [CrossRef]
  58. Anthonia, O.C.; Ikechukwu, U.R.; Uzoma, N.O.; Sunday, E.L.U. Nutritive Properties of Aqueous Extract Justicia carnea Leaves and Its Effects on Haematological and Some Biochemical Indices of Anaemia Induced Male Wistar Albino Rats. Biomed. Res. 2019, 30, 645–654. [Google Scholar] [CrossRef] [Green Version]
  59. Bafor, E.E.; Ukpebor, F.; Elvis-Offiah, U.; Uchendu, A.; Omoruyi, O.; Omogiade, G.U. Justicia flava Leaves Exert Mild Estrogenic Activity in Mouse Models of Uterotrophic and Reproductive Cycle Investigations. J. Med. Food 2019, 23, 395–408. [Google Scholar] [CrossRef] [PubMed]
  60. Prasad, M.P. Studies on phytochemical analysis and antimicrobial activity of Acanthaceae species. Int. J. Curr. Res. 2014, 6, 8630–8637. [Google Scholar]
  61. Rocha, J.G.; Peixoto, J.C.; Santos, T.L. Bioprospecção No Cerrado: Fitoquímica Foliar de Justicia nodicaulis (Nees) Leonard (Acanthaceae) Ocorrente Em Cerrado Goiano. Rev. Divulg. Cient. Sena Aires 2019, 8, 198–205. [Google Scholar] [CrossRef]
  62. Youm, J.; Lee, H.; Chang, H.B.; Jeon, J.; Yoon, M.H.; Woo, J.Y.; Choi, M.-S.; Hwang, Y.; Seong, S.; Na, K.; et al. Justicia procumbens Extract (DW2008) Selectively Suppresses Th2 Cytokines in Splenocytes and Ameliorates Ovalbumin-Induced Airway Inflammation in a Mouse Model of Asthma. Biol. Pharm. Bull. 2017, 40, 1416–1422. [Google Scholar] [CrossRef]
  63. Xiong, W.; Yang, Y.; Xiong, Y.; Liu, B.; Xie, Z.; Wu, H. A New Neolignan from Justicia procumbens. Chem. Nat. Compd. 2020, 56, 50–52. [Google Scholar] [CrossRef]
  64. Esquivel-Gutiérrez, E.R.; Noriega-Cisneros, R.; Arellano-Plaza, M.; Ibarra-Barajas, M.; Salgado-Garciglia, R.; Saavedra-Molina, A. Antihypertensive Effect of Justicia spicigera in L-NAME-Induced Hypertensive Rats. Pharmacol. Line 2013, 2, 120–127. [Google Scholar]
  65. Bhagya, N.; Chandrashekar, K.R.; Kalluraya, B. Identification of a rare phytosteroid from Justicia gendarussa. Chem. Nat. Compd. 2013, 49, 831–832. [Google Scholar] [CrossRef]
  66. Widiyanti, P.; Prajogo, B.; Hikmawanti, N.P.E. Cytotoxicity of Justicia gendarussa Burm f. leaf extracts on molt-4 cell. Indones. J. Trop. Infect. Dis. 2016, 6, 24–28. [Google Scholar] [CrossRef] [Green Version]
  67. Vargem, D.S. Morfoanatomia, Prospecção Fitoquímica e Caracterização do Óleo Essencial das Folhas de Justicia pectoralis Jacq. (Acanthaceae) Ocorrente Em Brasília, DF; Centro Universitário de Anápolis—Uni-EVANGÉLICA: Anápolis, Brazil, 2015. [Google Scholar]
  68. Peixoto, J.C.; Neves, B.J.; Vasconcelos, F.G.; Napolitano, H.B.; da Silva Barbalho, M.G.; Silva, S.D.; Rosseto, L.P. Flavonoids from Brazilian Cerrado: Biosynthesis, Chemical and Biological Profile. Molecules 2019, 24, 2891. [Google Scholar] [CrossRef] [Green Version]
  69. Rao, V.P.; Kiran, S.D.V.S.; Rohini, P.; Bhagyasree, P. Flavonoid: A Review on Naringenin. J Pharm. Phytochem. 2017, 6, 2278–2283. [Google Scholar]
  70. Castellucci, S.; Lima, M.I.S.; Nordi, N.; Marques, J.G.W. Plantas Medicinais Relatadas Pela Comunidade Residente Na Estação Ecológica de Jataí, Município de Luís Antônio/SP: Uma Abordagem Etnobotânica. Rev. Bras. Plantas Med. 2000, 3, 51–60. [Google Scholar]
  71. Nair, A.; Guldiken, O.; Fainshimidt, S.; Pezeshkan, A. Innovation in India: A Review of Past Research and Future Directions. Asian Pac. J. Manag. 2015, 32, 925–958. [Google Scholar] [CrossRef]
  72. Barth, A.; Hovhannisyan, A.; Jamalyan, K.; Narimanyan, M. Antitussive Effect of a Fixed Combination of Justicia adhatoda, Echinacea purpurea and Eleutherococcus senticosus Extracts in Patients with Acute Upper Respiratory Tract Infection: A Comparative, Randomized, Double-Blind, Placebo-Controlled Study. Phytomedicine 2015, 22, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
  73. Gutti, U.; Komati, J.K.; Kotipalli, A.; Saladi, R.G.V.; Gutti, R.K. Justicia adhatoda Induces Megakaryocyte Differentiation through Mitochondrial ROS Generation. Phytomedicine 2018, 43, 135–139. [Google Scholar] [CrossRef] [PubMed]
  74. Aziz, S.; Hussain, H.; Younis, A.; Ur-Rehman, H.; Shahid, M.; Butt, A.F.; Green, I.R. Phytochemical and Biological Evaluation of Justicia adhatoda. Int. J. Phytomed. 2017, 9, 10. [Google Scholar] [CrossRef] [Green Version]
  75. Someya, T.; Sano, K.; Hara, K.; Sagane, Y.; Watanabe, T.; Wijesekara, R.G.S. Fibroblast and Keratinocyte Gene Expression Following Exposure to the Extracts of Holy Basil Plant (Ocimum tenuiflorum), Malabar Nut Plant (Justicia adhatoda), and Mblic Myrobalan Plant (Phyllanthus emblica). Data Brief. 2018, 17, 24–46. [Google Scholar] [CrossRef]
  76. Thanigaivel, A.; Senthil-Nathan, S.; Vasantha-Srinivasan, P.; Edwin, E.S.; Ponsankar, A.; Selin-Rani, S.; Pradeepa, V.; Chellappandian, M.; Kalaivani, K.; Abdel-Megeed, A.; et al. Chemicals Isolated from Justicia adhatoda Linn Reduce Fitness of the Mosquito, Aedes aegypti L. Arch. Insect. Biochem. Physiol. 2017, 94, e21384. [Google Scholar] [CrossRef]
  77. Chowdhury, I.I.; Rahman, M.A.; Hashem, M.A.; Bhuiyan, M.M.H.; Hajjar, D.; Alelwani, W.; Makki, A.A.; Haque, M.A.; Tangpong, J.; Bakhtiar, M.T. Bin. Supplements of an Aqueous Combination of Justicia adhatoda and Ocimum tenuiflorum Boost Antioxidative Effects and Impede Hyperlipidemia. Anim. Model Exp. Med. 2020, 3, 140–151. [Google Scholar] [CrossRef]
  78. Basit, A.; Shutian, T.; Khan, A.; Khan, S.M.; Shahzad, R.; Khan, A.; Khan, S.; Khan, M. Anti-Inflammatory and Analgesic Potential of Leaf Extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-Induced Models by Targeting Oxidative Stress. Biomed. Pharmacother. 2022, 153, 113322. [Google Scholar] [CrossRef]
  79. Prabavathy, D.; Valli Nachiyar, C. Cytotoxic potential and phytochemical analysis of Justicia beddomei and its endophytic Aspergillus sp. Asian J. Pharm. Clin. Res. 2013, 6, 159–161. [Google Scholar]
  80. Jiang, X.-H.; Xie, Y.-C.; Li, J.; Ning, D.-S. Essential oil composition of Justicia brandegeeana. Chem. Nat. Compd. 2014, 50, 132–133. [Google Scholar] [CrossRef]
  81. Otuokere, I.E.; Amaku, A.J.; Igwe, K.K.; Chinedum, G.C. Medicinal Studies on the Phytochemical Constituents of Justicia carnea by GC-MS Analysis. Am. J. Food Sci. Health 2016, 2, 71–77. [Google Scholar]
  82. Onyeabo, C.; Achi, N.K.; Ekeleme-Egedigwe, C.A.; Ebere, C.U.; Okoro, C.K. Haematological and Biochemical Studies on Justicia carnea Leaves Extract in Phenylhydrazine Induced-Anemia in Albino Rats. Acta Sci. Pol. Technol. Aliment. 2017, 16, 217–230. [Google Scholar] [CrossRef] [PubMed]
  83. Akintimehin, E.S.; Karigidi, K.O.; Omogunwa, T.S.; Adetuyi, F.O. Safety Assessment of Oral Administration of Ethanol Extract of Justicia carnea Leaf in Healthy Wistar Rats: Hematology, Antioxidative and Histology Studies. Clin. Phytoscience 2021, 7, 2. [Google Scholar] [CrossRef]
  84. Ajuru, M.G.; Kpekot, K.A.; Robinson, G.E.; Amutadi, M.C. Proximate and Phytochemical Analysis of the Leaves of Justicia carnea Lindi. and Justicia secunda Vahl and Its Taxonomic Implications. J. Biomed. Biosens. 2022, 2, 1–12. [Google Scholar]
  85. Sowemimo, A.A.; Adio, O.; Fageyinbo, S. Anticonvulsant Activity of the Methanolic Extract of Justicia extensa T. Anders. J. Ethnopharmacol. 2011, 138, 697–699. [Google Scholar] [CrossRef]
  86. Bafor, E.E.; Prendergast, C.; Wray, S. Justicia flava Leaf Extract Potently Relaxes Pregnant Human Myometrial Contractility: A Lead Plant for Drug Discovery of New Tocolytic Drugs. Exp. Physiol. 2020, 105, 2033–2037. [Google Scholar] [CrossRef]
  87. Bafor, E.E.; Ukpebor, F.; Omoruyi, O.; Ochoyama, E.; Odega, K. Acute Toxicological Evaluations of the Methanol Leaf Extract of Justicia flava (Vahl) Acanthaceae in Mouse Models. Trop. J. Nat. Prod. Res. 2019, 3, 138–144. [Google Scholar] [CrossRef]
  88. Wenceslas, K.D.K.; N’Dia, K.F.; Kouakou, K.L.; Paul, Y.A. Anti-inflammatory effects of an aqueous extract of Justicia flava (forsk) Vahl (Acanthaceae) in rats. Asian J. Pharm. Clin. Res. 2021, 14, 146–153. [Google Scholar] [CrossRef]
  89. Kounamé, D.K.W.; Oussou, N.J.; Kouakou, K.L.; Yapo, A.P. Analgesic and antipyretic effects of an aqueous extract of Justicia flava (Forsk) Vahl (Acanthaceae) in mice. Artic. World J. Pharm. Res. 2021, 10, 1–15. [Google Scholar] [CrossRef]
  90. Stewart, P.; Boonsiri, P.; Puthong, S.; Rojpibulstit, P. Antioxidant Activity and Ultrastructural Changes in Gastric Cancer Cell Lines Induced by Northeastern Thai Edible Folk Plant Extracts. BMC Complement. Altern. Med. 2013, 13, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  91. Kumar, K.S.; Vijayan, V.; Bhaskar, S.; Krishnan, K.; Shalini, V.; Helen, A. Anti-Inflammatory Potential of an Ethyl Acetate Fraction Isolated from Justicia gendarussa Roots through Inhibition of INOS and COX-2 Expression via NF-ΚB Pathway. Cell Immunol. 2012, 272, 283–289. [Google Scholar] [CrossRef]
  92. Saha, M.R.; Debnath, P.C.; Rahman, M.A.; Islam, M.A.U. Evaluation of in Vitro Anthelmintic Activities of Leaf and Stem Extracts of Justicia gendarussa. Bangladesh J. Pharm. 2012, 7, 50–53. [Google Scholar] [CrossRef] [Green Version]
  93. Nirmalraj, S.; Ravikumar, M.; Mahendrakumar, M.; Bharath, B.; Perinbam, K. Antibacterial and Anti-Inflammatory Activity of Justicia gendarussa Burm. F. Leaves. J. Plant Sci. 2015, 10, 70–74. [Google Scholar] [CrossRef] [Green Version]
  94. Reddy, Y.; Nagulu, M.; Reddy, M.R.; Prasad, P.H.; Sweth, M.J.; Kumar, V.R.; Reddy, G.P.C.S. In Vitro Antibacterial Activity of Leaf Extracts of Justicia gendarussa Wild. Sch. Res. Libr. Pharm. Lett. 2013, 5, 101–103. [Google Scholar]
  95. Ayob, Z.; Md Saari, N.; Abd Samad, A. In Vitro Propagation and Flavonoid Contents in Local Justicia gendarussa Burm. F. In In Proceedings of the 11th International Annual Symposium on Sustainability Science and Management, Kuala Terengganu, Malaysia, 9–11 July 2012; pp. 403–409. [Google Scholar]
  96. Indrayoni, P.; Purwanti, D.I.; Wongso, S.; Prajogo, B.E.W.; Indrayanto, G. Metabolite Profiles in Various Plant Organs of Justicia gendarussa Burm.F. and Its in Vitro Cultures. Sci. Pharm. 2016, 84, 555–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Phatangare, N.D.; Deshmukh, K.K.; Murade, V.D.; Hase, G.J.; Gaje, T.R. Isolation and Characterization of Phytol from Justicia gendarussa Burm. f.—An Anti-Inflammatory Compound. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 864–872. [Google Scholar] [CrossRef] [Green Version]
  98. Kumar, K.S.; Sabu, V.; Sindhu, G.; Rauf, A.A.; Helen, A. Isolation, Identification and Characterization of Apigenin from Justicia gendarussa and Its Anti-Inflammatory Activity. Int. Immunopharmacol. 2018, 59, 157–167. [Google Scholar] [CrossRef]
  99. Kiren, Y.; Deguchi, J.; Hirasawa, Y.; Morita, H.; Prajogo, B. Justidrusamides A-D, New 2-Aminobenzyl Alcohol Derivatives from Justicia gendarussa. J. Nat. Med. 2014, 68, 754–758. [Google Scholar] [CrossRef] [PubMed]
  100. Ningsih, I.Y.; Purwanti, D.I.; Wongso, S.; Prajogo, B.E.W.; Indrayanto, G. Metabolite Profiling of Justicia gendarussa Burm. F. Leaves Using UPLC-UHR-QTOF-MS. Sci. Pharm. 2015, 83, 489–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  101. Sulistyowati, E.; Hsu, J.-H.; Cheng, Y.-B.; Chang, F.-R.; Chen, Y.-F.; Yeh, J.-L. Indonesian Herbal Medicine Prevents Hypertension-Induced Left Ventricular Hypertrophy by Diminishing NADPH Oxidase-Dependent Oxidative Stress. Oncotarget 2017, 8, 86784–86798. [Google Scholar] [CrossRef] [PubMed]
  102. Supparmaniam, K.; Bohari, S.P.M. Effects of Justicia gendarussa Ethanolic Extract on Osteoblastic Activity of MC3T3-E1 Cell. J. Teknol. 2015, 77, 1–6. [Google Scholar] [CrossRef] [Green Version]
  103. Mnatsakanyan, M.; Queiroz, E.; Marcourt, L.; Prajogo, B.; Wolfender, J.-L. Quantitative Evaluation of Various Preparations and Extracts of the Male Contraceptive Justicia gendarussa and Identification of a New Aminobenzyl Derivative. Planta Med. Int. Open 2018, 5, 30–38. [Google Scholar] [CrossRef] [Green Version]
  104. Varma, R.S.; Ashok, G.; Vidyashankar, S.; Patki, P.; Nandakumar, K.S. Ethanol Extract of Justicia gendarussa Inhibits Lipopolysaccharide Stimulated Nitric Oxide and Matrix Metalloproteinase-9 Expression in Murine Macrophage. Pharm. Biol. 2011, 49, 648–652. [Google Scholar] [CrossRef] [Green Version]
  105. Bhavana, T.; Suma, M.; Suchitra, P.; Sudhakar, B.; Nivedita, S.; Scholar, P.G.; Manjunatheshwara, D. Anatomical and chemical recordings of vataghni (Justicia gendarussa burm f.) herb used in traditional practices. World J. Pharm. Res. 2020, 9, 1609–1618. [Google Scholar] [CrossRef]
  106. Ratih, G.A.M.; Imawati, M.F.; Nugroho, R.R.; Purwanti, D.I.; Wongso, S.; Prajogo, B.; Indrayanto, G. Phytochemicals of Gandarusa (Justicia gendarussa) and Its Preparations. Nat. Prod. Commun. 2019, 14, 1934578X19851406. [Google Scholar] [CrossRef] [Green Version]
  107. Zhang, H.X.; Xia, Z.; Xu, T.Q.; Chen, Y.M.; Zhou, G.X. New Compounds from the Aerial Parts of Justicia gendarussa Burm. f. and Their Antioxidant and Anti-Inflammatory Activities. Nat. Prod. Res. 2020, 35, 3478–3486. [Google Scholar] [CrossRef]
  108. Ramya, K.B. Efeito de Vários Extratos de Folhas de Justicia gendarussa No Comportamento Neurofarmacológico Atividade Em Modelo de Camundongos Induzido Por MPTP ABSTRATO. Res. J. Pharm. Technol. 2020, 13, 5793–5798. [Google Scholar] [CrossRef]
  109. Agbor, G.A.; Longo, F.; Makong, E.A.; Tarkang, P.A. Evaluation of the Antidiarrheal and Antioxidant Properties of Justicia hypocrateriformis. Pharm. Biol. 2014, 52, 1128–1133. [Google Scholar] [CrossRef]
  110. Telefo, P.B.; Tagne, S.R.; Koona, O.E.S.; Yemele, D.M.; Tchouanguep, F.M. Effect of the Aqueous Extract of Justicia insularis T. Anders (Acanthaceae) on Ovarian Folliculogenesis and Fertility of Female Rats. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. Mbemya, G.T.; Cadenas, J.; de Sá, N.A.R.; Guerreiro, D.D.; Donfack, N.J.; Alberto, L.; de Sousa, F.G.C.; Alves, B.G.; Lobo, C.H.; Santos, F.W.; et al. Supplementation of In Vitro Culture Medium with FSH to Grow Follicles and Mature Oocytes Can Be Replaced by Extracts of Justicia insularis. PLoS ONE 2018, 13, e0208760. [Google Scholar] [CrossRef] [PubMed]
  112. Goka, C.M.S.; Telefo, P.B.; Mbemya, G.T.; Awouafack, M.D.; Lienou, L.L.; Yemele, D.M.; Njina, S.N.; Donfack, N.N.; Tagne, R.S.; Fekam, F.B. Potentialisation of Pregnant Mare Serum Gonadotropin Inducing Effect on Ovarian Follicles Growth by the Aqueous Extract of Aloe buettneri, Dicliptera verticillata, Hibiscus macranthus and Justicia insularis Leaves in Immature Rats. Pharmacologia 2016, 7, 328–336. [Google Scholar] [CrossRef] [Green Version]
  113. Fadayomi, I.E.; Johnson-Ajinwo, O.R.; Pires, E.; McCullagh, J.; Claridge, T.D.W.; Forsyth, N.R.; Li, W.-W. Clerodane Diterpenoids from an Edible Plant Justicia insularis: Discovery, Cytotoxicity, and Apoptosis Induction in Human Ovarian Cancer Cells. Molecules 2021, 26, 5933. [Google Scholar] [CrossRef]
  114. Sridhar, N.; Duggirala, S.L.; Puchchakayala, G. Analyzing the Phytochemical Composition of Justicia neesii Ramam. J. Phytopharm. 2014, 3, 348–352. [Google Scholar] [CrossRef]
  115. Sridhar, N.; Lakshmi, D.S.; Goverdhan, P. Effect of Ethanolic Extracts of Justicia neesii Ramam. against Experimental Models of Pain and Pyrexia. Indian J. Pharm. 2015, 47, 177–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  116. Azevedo Junior, P.R.L.; Oliveira, R.A.M.; Mendes, M.B.; Bonci, M.M.; Paula, C.R.; Baroni, F.A.; Tozin, L.R.; Mendes, M.B.; Bonci, M.M.; Paula, C.R.; et al. de Potencial Antifúngico “In Vitro” de Extratos Foliares de Espécies de Justicia L. (Acanthaceae) Diante de Isolados Clínicos Veterinários de Dermatófitos. Res. Soc. Dev. 2022, 11, e62111032346. [Google Scholar] [CrossRef]
  117. Provensi, L.R. Estudo Fitoquímico e Atividade Antioxidante de Justicia thunbergioides (Lindau) Leonard (ACANTHACEAE); Centro Universitário de Anápolis—UniEVANGÉLICA: Anápolis, Brazil, 2018. [Google Scholar]
  118. Venâncio, E.T. Avaliação do Potencial Anticonvulsivante do Extrato Padronizado de Justicia pectoralis (Chambá): Estudo de Neuroproteção e Mecanismo de Ação; Universidade Federal do Ceará: Fortaleza, Brazil, 2015. [Google Scholar]
  119. Silva, A.H. Contribuições Ao Desenvolvimento de Fitoterápico A Partir de Justicia pectoralis (Chambá) Para O Tratamento da Asma: Otimização, Caracterização e Atividade Anti-Inflamatória; Universidade Federal do Ceará: Fortaleza, Brazil, 2018. [Google Scholar]
  120. Furtado, J.M.; Amorim, A.S.; Fernandes, M.V.M.; Oliveira, M.A.S. Atividade Antimicrobiana Do Extrato Aquoso de Eucalyptus globulus, Justicia pectoralis e Cymbopogon citratus Frente a Bactérias de Interesse. UNOPAR Cient. Ciênc. Biol. Saúde 2015, 17, 233–237. [Google Scholar]
  121. Cameron, C.; Jacob, A.; Thomas, E.; Levy, A. Preliminary Investigations of the Anti-Asthmatic Properties of the Aqueous Extract of Justicia pectoralis (Fresh Cut). West Indian Med. J. 2015, 64, 320–324. [Google Scholar] [CrossRef] [Green Version]
  122. Moura, C.T.M.; Batista-Lima, F.J.; Brito, T.S.; Silva, A.A.V.; Ferreira, L.C.; Roque, C.R.; Aragão, K.S.; Havt, A.; Fonseca, F.N.; Leal, L.K.A.M.; et al. Inhibitory Effects of a Standardized Extract of Justicia pectoralis in an Experimental Rat Model of Airway Hyper-Responsiveness. J. Pharm. Pharmacol. 2017, 69, 722–732. [Google Scholar] [CrossRef]
  123. Rodrigues, M.G. Flora do Cerrado Goiano: Estudo Morfo-Anatômico, Prospecção Fitoquímica e Avaliação da Atividade Antibacteriana de Partes Constituintes de Justicia pectoralis Jacq. (Acanthaceae); Centro Universitário de Anápolis—Uni-EVANGÉLICA: Anápolis, Brazil, 2017. [Google Scholar]
  124. Nunes, T.R.D.S.; Cordeiro, M.F.; Beserra, F.G.; Souza, M.L.; da Silva, W.A.V.; Ferreira, M.R.A.; Soares, L.A.L.; Costa-Junior, S.D.; Cavalcanti, I.M.F.; Pitta, M.G.D.R.; et al. Organic Extract of Justicia pectoralis Jacq. Leaf Inhibits Interferon-γ Secretion and Has Bacteriostatic Activity against Acinetobacter baumannii and Klebsiella pneumoniae. Evid.-Based Complement. Altern. Med. 2018, 2018, 5762368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Carvalho, M.; Caixeta, G.A.B.; Lima, A.R.S.; Teófilo, M.N.G.; Cruvinel, W.M.; Gomes, C.M.; Fleury, L.F.F.; Paula, J.A.M.; Amaral, V.C.S. Assessing the Safety of Using the Dry Extract of Justicia pectoralis Jacq. (Acanthaceae) during Pregnancy of Wistar Rats. J. Ethnopharmacol. 2020, 268, 113618. [Google Scholar] [CrossRef] [PubMed]
  126. Lima, A.R.S.; Lôbo, L.A.C.; Costa, T.L.C.; Peixoto, J.C.; Borges, L.L.; Amaral, V.C.S.; de Paula, J.A.M. Eco-Friendly Extraction and Simultaneous Determination of Two Coumarins in Justicia pectoralis (Acanthaceae). Rodriguesia 2020, 7, 1–13. [Google Scholar] [CrossRef]
  127. Guimarães, T.L.F.; da Silva, L.M.R.; de Brito Lima, C.; Magalhães, F.E.A.; de Figueiredo, E. altina T. Antimicrobial Activity of Microcapsules with Aqueous Extract of Chambá (Justicia pectoralis Jacq)1. Rev. Cienc. Agron. 2020, 51, 1–8. [Google Scholar] [CrossRef]
  128. Jiang, J.; Dong, H.; Wang, T.; Zhao, R.; Mu, Y.; Geng, Y.; Zheng, Z.; Wang, X. A Strategy for Preparative Separation of 10 Lignans from Justicia procumbens L. by High-Speed Counter-Current Chromatography. Molecules 2017, 22, 2024. [Google Scholar] [CrossRef] [Green Version]
  129. Youm, J.; Lee, H.; Choi, Y.; Yoon, J. DW2008S and Its Major Constituents from Justicia procumbens Exert Anti-Asthmatic Effect via Multitargeting Activity. J. Cell Mol. Med. 2018, 22, 2680–2691. [Google Scholar] [CrossRef]
  130. Luo, J.; Hu, Y.; Kong, W.; Yang, M. Evaluation and Structure-Activity Relationship Analysis of a New Series of Arylnaphthalene Lignans as Potential Anti-Tumor Agents. PLoS ONE 2014, 9, e93516. [Google Scholar] [CrossRef]
  131. Luo, Z.; Kong, W.; Qiu, F.; Yang, M.; Li, Q.; Wei, R.; Yang, X.; Qin, J. Simultaneous Determination of Seven Lignans in Justicia procumbens by High Performance Liquid Chromatography-Photodiode Array Detection Using Relative Response Factors. J. Sep. Sci. 2013, 36, 699–705. [Google Scholar] [CrossRef]
  132. Jin, H.; Yin, H.L.; Liu, S.J.; Chen, L.; Tian, Y.; Li, B.; Wang, Q.; Dong, J.X. Cytotoxic Activity of Lignans from Justicia procumbens. Fitoterapia 2014, 94, 70–76. [Google Scholar] [CrossRef]
  133. Jin, H.; Chen, L.; Tian, Y.; Li, B.; Dong, J.X. New Cyclopeptide Alkaloid and Lignan Glycoside from Justicia procumbens. J. Asian Nat. Prod. Res. 2015, 17, 33–39. [Google Scholar] [CrossRef]
  134. Jin, H.; Yang, S.; Dong, J.X. New Lignan Glycosides from Justicia procumbens. J. Asian Nat. Prod. Res. 2016, 19, 1–8. [Google Scholar] [CrossRef]
  135. He, X.L.; Zhang, P.; Dong, X.Z.; Yang, M.H.; Chen, S.L.; Bi, M.G. JR6, a New Compound Isolated from Justicia procumbens, Induces Apoptosis in Human Bladder Cancer EJ Cells through Caspase-Dependent Pathway. J. Ethnopharmacol. 2012, 144, 284–292. [Google Scholar] [CrossRef] [PubMed]
  136. Kamaraj, C.; Kaushik, N.K.; Mohanakrishnan, D.; Elango, G.; Bagavan, A.; Zahir, A.A.; Rahuman, A.A.; Sahal, D. Antiplasmodial Potential of Medicinal Plant Extracts from Malaiyur and Javadhu Hills of South India. Parasitol. Res. 2012, 111, 703–715. [Google Scholar] [CrossRef] [PubMed]
  137. Liu, B.; Yang, Y.; Liu, H.; Xie, Z.; Li, Q.; Deng, M.; Li, F.; Peng, J.; Wu, H. Screening for Cytotoxic Chemical Constituents from Justicia procumbens by HPLC-DAD-ESI-MS and NMR. Chem. Cent. J. 2018, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Luo, J.; Hu, Y.; Qin, J.; Yang, M. Ultra High Performance Liquid Chromatography–Electrospray Ionization-Tandem Mass Spectrometry and Pharmacokinetic Analysis of Justicidin B and 6′-Hydroxy Justicidin C in Rats. J. Sep. Sci. 2016, 40, 604–611. [Google Scholar] [CrossRef]
  139. Zhou, P.; Luo, Q.; Ding, L.; Fang, F.; Yuan, Y.; Chen, J.; Zhang, J.; Jin, H.; He, S. Preparative Isolation and Purification of Lignans from Justicia procumbens Using High-Speed Counter-Current Chromatography in Stepwise Elution Mode. Molecules 2015, 20, 7048–7058. [Google Scholar] [CrossRef] [Green Version]
  140. Wang, Y.W.; Chuang, J.J.; Chang, T.Y.; Won, S.J.; Tsai, H.W.; Lee, C.T.; Cheng, H.L.; Tzai, T.S.; Liu, H.S.; Chow, N.H. Antiangiogenesis as the Novel Mechanism for Justicidin A in the Anticancer Effect on Human Bladder Cancer. Anticancer Drugs 2015, 26, 428–436. [Google Scholar] [CrossRef]
  141. Won, S.J.; Yen, C.H.; Liu, H.S.; Wu, S.Y.; Lan, S.H.; Jiang-Shieh, Y.F.; Lin, C.N.; Su, C.L. Justicidin A-Induced Autophagy Flux Enhances Apoptosis of Human Colorectal Cancer Cells via Class III PI3K and Atg5 Pathway. J. Cell Physiol. 2014, 230, 930–946. [Google Scholar] [CrossRef]
  142. Lee, H.; Jeon, J.; Yoon, J.; Kim, S.H.; Choi, H.S.; Kang, J.S.; Lee, Y.S.; Lee, M.; Kim, Y.H.; Chang, H.B. Comparative Metabolite Profiling of Wild and Cultivated Justicia procumbens l. Based On1h-Nmr Spectroscopy and Hplc-Dad Analysis. Plants 2020, 9, 1–12. [Google Scholar] [CrossRef]
  143. Lv, J.P.; Yang, S.; Dong, J.X.; Jin, H. New Cyclopeptide Alkaloids from the Whole Plant of Justicia procumbens L. Nat. Prod. Res. 2021, 35, 4032–4040. [Google Scholar] [CrossRef]
  144. Mekonnen, B.; Asrie, A.B.; Wubneh, Z.B. Antidiarrheal Activity of 80% Methanolic Leaf Extract of Justicia schimperiana. Evid.-Based Complement. Altern. Med. 2018, 2018, 3037120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  145. Tesfaye, M. Evaluation of In-Vitro Antibacterial and Antifungal Activities of Crude Extract and Solvent Fractions of the Leaves of Justicia schimperiana Hochst. Ex Nees (Acanthaceae); Addis Ababa University: Addis Ababa, Ethiopia, 2017. [Google Scholar]
  146. Abdela Ebro, J.; Engidawork, E.; Shibeshi, W. In Vivo Antimalarial Activity of Solvent Fractions of the Leaf of Justicia schimperiana Hochst. Ex Nees (Acanthaceae) against Plasmodium berghei in Mice. Pharm. J. 2014, 30, 95–108. [Google Scholar] [CrossRef]
  147. Giorgis, S.G.; Ambikar, D.; Tsegaw, A.; Belayneh, Y.M. Wound Healing Activity of 80% Methanolic Crude Extract and Solvent Fractions of the Leaves of Justicia schimperiana (Hochst. Ex Nees) T. Anderson (Acanthaceae) in Mice. J. Exp. Pharm. 2022, 14, 167–183. [Google Scholar] [CrossRef] [PubMed]
  148. Onoja, S.O.; Ezeja, M.I.; Omeh, Y.N.; Onwukwe, B.C. Antioxidant, Anti-Inflammatory and Antinociceptive Activities of Methanolic Extract of Justicia secunda Vahl Leaf. Alex. J. Med. 2017, 53, 207–213. [Google Scholar] [CrossRef] [Green Version]
  149. Moukimou, A.O.L.; Pascal, A.D.; Annick, B.; Yaya, K.; Jean Pierre, N.A.; Felicien, A.; Dominique, S.K. Chemical characterization and biological activities of extracts of three plants used in traditional medicine in benin: Tectona grandis, Uvaria chameae and Justicia secunda. Asian J. Pharm. Clin. Res. 2014, 7, 23–27. [Google Scholar]
  150. Anyasor, G.N.; Okanlawon, A.A.; Ogunbiyi, B. Evaluation of Anti-Inflammatory Activity of Justicia secunda Vahl Leaf Extract Using in Vitro and in Vivo Inflammation Models. Clin. Phytosci. 2019, 5, 49. [Google Scholar] [CrossRef] [Green Version]
  151. Osioma, E.; Hamilton-Amachree, A. Comparative study on the phytochemical and in vitro antioxidant properties of methanolic leaf extract of Justicia secunda Vahl. Niger. J. Sci. Environ. 2017, 15, 111–117. [Google Scholar]
  152. Anyasor, G.N.; Moses, N.; Kale, O. Hepatoprotective and Hematological Effects of Justicia secunda Vahl Leaves on Carbon Tetrachloride Induced Toxicity in Rats. Biotech. Histochem. 2020, 95, 349–359. [Google Scholar] [CrossRef]
  153. Abo, K.J.C.; Kouakou, K.L.; Yapo, A. Hypotensive and Antihypertensive Effects of Total Aqueous Extract of Justicia secunda Vahl M. (Acanthaceae) in Rabbits. Int. J. Sci. Res. 2016, 5, 1455–1462. [Google Scholar]
  154. Koffi, E.N.; le Guernevé, C.; Lozano, P.R.; Meudec, E.; Adjé, F.A.; Bekro, Y.A.; Lozano, Y.F. Polyphenol Extraction and Characterization of Justicia secunda Vahl Leaves for Traditional Medicinal Uses. Ind. Crops Prod. 2013, 49, 682–689. [Google Scholar] [CrossRef]
  155. Theiler, B.A.; Revoltella, S.; Zehl, M.; Dangl, C.; Caisa, L.O.E.; König, J.; Winkler, J.; Urban, E.; Glasl, S. Secundarellone A, B, and C from the Leaves of Justicia secunda Vahl. Phytochem. Lett. 2014, 10, cxxix. [Google Scholar] [CrossRef]
  156. Aimofumeh, E.; Anyasor, G.; Esiaba, I. Justicia secunda Vahl Leaf Fraction Protects against Acetaminophen-Induced Liver Damage in Rats by Alleviating Oxidative Stress and Enhancing Membrane-Bound Phosphatase Activities. Asian Pac. J. Trop. Biomed. 2020, 10, 479–489. [Google Scholar] [CrossRef]
  157. Arogbodo, J.O. Evaluation of the Phytochemical, Proximate and Elemental Constituents of Justicia secunda M. Vahl Leaf. Int. J. Innov. Sci. Res. Technol. 2020, 5, 1262–1268. [Google Scholar]
  158. Ayodele, A.E.; Odusole, O.I.; Adekanmbi, A.O. Phytochemical screening and in vitro antibacterial activity of leaf extracts of Justicia secunda Vahl on selected clinical pathogens. MicroMedicine 2020, 8, 2–46. [Google Scholar] [CrossRef]
  159. Odokwo, E.O.; Onifade, M.S. Volatile Constituents of the Leaves and Stem of Justicia secunda Vahl. Commun. Phys. Sci. 2020, 6, 827–834. [Google Scholar]
  160. Ofeimun, J.O.; Enwerem, J.C.; Benjamin, G. Haematological and In-Vivo Antioxidant Modulatory Activities of Justicia secunda Vahl [Acanthaceae] Leaf Extract in Phenylhydrazine-Induced Anemic Rats. Niger. J. Pharm. 2020, 54, 1–13. [Google Scholar] [CrossRef]
  161. Joseph, L.; Aranjani, J.M.; Pai, K.S.R.; Srinivasan, K.K. Promising Anticancer Activities of Justicia simplex D. Don. in Cellular and Animal Models. J. Ethnopharmacol. 2017, 199, 231–239. [Google Scholar] [CrossRef] [PubMed]
  162. Kumaran, P.M.; Jesupillai, M.; Buela Priyanka, G.; Mangayarkarasi, V.; Bhabyalakshmi, S. Analgesic and Anti-Inflammatory Activity of Justicia simplex D. Don. Int. J. Pharm. Res. Life Sci. 2013, 1, 88–93. [Google Scholar]
  163. Eswari, M.G.; Rathi, R.L.; Harini, J.; Aruna, R.; Balakrishnan, V. Phytochemical Screening of Justicia simplex D. Don a Valuable Medicinal Plant Extract against Dental Pathogens. Int. Lett. Nat. Sci. 2014, 16, 10–21. [Google Scholar] [CrossRef]
  164. Ángeles-López, G.E.; González-Trujano, M.E.; Rodríguez, R.; Déciga-Campos, M.; Brindis, F.; Ventura-Martínez, R. Gastrointestinal Activity of Justicia spicigera Schltdl. in Experimental Models. Nat. Prod. Res. 2021, 35, 1847–1851. [Google Scholar] [CrossRef]
  165. Cassani, J.; Dorantes-Barrón, A.M.; Novales, L.M.; Real, G.A.; Estrada-Reyes, R. Anti-Depressant-like Effect of Kaempferitrin Isolated from Justicia spicigera Schltdl (Acanthaceae) in Two Behavior Models in Mice: Evidence for the Involvement of the Serotonergic System. Molecules 2014, 19, 21442–21461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Vega-Avila, E.; Tapia-Aguilar, R.; Reyes-chilpa, R.; Guzmán-Gutiérrez, L.S.; Pérez-Flores, J.; Velasco-Lezama, R. Actividad antibacteriana y antifúngica de Justicia spicigera. Rev. Lat. Quim. 2012, 40, 75–82. [Google Scholar]
  167. Zapata-Morales, J.R.; Alonso-Castro, A.J.; Domínguez, F.; Carranza-Álvarez, C.; Castellanos, L.M.O.; Martínez-Medina, R.M.; Pérez-Urizar, J. Antinociceptive Activity of an Ethanol Extract of Justicia spicigera. Drug Dev. Res. 2016, 77, 180–186. [Google Scholar] [CrossRef] [PubMed]
  168. Awad, N.E.; Abdelkawy, M.A.; Hamed, M.A.; Souleman, A.M.A.; Abdelrahman, E.H.; Ramadan, N.S. Antioxidant and hepatoprotective effects of Justicia spicigera ethyl acetate fraction and characterization of its anthocyanin content. Int. J. Pharm. Pharm. Sci. 2015, 7, 91–96. [Google Scholar]
  169. García-Ríos, R.I.; Mora-Pérez, A.; González-Torres, D.; Carpio-Reyes, R.J.; Soria-Fregozo, C. Anxiolytic-like Effect of the Aqueous Extract of Justicia spicigera Leaves on Female Rats: A Comparison to Diazepam. Phytomedicine 2019, 55, 9–13. [Google Scholar] [CrossRef] [PubMed]
  170. Baqueiro-Peña, I.; Guerrero-Beltrán, J. Physicochemical and Antioxidant Characterization of Justicia spicigera. Food Chem. 2017, 218, 305–312. [Google Scholar] [CrossRef]
  171. Israel, G.P.H.; Ramón, Z.M.J.; Josabad, A.C.A.; Antonio, R.M.M. Evaluación de la interacción antinociceptiva del extracto etanólico de Justicia spicigera y naproxeno. Verano Investig. Cient. 2017, 3, 302–307. [Google Scholar]
  172. Magos-Guerrero, G.A.; Santiago-Mejía, J.; Carrasco, O.F. Exploratory Studies of Some Mexican Medicinal Plants: Cardiovascular Effects in Rats with and without Hypertension. J. Intercult. Ethnopharmacol. 2017, 6, 274–279. [Google Scholar] [CrossRef]
  173. González-Trujano, M.E.; Domínguez, F.; Pérez-Ortega, G.; Aguillón, M.; Martínez-Vargas, D.; Almazán-Alvarado, S.; Martínez, A. Justicia spicigera Schltdl. and Kaempferitrin as Potential Anticonvulsant Natural Products. Biomed. Pharmacother. 2017, 92, 240–248. [Google Scholar] [CrossRef]
  174. Theiler, B.A.; Istvanits, S.; Zehl, M.; Marcourt, L.; Urban, E.; Caisa, L.O.E.; Glasl, S. HPTLC Bioautography Guided Isolation of α-Glucosidase Inhibiting Compounds from Justicia secunda Vahl (Acanthaceae). Phytochem. Anal. 2016, 28, 87–92. [Google Scholar] [CrossRef]
  175. Fernández-Pomares, C.; Juárez-Aguilar, E.; Domínguez-Ortiz, M.Á.; Gallegos-Estudillo, J.; Herrera-Covarrubias, D.; Sánchez-Medina, A.; Aranda-Abreu, G.E.; Manzo, J.; Hernández, M.E. Hydroalcoholic Extract of the Widely Used Mexican Plant Justicia spicigera Schltdl. Exerts a Cytostatic Effect on LNCaP Prostate Cancer Cells. J. Herb. Med. 2018, 12, 66–72. [Google Scholar] [CrossRef]
  176. Hernández-Rodríguez, S.; Quiroz-Reyes, C.N.; Ramírez-Ortiz, M.E.; Ronquillo-de Jesús, E.; Aguilar-Méndez, M.Á. Optimización Del Proceso de Extracción Asistida Por Ultrasonido de Compuestos Fenólicos de Justicia spicigera Schltdl. Mediante La Metodología de Superficie de Respuesta. TIP Rev. Espec. 2020; 23. [Google Scholar] [CrossRef]
  177. Castro-Alatorre, N.C.; Gallardo-Velázquez, T.; Boyano-Orozco, L.C.; Téllez-Medina, D.I.; Meza-Márquez, O.G.; Osorio-Revilla, G. Extraction and Microencapsulation of Bioactive Compounds from Muicle (Justicia spicigera) and Their Use in the Formulation of Functional Foods. Foods 2021, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
  178. Pérez-Vásquez, A.; Díaz-Rojas, M.; Castillejos-Ramírez, E.V.; Pérez-Esquivel, A.; Montaño-Cruz, Y.; Rivero-Cruz, I.; Torres-Colín, R.; González-Andrade, M.; Rodríguez-Sotres, R.; Gutiérrez-González, J.A.; et al. Protein Tyrosine Phosphatase 1B Inhibitory Activity of Compounds from Justicia spicigera (Acanthaceae). Phytochemistry 2022, 203, 113410. [Google Scholar] [CrossRef] [PubMed]
  179. Ngezahayo, J.; Ribeiro, S.O.; Fontaine, V.; Hari, L.; Stévigny, C.; Duez, P.; Duez, P. In Vitro Study of Five Herbs Used Against Microbial Infections in Burundi. Phytother. Res. 2017, 31, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
  180. Radhika, J.; Surya, S.; Jothi, G.; Japasheba, J.L. Cardioprotective Role of Justicia traquebareinsis Linn. Leaf Extract in Isoproterenol Induced Myocardial Infarction in Albino Rats. J. Appl. Pharm. Sci. 2013, 3, 124–128. [Google Scholar] [CrossRef]
  181. Krishnamoorthi, R.; Ratha Bai, V. Phytochemical analysis and antioxidant property of Justicia tranquebariensis. Int. J. Pharmacogn. 2015, 2, 254–258. [Google Scholar] [CrossRef]
  182. Krishnamoorthi, R. Phytochemical screening and antioxidant activity of Justicia tranquebariensis and Bauhinia racemosa. Int. J. Pharmacogn. 2015, 2, 362–367. [Google Scholar] [CrossRef]
  183. Sukalingam, K.; Ganesan, K.; Xu, B. Protective Effect of Aqueous Extract from the Leaves of Justicia tranquebariesis against Thioacetamide-Induced Oxidative Stress and Hepatic Fibrosis in Rats. Antioxidants 2018, 7, 78. [Google Scholar] [CrossRef] [Green Version]
  184. Basit, A.; Ahmad, S.; ur Rehman Khan, K.; Sherif, A.E.; Aati, H.Y.; Ovatlarnporn, C.; Abbas Khan, M.; Rao, H.; Ahmad, I.; Nadeem Shahzad, M.; et al. New Mechanistic Insights on Justicia vahlii Roth: UPLC-Q-TOF-MS and GC–MS Based Metabolomics, in-Vivo, in-Silico Toxicological, Antioxidant Based Anti-Inflammatory and Enzyme Inhibition Evaluation. Arab. J. Chem. 2022, 15, 104135. [Google Scholar] [CrossRef]
  185. Basit, A.; Ahmad, S.; Khan, K.R.; Naeem, A.; Usman, M.; Ahmed, I.; Shahzad, M.N. Chemical Profiling of Justicia vahlii Roth. (Acanthaceae) Using UPLC-QTOF-MS and GC-MS Analysis and Evaluation of Acute Oral Toxicity, Antineuropathic and Antioxidant Activities. J. Ethnopharmacol. 2022, 287, 114942. [Google Scholar] [CrossRef]
  186. Fernandes, R.D. Estudo Fitoquímico de Justicia Wasshauseniana (Acanthaceae), Tetrapterys Acutifolia e Lophanthera Lactescens (Malpighiaceae) e Atividades Biológicas; Universidade Federal Rural do Rio de Janeiro: Rio de Janeiro, Brazil, 2016. [Google Scholar]
  187. Dsouza, D.; Nanjaiah, L. Antibacterial Activity of 3,3′,4′-Trihydroxyflavone from Justicia wynaadensis against Diabetic Wound and Urinary Tract Infection. Braz. J. Microbiol. 2018, 49, 152–161. [Google Scholar] [CrossRef] [PubMed]
  188. Zameer, F.; Ms, R.; Chauhan, J.B.; Khanum, S.A.; Kumar, P.; Devi, A.T.; Mn, N.P.; Bl, D. Evaluation of Adhesive and Anti-Adhesive Properties of Pseudomonas aeruginosa Biofilms and Their Inhibition by Herbal Plants. Iran J. Microbiol. 2016, 8, 108–119. [Google Scholar] [PubMed]
  189. Cremer, D.; Pople, J.A. A General Definition of Ring Puckering Coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358. [Google Scholar] [CrossRef]
  190. Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N. -L Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
  191. Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
  192. Sallum, L.O.; Siqueira, V.L.; Custodio, J.M.F.; Borges, N.M.; Lima, A.P.; Abreu, D.C.; de Lacerda, E.P.S.; Lima, R.S.; de Oliveira, A.M.; Camargo, A.J.; et al. Molecular Modeling of Cytotoxic Activity of a New Terpenoid-like Bischalcone. New J. Chem. 2019, 43, 18451–18460. [Google Scholar] [CrossRef]
  193. Silva, M.C.; Sallum, L.O.; Menezes, A.C.S.; Camargo, A.J.; Napolitano, H.B. A Comprehensive Topological Analysis of a Novel Flavonoid Extracted from Brazilian Cerrado Plants. ChemistrySelect 2019, 4, 14012–14020. [Google Scholar] [CrossRef]
  194. Nouri, Z.; Fakhri, S.; El-Senduny, F.F.; Sanadgol, N.; Abd-Elghani, G.E.; Farzaei, M.H.; Chen, J.T. On the Neuroprotective Effects of Naringenin: Pharmacological Targets, Signaling Pathways, Molecular Mechanisms, and Clinical Perspective. Biomolecules 2019, 9, 690. [Google Scholar] [CrossRef] [Green Version]
  195. Szoboszlay, M.; White-Monsant, A.; Moe, L.A. The Effect of Root Exudate 7,4′-Dihydroxyflavone and Naringenin on Soil Bacterial Community Structure. PLoS ONE 2016, 11, e0146555. [Google Scholar] [CrossRef] [Green Version]
  196. Chin, L.H.; Hon, C.M.; Chellappan, D.K.; Chellian, J.; Madheswaran, T.; Zeeshan, F.; Awasthi, R.; Aljabali, A.A.; Tambuwala, M.M.; Dureja, H.; et al. Molecular Mechanisms of Action of Naringenin in Chronic Airway Diseases. Eur. J. Pharm. 2020, 879, 173139. [Google Scholar] [CrossRef]
  197. Wang, Q.; Yang, J.; Zhang, X.; Zhou, L.; Liao, X.; Yang, B. Practical Synthesis of Naringenin. J. Chem. Res. 2015, 39, 455–457. [Google Scholar] [CrossRef]
  198. National Center for Biotechnology Information, Pubchem Compound Batabase. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 31 October 2022).
  199. Salehi, B.; Fokou, P.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  200. Ávila, E.P.; Mendes, L.A.O.; De Almeida, W.B.; Dos Santos, H.F.; De Almeida, M.V. Conformational analysis and reactivity of naringenin. J. Mol. Struct. 2021, 1245, 1–11. [Google Scholar] [CrossRef]
  201. Spek AL, IUCr. Structure validation in chemical crystallography. urn:issn:0907-4449. 2009 jan 20;65,148–55. 20.
  202. Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar]
  203. McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. Sect. B Struct. Sci. 2004, 60, 627–668. [Google Scholar] [CrossRef]
  204. Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
  205. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A. , Cheeseman, J.R.; Scalmani, V., Barone, G.A., Petersson, H., Nakatsuji, X., Eds.; et al. Gaussian 16; Revision C.01, G16_C01; Gaussian, Inc.: Wallin, CN, USA, 2016. [Google Scholar]
  206. Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
  207. Weinhold, F.; Landis, C.R. Valency and Bonding A Natural Bond Orbital Donor–Acceptor Perspective; Cambridge University Press: Cambridge, MA, USA, 2005; pp. 761p. [Google Scholar]
Figure 1. Specimens of Justicia thunbergioides (Lindau) Leonard. (a) Flower and habit in Cocalzinho de Goias (−15°44′47′′; −48°44′47′′). (b) Flower and habit in Central Plateau Protection Area (Fercal) Federal District (−15°30′49′′; −47°57′56′′). (c) Flower and habit in Onofre Quinan Park-Anapolis Goias (−16°20′22′′; −48°57′49′′).
Figure 1. Specimens of Justicia thunbergioides (Lindau) Leonard. (a) Flower and habit in Cocalzinho de Goias (−15°44′47′′; −48°44′47′′). (b) Flower and habit in Central Plateau Protection Area (Fercal) Federal District (−15°30′49′′; −47°57′56′′). (c) Flower and habit in Onofre Quinan Park-Anapolis Goias (−16°20′22′′; −48°57′49′′).
Molecules 28 01190 g001
Figure 2. Compounds isolated from species of Justicia.
Figure 2. Compounds isolated from species of Justicia.
Molecules 28 01190 g002aMolecules 28 01190 g002bMolecules 28 01190 g002cMolecules 28 01190 g002dMolecules 28 01190 g002eMolecules 28 01190 g002f
Figure 3. ORTEP representation of the asymmetric unit for naringenin with the atom numbering scheme. Ellipsoids are drawn at the 50% probability level.
Figure 3. ORTEP representation of the asymmetric unit for naringenin with the atom numbering scheme. Ellipsoids are drawn at the 50% probability level.
Molecules 28 01190 g003
Figure 4. Representation of interactions responsible for naringenin crystal packing. These interactions are (a) O4–H4···O5; (b) O5–H5···O2; (c) C15–H15···O4 and (d) two-dimensional crystal packing.
Figure 4. Representation of interactions responsible for naringenin crystal packing. These interactions are (a) O4–H4···O5; (b) O5–H5···O2; (c) C15–H15···O4 and (d) two-dimensional crystal packing.
Molecules 28 01190 g004
Figure 5. The HS dnorm showing (a) O4–H4···O5; (b) O5–H5···O2 and (c) C15–H15···O4 intermolecular interactions found in the two-dimensional crystal packing for naringenin (d) types of the intermolecular interactions found in the HS for naringenin. The red dots represent the strong contacts.
Figure 5. The HS dnorm showing (a) O4–H4···O5; (b) O5–H5···O2 and (c) C15–H15···O4 intermolecular interactions found in the two-dimensional crystal packing for naringenin (d) types of the intermolecular interactions found in the HS for naringenin. The red dots represent the strong contacts.
Molecules 28 01190 g005
Figure 6. The 2D fingerprint plot representation of naringenin. The reciprocal contacts were included.
Figure 6. The 2D fingerprint plot representation of naringenin. The reciprocal contacts were included.
Molecules 28 01190 g006
Figure 7. NBO orbital analysis with the isovalue of 0.05 atomic units, showing (a) the HOMO and (b) the LUMO orbitals, which are the π-bonding orbital and π-antibonding orbital, respectively.
Figure 7. NBO orbital analysis with the isovalue of 0.05 atomic units, showing (a) the HOMO and (b) the LUMO orbitals, which are the π-bonding orbital and π-antibonding orbital, respectively.
Molecules 28 01190 g007
Figure 8. The molecular electrostatic potential (MEP) surface mapped for compound 5 (naringenin) shows the region rich in electrons (red-colored) and the region depleted in electrons (blue-colored). The density isovalue of 4.0 × 10−4 electrons/bohr3 was used to generate the molecular electrostatic potential surfaces.
Figure 8. The molecular electrostatic potential (MEP) surface mapped for compound 5 (naringenin) shows the region rich in electrons (red-colored) and the region depleted in electrons (blue-colored). The density isovalue of 4.0 × 10−4 electrons/bohr3 was used to generate the molecular electrostatic potential surfaces.
Molecules 28 01190 g008
Figure 9. Overlapping of M062X/6-311+G (d,p) level of theory (green) and experimental data (black) structure of naringenin (a), comparison graphs of the geometric bond length and angle, obtained by experimental and theoretical calculation (b,c).
Figure 9. Overlapping of M062X/6-311+G (d,p) level of theory (green) and experimental data (black) structure of naringenin (a), comparison graphs of the geometric bond length and angle, obtained by experimental and theoretical calculation (b,c).
Molecules 28 01190 g009
Figure 10. The flow chart of the identification and selection process.
Figure 10. The flow chart of the identification and selection process.
Molecules 28 01190 g010
Table 1. Information on the survey of species of the genus Justicia, parts and crude extracts used, chemical information, biological information and geographic distribution.
Table 1. Information on the survey of species of the genus Justicia, parts and crude extracts used, chemical information, biological information and geographic distribution.
SpeciesTested PartExtractChemical InformationBiological InformationOriginReference
Justicia acuminatissima (Miq.) BremekAerial parts a,cEthanol a,cYes a,c,dYes a,b,c,d,eBrazil a,b,c,dCorrêa et al., 2014 a [33]
NI bNI bNo b,e Cordeiro et al., 2019 b [11]
Leaf d,eAqueous d,e Corrêa, 2013 c [25]
Corrêa et al., 2014 b,d [34]
Verdam et al., 2015 e [12]
Justicia adhatoda L. Leaf a,c,d,e,f,g,i,j,k,l,m,n,p,q,r,s,tEthanol a,d,f,f,j,k,l,m,q,sYes b,c,e,f,h,i,j,k,l,p,r,tYes a,b,c,d,e,f,g,h,i,jk,l,n,o,p,q,r,s,tIndia a,b,c,e,f,g,h,i,j,l,o,q,rKaur; Kaur; Arora, 2015 a [9]
Root lMethanol c,e,i,j,n,tNo d,e,i,o,p,q,sNo nArmenia dChaliha et al., 2016 b [35]
NI kEthyl acetate d,r Pakistan k,m,s,tPa; Mathew, 2012 c [36]
NI h Sri Lanka nBarth et al., 2015 d [72]
Ether i Bangladesh pJha et al., 2012 e [37]
Chloroform j,q Jha et al., 2014 f [13]
Acetone i Kaur et al., 2016 g [9]
Aqueous i,k,p,q,r Gutti et al., 2018 h [73]
Hexane j Vinunkonda et al., 2012 i [38]
Butanol j Dhankhar et al., 2014 j [17]
Rasheed et al., 2013 k [45]
Abhishek; Apurva; Joshi, 2014 l [74]
Aziz et al., 2017 m [37]
Someya et al., 2018 n [75]
Thanigaivel et al., 2017 o [76]
Chowdhury et al., 2020 p [77]
Saran et al., 2019 q [18]
Sudevan et al., 2019 r [21]
Ameer et al., 2021 s [43]
Basit et al., 2022 t [78]
Justicia beddomei (C.B. Clarke) BennetLeaf aEthyl acetate a,cYes a,cYes a,b,cIndia a,b,cPrabavathy; Valli Nachiyar, 2013 a [79]
Aerial parts b,cMethanol b,cNo b
Ether c Marathakam; Kannappan; Santhiagu, 2014 b [44]
Chloroform c
Marathakam et al., 2012 c [14]
Justicia betonica L.Leaf aEther aYes a,bYes a,bUganda aBbosa et al., 2013 a [46]
Whole plant bMethanolic b India bNaik et al., 2022 b [32]
Aqueous b
Acetone b
Ethanolic b
n-hexane b
Justicia brandegeeana Wassh. & L.B. Sm.Leaf aMethanol aYes a,bYes aBrazil aCassola et al., 2019 a [19]
Aerial parts bNI b No bChina bJiang et al., 2014 b [80]
Justicia carnea Hook. Ex NeesLeaf a,b,c,d,eEthanol a,b,dYes a,b,c,eYes b,c,dNigeria a,b,c,d,eOtuokere et al., 2016 a [81]
Aqueous cNo dNo a,e Onyeabo et al., 2017 b [82]
Hexane e Anthonia et al., 2019 c [58]
Akintimehin et al., 2021 d [83]
Ajuru et al., 2022 e [84]
Justicia extensa T. AndersonLeaf aMethanol aNo aYes aNigeria aSowemimo; Adio; Fageyinbo, 2011 a [85]
Justicia flava VahlLeaf a,b,c,d,eMethanol a,b,c,d,eYes a,bYes a,b,c,d,e,f,gGhana aAgyare et al., 2013 a [31]
Aerial parts fAqueous f,gNo c,d,e,f,g Nigeria b,c,d,eBafor et al., 2019 b [49]
Whole plant g Ivory Coast f,gBafor; Prendergast; Wray, 2020 c [86]
Bafor et al., 2019 d [59]
Bafor et al., 2019 e [87]
Wenceslas et al., 2021 f [88]
Kounamé et al., 2021 g [89]
Justicia gangetica L.Leaf aEthyl acetate aYes aYes aThailand aStewart et al., 2013 a [90]
Justicia gendarussa BurmStem a,d,q,t,w,i′Methanol a,b,d,e,f,h,i,k,l,m,p,q,s,t,u,v,b′,h′,i′,j′Yes a,b,c,e,h,i,l,p,q,r,s,t,u,v,x,w,y,z,a′,b′,c′Yes a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,r,s,t,x,y,zVietnam a,i′Zhang et al., 2017 a [25]
Root a,f,g,q,s,b′,c′,i′Aqueous b,c,b′,c′,f′,o′Yes d′,f′,g′,h′,i′,j′,l′,m′,n′,o′Yes a′,b′,c′,d′,e′,f′,g′,h′,i′,k′,n′,o′Malaysia b,h,p,e′Ayob et al., 2014 b [24]
Leaf b,c,e,g,h,i,l,m,n,o,p,q,r,t,u,v,x,y,zEthanol c,j,n,o,t,x,y,z,c′,d′,e′,f′,g′,k′,l′,m′,n′,o′No d,f,g,j,k,m,n,o,e′,k′No p,q,u,v,w,j′,l′,m′India c,d,f,g,i,j,m,n,o,r,s,t,w,z,b′,k′,l′,o′Subramanian; Jothimanivannan; Moorthy, 2012 c [40]
Leaf b′,d′,e′,f′,g′,h′,j′,k′,l′,m′,o′Hydroalcoholic g Brazil e,x
Whole plant dEthyl acetate i,n,o′ Bangladesh k,lSugumaran et al., 2013 d [41]
Aerial parts j,k,n′Chloroform i Indonesia q,u,v,y,a′,c′,d′,f′,g′,h′,j′,m′Cassola et al., 2019 e [19]
NI a′Ether o,t,w,b′ China n′Kumar et al., 2012 f [91]
NI r,a′ Patel; Zaveri, 2012 g [50]
n-hexane o′ Ayob; Samad; Bohari, 2013 h [23]
Kowsalya; Sankaranarayanan, 2012 i [56]
Subramanian et al., 2013 j [47]
Saha et al., 2012 k [92]
Mondal et al., 2019 l [15]
Nirmalraj et al., 2015 m [93]
Reddy et al., 2013 n [94]
Reddy et al., 2015 o [16]
Ayob; Saari; Samad, 2012 p [95]
Indrayoni et al., 2016 q [96]
Phatangare et al., 2017 r [97]
Kumar et al., 2018 s [98]
Bhagya; Chandrashekar, 2013 t [20]
Kiren et al., 2014 u [99]
Ningsih et al., 2015 v [100]
Souza et al., 2017 x [48]
Bhagya; Chandrashekar; Kalluraya, 2013 w [65]
Sinansari; Prajogo; Widiyanti, 2018 y [27]
Prasad, 2014 z [60]
Sulistyowati et al., 2017 a′ [101]
Patel; Zaveri, 2014 b′ [50]
Widiyanti; Prajogo; Widodo, 2018 c′ [30]
Widiyanti; Prajogo; Hikmawanti, 2016 d′ [66]
Supparmaniam; Bohari, 2015 e′ [102]
Widodo; Widiyanti; Prajogo, 2018 f′ [28]
Prajogo; Widiyanti; Riza, 2016 g′ [29]
Prajogo et al., 2015 h′ [26]
Zhang et al., 2017 i′ [25]
Mnatsakanyan et al., 2018 j′ [103]
Varma et al., 2011 k′ [104]
Bhavana et al., 2020 l′ [105]
Ratih et al., 2019 m′ [106]
Zhang et al., 2020 n′ [107]
Ramya, 2020 o′ [108]
Justicia graciliflora (Standndl.) D.N. GibsonAerial parts aNI aYes aYes aPanama aCalderón et al., 2012 a [57]
Justicia hypocrateriformis VahlLeaf aAqueous aYes aYes aCamaeroon aAgbor et al., 2014 a [109]
Justicia insularis T. AndersonLeaf a,b,c,d,eAqueous a,b,cYes b,c,dYes a,b,c,dCameroon a,b,cTelefo et al., 2012 a [110]
Methanol dNo a Nigeria dMbemya et al., 2018 b [111]
Goka et al., 2016 c [112]
Fadayomi et al., 2021 d [113]
Justicia neesii RamamoorthyWhole plant aEthanol aYes aYes a,bIndia a,bSridhar; Duggirala; Puchchakayala, 2014 a [114]
Nob
Sridhar; Lakshmi; Goverdham, 2015 b [115]
Justicia nodicaulis (Nees) LeonardLeaf aNI aYes aNo aBrazil aRocha; Peixoto; Santos, 2019 a [61]
Justicia paracambi BrazLeaf aAqueous aNo aYes aBrazil aAzevedo Junior et al., 2022 a [116]
Justicia pectoralis Jacq.Leaf a,d,e,f,g,k,nHydroalcoholic b,c,hYes a,b,c,f,g,h,i,j,k,l,mYes a,b,c,d,e,f,h,i,j,k,l,nBrazil a,b,c,d,f,g,h,i,j,k,l,m,nProvensi, 2018 a [117]
Aerial parts b,c,h,i,j,l,mAqueous d,e,k,nNo d,e,nNo g,mIndia eVenâncio, 2015 b [118]
Methanol f Silva, 2018 c [119]
NI g Furtado et al., 2015 d [120]
Ethanol i,j,l,m Cameron et al., 2015 e [121]
Hydroketone k Cassola et al., 2019 f [19]
Vargem, 2015 g [67]
Moura et al., 2017 h [122]
Lima, 2017 i [52]
Rodrigues, 2017 j [123]
Nunes et al., 2018 k [124]
Carvalho et al., 2020 l [125]
Lima et al., 2020 m [126]
Guimarães et al., 2020 n [127]
Justicia procubens L.Whole plant a,b,f,g,h,l,q,sEthanol a,b,c,f,g,h,j,m,n,o,r,sYes a,b,c,d,e,f,g,h,j,l,m,n,o,p,r,sYes c,d,e,f,g,i,j,k,l,n,p,q,sChina a,b,d,e,f,g,h,i,l,m,n,o,sXiong et al., 2020 a [63]
NI c,d,e,i,m,n,o,p,rNI d,i,pNo i,k,qNo a,b,h,m,o,rSouth Korea c,j,rJiang et al., 2017 b [128]
Aerial parts jAqueous j India kYoum et al., 2018 c [129]
Leaf kMethanol e,k,m,q Taiwan p,qLuo et al., 2014 d [130]
Ethyl acetate l Luo et al., 2013 e [131]
Jin et al. 2014 f [132]
Jin et al.,2015 g [133]
Jin; Yang; Dong, 2016 h [134]
He et al., 2012 i [135]
Youm et al., 2017 j [62]
Kamaraj et al., 2012 k [136]
Liu et al., 2018 l [137]
Luo et al., 2013 m [131]
Luo et al., 2016 n [138]
Zhou et al., 2015 o [139]
Wang et al., 2015 p [140]
Won et al., 2014 q [141]
Lee et al., 2020 r [142]
Lv et al., 2020 s [143]
Justicia refractifolia (Kuntze) LeonardStem and leaf aNI aYes aYes aPanama aCalderón et al., 2012 a [57]
Justicia schimperiana T. AndersonLeaf a,b,c,dMethanol a,b,c,dYes a,b,c,dYes a,b,c,dEthiopia a,b,c,dMekonnen; Asrie; Wubneh, 2018 a [144]
Tesfaye, 2017 b [145]
Abdela; Engidawork; Shibeshi, 2014 c [146]
G/giorgis et al., 2022 d [147]
Justicia secunda VahlLeaf a,c,d,e,f,g,h,i,k,l,m,n,o,pMethanol a,d,e,f,j,k,n,pYes b,c,e,f,g,i,j,k,l,m,n,oYes a,b,c,d,e,f,g,h,k,n,pNigeria a,d,f,g,k,l,m,n,o,pOnoja et al., 2017 a [148]
Stem, Leaf and Root bNIbmoNo a,d,h,pNo i,j,l,m,oPanama bCalderón et al., 2012 b [57]
Aerial parts jEthanol c,n Benin cMoukimoul et al., 2014 c [149]
Ethyl acetate e Ghana eAnyasor; Okanlawon; Ogunbiyi, 2019 d [150]
Aqueous e,g,h,i Ivory Coast h,i
Hexane l Ecuador jYamoah et al., 2020 e [53]
Osioma; Hamilton-Amachree, 2017 f [151]
Anyasor; Moses; Kale, 2020 g [152]
Abo; Kouakou; Yapo, 2016 h [153]
Koffi et al., 2013 i [154]
Theiler et al., 2014 j [155]
Aimofumeh; Anyasor; Esiaba, 2020 k [156]
Ajuru et al., 2022 l [84]
Arogbodo, 2020 m [157]
Ayodele; Odusole; Adekanmbi, 2020 n [158]
Odokwo; Onifade, 2020 o [159]
Ofeimun; Enwerem; Benjamin, 2020 p [160]
Justicia simplex D. Don.Aerial parts aEthanol a,cYes a,cYes a,b,cIndia a,b,cJoseph et al., 2017 a [161]
Whole plant bPetroleum ether aNo b Kumaran et al., 2013 b [162]
Leaf cMethanol b Eswari et al., 2014 c [163]
Benzene c
Aqueous c
Hexane c
Justicia spicigera SchltdlLeaf a,b,d,f,h,i,j,l,n,p,qEthanol a,b,c,d,f,g,h,j,kYes a,b,c,d,e,f,g,h,i,j,m,n,o,p,q,rYes a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,pq,rMexico a,b,c,d,e,f,h,i,j,k,l,m,o,p,q,rÁngeles-López et al., 2019 a [164]
Whole plant cChloroform eNo k,l Egypt gCassani et al., 2014 b [165]
Aerial parts e,f,m,o,rAqueous i,j,m Ecuador nVega-Avila et al., 2012 c [166]
NI kMethanol l,n Ortiz-Andrade et al., 2012 d [42]
Hydroalcoholic o,p,q Esquivel-Gutiérrez et al., 2013 e [64]
Ethyl acetate r
Zapata-Morales et al., 2016 f [167]
Awad et al., 2015 g [168]
Alonso-Castro et al., 2012 h [22]
García-Ríos et al., 2019 i [169]
Baqueiro-Peña; Gerrero-Beltrán, 2017 j [170]
Israel et al., 2017 k [171]
Magos-Guerrero; Santiago-Mejía; Carrasco, 2017 l [172]
González-Trujano et al. 2017 m [173]
Theiler et al., 2016 n [174]
Fernández-Pomares et al., 2018 o [175]
Hernández-Rodríguez et al., 2020 p [176]
Castro-Alatorre et al., 2021 q [177]
Pérez-Vásquez et al., 2022 r [178]
Justicia subsessilis Oliv.Aerial parts aHexane aYes aYes aBurundi aNgezahayo et al. 2017 a [179]
Dichloromethane a
Ethyl acetate a
Methanol a
Aqueous a
Justicia thunbergioides (Lindau) LeonardLeaf a,bHexane aYes a,bYes a,bBrazil a,bProvensi, 2018 a [117]
Dichloromethanea Vasconcelos, 2019 b [39]
Methanol a
Hydroalcoholic b
Justicia tranquebariensis L.Aerial parts a,bEthanol acYes a,c,dYes a,b,c,d,eIndia a,b,c,dSenthamari; Akilandeswari; Valarmathi, 2013 a [55]
NI cAqueous abdeNo b,e Malaysia e
Leaf d,eHexane c Radhika et al., 2013 b [180]
Krishnamoorthi; Ratha Bai, 2015 c [181]
Krishnamoorthi, 2015 d [182]
Sukalingam; Ganesan; Xu, 2018 e [183]
Justicia vahlii RothWhole plant a,bButhanolic aYes a,bYes a,bPakistan a,bBasit et al., 2022 a [184]
Hydroalcoholic b Basit et al., 2022 b [185]
Justicia wasshauseniana ProficeAerial parts aMethanol aYes aYes abBrazil a,bFernandes, 2016 a [186]
Leaf bDichlorometane aNo b Azevedo Junior et al., 2022 b [116]
Hydroalcoholic b
Aqueous b
Justicia wynaandensis B. HeyneLeaf a,b,cMethanol a,b,c India a,b,cDsouza; Nanjaiah, 2018 a [187]
Ethyl acetate bYes a,bYes a,c Ponnamma; Manjunath, 2012 b [51]
Dichloromethane cNo cNo b
Zameer et al., 2016 c [188]
NI—Not Informed; The letters that are in superscript refer to the authors of the references.
Table 2. Biological activities of isolated secondary metabolites from species of Justicia.
Table 2. Biological activities of isolated secondary metabolites from species of Justicia.
CompoundBiological ActivitiesSpeciesTested PartsExtractReference
Glycosylated β-sitosterol (1)Anti-inflammatoryJ. acuminatissima (Miq.) Bremek.Aerial partsEthanolCorrêa et al., 2014 [34]
Glycosylated stigmasterol (2)Anti-inflammatoryJ. acuminatissima (Miq.) Bremek.Aerial partsEthanolCorrêa et al., 2014 [34]
Phytol (3)Anti-inflammatoryJ. gendarussa Burm.LeavesNIPhantagare et al., 2017 [189]
Apigenin (4)Anti-inflammatoryJ. gendarussa Burm.RootMethanolKumar et al., 2018 [98]
Naringenin (5)CytotoxicJ. gendarussa Burm.LeavesMethanolAyob; Samad; Bohari, 2013 [24]
Kaempferol (6)CytotoxicJ. gendarussa Burm.LeavesMethanolAyob; Samad; Bohari, 2013 [24]
3,3′,4′-Trihydroxyflavone (7)AntimicrobialJ. wynaadensis B. HeyneLeavesMethanolDsouza; Nanjaiah, 2018 [187]
Vasicoline (8)AntimicrobialJ. adhatoda L.LeavesMethanolJha et al., 2012 [37]
Vasicine (9)Antimicrobial, antioxidant and anticancerousJ. adhatoda L.LeavesMethanol and HydroalcoholicPa; Mathew, 2012 [36]; Kaur et al., 2016 [9]
Etamine (10)AntioxidantJ. gendarussa Burm.Aerial partsEthanolZhang et al., 2020 [109]
Secundallerone B (11)AntidiabeticJ. secunda Vahl.LeavesMethanolTheiler et al., 2016 [174]
Secundallerone C (12)AntidiabeticJ. secunda Vahl.LeavesMethanolTheiler et al., 2016 [174]
2-caffeoyloxy-4-hydroxy-glutaric acid (13)AntidiabeticJ. secunda Vahl.LeavesMethanolTheiler et al., 2016 [174]
Kaempferitrin (14)Antinociceptive, cytotoxic, antidiabetic and anticonvulsantJ. spicigera Schltdl.Aerial parts; LeavesEthanol and aqueousCassani et al., 2014 [165]; Ángeles-López et al., 2019 [164]; Zapata-Morales et al., 2016 [167]; Alonso-Castro et al., 2012 [22]; Ortiz-Andrade et al., 2012 [42]; González-Trujano et al., 2017 [173]
Gendarussin A (15)CytotoxicJ. gendarussa Burm.LeavesEthanolPrajogo et al., 2015 [26]
6′-hydroxyl justicidin A (16)CytotoxicJ. procumbens L.Whole plantEthanolJin et al., 2014 [132]
6′-hydroxyl justicidin B (17)CytotoxicJ. procumbens L.Whole plantEthanolJin et al., 2014 [132]
6′-hydroxyl justicidin C (18)CytotoxicJ. procumbens LNIEthanolLuo; Kong; Yang, 2014 [190]
Justicidin A (19)Cytotoxic, pharmacokinetics, anti-inflammatory and anti-allergicJ. procumbens L.Aerial parts; NIMethanol and ethanolWon et al., 2014 [141]; Youm et al., 2017 [62]; Youm et al., 2018 [129]; Wang et al., 2015 [140]
Chinensinaphthol methyl ether (20)CytotoxicJ. procumbens L.NIEthanolLuo et al., 2014 [130]
Taiwanin E methyl ether (21)CytotoxicJ. procumbens L.NIEthanolLuo et al., 2014 [130]
Paclitaxel (22)CytotoxicJ. procumbens L.NIEthanolLuo et al., 2014 [130]
Podophyllotoxin (23)CytotoxicJ. procumbens L.NIEthanolLuo et al., 2014 [130]
Justicidin B (24)Pharmacokinetics, anti-inflammatory and anti-allergicJ. procumbens L.NI; Aerial partsEthanolLuo et al., 2014 [130]; Luo et al., 2016 [138]; Youm et al., 2017 [62]; Youm et al., 2018 [129]
Justicidin C (25)Anti-inflammatory and cytotoxicJ. procumbens L.NI; Aerial partsEthanolYoum et al., 2017 [62]; Luo; Kong; Yang, 2014 [190]
Phyllamyricin C (26)Anti-inflammatoryJ. procumbens L.Aerial partsEthanolYoum et al., 2017 [61]
Pronaphthalide A (27)CytotoxicJ. procumbens L.Whole plantEthanolJin et al., 2014 [132]
Procumbenoside J (28)CytotoxicJ. procumbens L.Whole plantEthanolJin et al., 2014 [132]
Tuberculatin (29)CytotoxicJ. procumbens L.Whole plantEthanolJin et al., 2014 [132]
Diphyllin (30)CytotoxicJ. procumbens L.Whole plantEthanolJin et al., 2014 [132]; Lv et al., 2020 [143]
Procumbenoside H (31)CytotoxicJ. procumbens L.Whole plantEthanolJin et al., 2015 [133]
(+)-pinoresinol (32)AntioxidantJ. gendarussa Burm.Aerial partsEthanolZhang et al., 2020 [107]
2′-methoxy-4″-hydroxydimetoxykobusin (33)Anti-inflammatoryJ. gendarussa Burm.Aerial partsEthanolZhang et al., 2020 [107]
Brazoide A (34)Anti-inflammatoryJ. gendarussa Burm.Aerial partsEthanolZhang et al., 2020 [107]
Justiprocumin A (35)CytotoxicJ. gendarussa Burm.StemMethanolZhang et al., 2017 [25]
Justiprocumin B (36)CytotoxicJ. gendarussa Burm.StemMethanolZhang et al., 2017 [25]
Patentiflorin A (37)CytotoxicJ. gendarussa Burm.Stem and rootMethanolZhang et al., 2017 [25]
Triacontanoic ester of 5-hydroxyjustisolin (38)CytotoxicJ. simplex D.Don.Aerial partsPetroleum etherJoseph et al., 2017 [161]
16(α/β)-hydroxy-cleroda-3,13 (14)Z-dien-15,16-olide (39) CytotoxicJ. insularis T. AndersonLeavesMethanolFadayomi et al., 2021 [113]
16-oxo-cleroda-3,13(14)E-dien-15-oic acid (40)CytotoxicJ. insularis T. AndersonLeavesMethanolFadayomi et al., 2021 [113]
Justicianene D (41)CytotoxicJ. procumbens L.Whole plantEthanolLv et al., 2020 [143]
2-N-(p-coumaroyl)-3H-phenoxazin-3-one (42)Enzyme inhibitorJ. spicigera Schltdl.Aerial partsEthyl acetatePérez-Vásquez et al., 2022 [178]
3″-O-acetyl-kaempferitrin (43)Enzyme inhibitorJ. spicigera Schltdl.Aerial partsEthyl acetatePérez-Vásquez et al., 2022 [178]
kaempferol 7-O-α-L-rhamnopyranoside (44) Enzyme inhibitorJ. spicigera Schltdl.Aerial partsEthyl acetatePérez-Vásquez et al., 2022 [178]
perisbivalvine B (45)Enzyme inhibitorJ. spicigera Schltdl.Aerial partsEthyl acetatePérez-Vásquez et al., 2022 [178]
2,5-dimethoxy-p-benzoquinone (46) Enzyme inhibitorJ. spicigera Schltdl.Aerial partsEthyl acetatePérez-Vásquez et al., 2022 [178]
NI—Not Informed.
Table 3. Experimental details and refinement data of naringenin.
Table 3. Experimental details and refinement data of naringenin.
Crystal DataNaringenin
Chemical formulaC15H12O5
Formula weight272.25
Crystal system, space groupMonoclinic, P21/c
a, b, c (Å)4.965 (3)
15.449 (6)
16.845 (8)
α = β = γ (°)90.00
103.86(8)
90.00
V (Å3)1254.5(12)
Z4
ρcalc g/cm31.441
µ (mm−1)0.109
F (000)568.0
Radiation typeMoKα (λ = 0.71073)
Final R indexes [I ≥ 2σ (I)]R1 = 0.0540, wR2 = 0.0540
Table 4. Relevant experimental bond length (Å), bond angles (°), and dihedral angles (°) for naringenin.
Table 4. Relevant experimental bond length (Å), bond angles (°), and dihedral angles (°) for naringenin.
Naringenin
O1-C11.45O2-C3-C2119.73
O1-C91.37C9-O1-C1-C249.81
O2-C31.25C1-O1-C9-C8156.56
O3-C51.35C1-O1-C9-C4−24.81
O4-C71.36O1-C1-C10-C11120.51
O5-C131.38C2-C1-C10-C11−115.58
C1-C21.51C2-C1-C10-C1562.47
C1-C101.51O1-C1-C10-C15−61.44
C1-C10-C11119.71C1-C2-C3-C4−50.62
O1-C1-C10108.25C1-C2-C3-O2−153.63
Table 5. Hydrogen-bond geometry (Å, º) for naringenin.
Table 5. Hydrogen-bond geometry (Å, º) for naringenin.
D–H···AD–HH···AD···AD–H···ASymmetry Code
NaringeninO3–H3···O20.861.882.648147INTRA
O4–H4···O50.832.042.8051541 − x, −1 − y, 1 − z
O5–H5···O20.771.952.7111721 + x, 1/2 − y, 1/2 + z
C15–H15···O40.882.593.4171551 − x, −1/2 + y, 1/2 − z
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Carneiro, M.R.B.; Sallum, L.O.; Martins, J.L.R.; Peixoto, J.d.C.; Napolitano, H.B.; Rosseto, L.P. Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential. Molecules 2023, 28, 1190. https://doi.org/10.3390/molecules28031190

AMA Style

Carneiro MRB, Sallum LO, Martins JLR, Peixoto JdC, Napolitano HB, Rosseto LP. Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential. Molecules. 2023; 28(3):1190. https://doi.org/10.3390/molecules28031190

Chicago/Turabian Style

Carneiro, Marcos Rodrigo Beltrão, Lóide Oliveira Sallum, José Luís Rodrigues Martins, Josana de Castro Peixoto, Hamilton Barbosa Napolitano, and Lucimar Pinheiro Rosseto. 2023. "Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential" Molecules 28, no. 3: 1190. https://doi.org/10.3390/molecules28031190

APA Style

Carneiro, M. R. B., Sallum, L. O., Martins, J. L. R., Peixoto, J. d. C., Napolitano, H. B., & Rosseto, L. P. (2023). Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential. Molecules, 28(3), 1190. https://doi.org/10.3390/molecules28031190

Article Metrics

Back to TopTop