Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Terpenes
2.1.1. Monoterpenes
2.1.2. Sesquiterpenes
2.2. Aliphatic hydrocarbons (Stearopten)
2.3. Enantiomers Distribution
3. Materials and Methods
3.1. Samples
3.2. Analytical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, W.-H.; Du, X.-Y.; Zhong, M.-C.; Fang, W.; Suo, Z.-Q.; Wang, D.; Dong, X.; Jiang, X.-D.; Hu, J.-Y. Complex and Reticulate Origin of Edible Roses (Rosa, Rosaceae) in China. Hortic. Res. 2022, 9, uhab051. [Google Scholar] [CrossRef]
- Pal, P.K. Evaluation, Genetic Diversity, Recent Development of Distillation Method, Challenges and Opportunities of Rosa Damascena: A Review. J. Essent. Oil Bear. Plants 2013, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, Y.; Liu, X.; Li, J.; Zhang, J.; Liu, D. Chemical Constituents and Pharmacological Activities of Medicinal Plants from Rosa Genus. Chin. Herb. Med. 2022, 14, 187–209. [Google Scholar] [CrossRef]
- Akram, M.; Riaz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Ali Shariati, M.; Akhtar, N.; Riaz, Z.; Altaf, S.H.; et al. Chemical Constituents, Experimental and Clinical Pharmacology of Rosa Damascena: A Literature Review. J. Pharm. Pharmacol. 2020, 72, 161–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N.; et al. Rose Flowers—A Delicate Perfume or a Natural Healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Raka, R.N.; Zhiqian, D.; Yue, Y.; Luchang, Q.; Suyeon, P.; Junsong, X.; Hua, W. Pingyin Rose Essential Oil Alleviates LPS-Induced Inflammation in RAW 264.7 Cells via the NF-ΚB Pathway: An Integrated in Vitro and Network Pharmacology Analysis. BMC Complement. Med. Ther. 2022, 22, 272. [Google Scholar] [CrossRef]
- Lu, J.; Wang, C. Medicinal Components and Pharmacological Effects of Rosa Rugosa. Rec. Nat. Prod. 2018, 12, 535–543. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological Effects of Rosa Damascena. Iran J. Basic Med. Sci. 2011, 14, 295–307. [Google Scholar]
- Scalliet, G.; Piola, F.; Douady, C.J.; Réty, S.; Raymond, O.; Baudino, S.; Bordji, K.; Bendahmane, M.; Dumas, C.; Cock, J.M.; et al. Scent Evolution in Chinese Roses. Proc. Natl. Acad. Sci. USA 2008, 105, 5927–5932. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zhang, N.; Li, S.; Wang, H.; Petkova, M.; Yao, L. An Overview of Oil-Bearing Roses in China. Agric. Sci. 2019, XI, 21–26. [Google Scholar]
- Feng, L.; Chen, C.; Li, T.; Wang, M.; Tao, J.; Zhao, D.; Sheng, L. Flowery Odor Formation Revealed by Differential Expression of Monoterpene Biosynthetic Genes and Monoterpene Accumulation in Rose (Rosa Rugosa Thunb.). Plant Physiol. Biochem. 2014, 75, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, F.; Wang, Y.; Zhang, Y.; Sun, K.; Da, L.-L. Molecular and Morphological Evidences for Hybrid Origin of Kushui Rose. Res. Sq. 2022. in review. [Google Scholar]
- Wu, M.; Feng, H.; Song, J.; Chen, L.; Xu, Z.; Xia, W.; Zhang, W. Structural Elucidation and Immunomodulatory Activity of a Neutral Polysaccharide from the Kushui Rose (Rosa Setate × Rosa Rugosa) Waste. Carbohydr. Polym. 2020, 232, 115804. [Google Scholar] [CrossRef] [PubMed]
- ISO 25157:2013; Essential Oil of Rose, Chinese Kushui Type (Rosa Sertata × Rosa Rugosa). ISO: Geneva, Switzerland, 2013.
- Wang, Y.; Tang, Y.; Wu, D.; Wu, Y.; Yao, L. Introduction and Cultivation of Rosa Damascena Mill. Var. Kazanlika in Anji Zhejiang. J. Shanghai Jiaotong Univ. 2009, 27, 226–230. [Google Scholar]
- Wang, X.; Su, C.; Peng, L.; Wang, H.; Wang, H.; Liu, W.; Li, P.; Fang, Y. Ecological Suitability Assessment and Introduction Experiment on Rosa Damascena Trigintipetala in Sichuan Province, China. J. Mt. Sci. 2014, 11, 805–815. [Google Scholar] [CrossRef]
- Kovacheva, N.; Rusanov, K.; Atanassov, I. Industrial Cultivation of Oil Bearing Rose and Rose Oil Production in Bulgaria During 21 ST Century, Directions and Challenges. Biotechnol. Biotechnol. Equip. 2010, 24, 1793–1798. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Wu, K.; Sun, J.; Liu, C.; Su, C.; Yi, F. Preparation of Kushui Rose (Rosa Setate × Rosa Rugosa) Essential Oil Fractions by Double Molecular Distillation: Aroma and Biological Activities. Ind. Crops Prod. 2022, 175, 114230. [Google Scholar] [CrossRef]
- Jirovetz, L.; Buchbauer, G.; Stoyanova, A.; Balinova, A.; Guangjiun, Z.; Xihan, M. Solid Phase Microextraction/Gas Chromatographic and Olfactory Analysis of the Scent and Fixative Properties of the Essential Oil OfRosa Damascena L. China Flavour Fragr. J. 2005, 20, 7–12. [Google Scholar] [CrossRef]
- Ohno, Y.; Tanaka, S. On the Constituents of a Chinese Rose Oil. Agric. Biol. Chem. 1977, 41, 399–401. [Google Scholar] [CrossRef]
- Moein, M.; Etemadfard, H.; Zarshenas, M.M. Investigation of Different Damask Rose (Rosa Damascena Mill.) Oil Samples from Traditional Markets in Fars (Iran); Focusing on the Extraction Method. Trends Pharm. Sci. 2016, 2, 51–58. [Google Scholar]
- Shamspur, T.; Mostafavi, A. Chemical Composition of the Volatile Oil of Rosa Kazanlik and Rosa Gallica from Kerman Province in Iran. J. Essent. Oil Bear. Plants 2010, 13, 78–84. [Google Scholar] [CrossRef]
- Ueyama, Y.; Hashimoto, S.; Nii, H.; Furukawa, K. The Essential Oil from the Flowers of Rosa rugosa Thunb. var. plena Regel. Flavour Fragr. J. 1990, 5, 219–222. [Google Scholar] [CrossRef]
- Liguo, F.; Xiaodi, H. Changes of aromatic components and content during the development of roses. Chin. Agric. Sci. 2008, 41, 4341–4351. [Google Scholar] [CrossRef]
- Wu, Y.; Han, X.; Yuan, W.; Wang, X.; Meng, D.; Hu, J.; Lv, Z. Salt Intervention for the Diversities of Essential Oil Composition, Aroma and Antioxidant Activities of Kushui Rose (R. Setate×R. Rugosa). Ind. Crops Prod. 2020, 150, 112417. [Google Scholar] [CrossRef]
- Son, H.-H.; Lee, D.-S. Gas Chromatographic Profiles of Rose Essential Oils: A Round-Robin Test on Oil of Rose, Chinese Kushui Type (Rosa Sertata × Rosa Rugosa). Anal. Sci. Technol. 2012, 25, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.-G.; Chen, C.; Sheng, L.-X.; Liu, P.; Tao, J.; Su, J.-L.; Zhao, L.-Y. Comparative Analysis of Headspace Volatiles of Chinese Rosa Rugosa. Molecules 2010, 15, 8390–8399. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Luo, J.; Niu, Y.; Wu, M. Characterization of Key Aroma Compounds from Different Rose Essential Oils Using Gas Chromatography-Mass Spectrometry, Gas Chromatography–Olfactometry and Partial Least Squares Regression. Nat. Prod. Res. 2018, 32, 1567–1572. [Google Scholar] [CrossRef]
- Farkaš, P. The Standard GC Retention Index Library of Flavour Compounds. In Trends in Flavour Research: Proceedings of the 7th Weurman Flavour Research Symposium, Noordwijkerhout, The Netherlands, 15–18 June, 1993; Maarse, H., Heij, D.G., Eds.; Developments in Food Science; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1994; pp. 145–149. ISBN 978-0-444-81587-3. [Google Scholar]
- Song, J.; Raka, R.N.; Yuan, Y.; Park, S.; Wang, J.; Liu, F.; Wu, H.; Xiao, J.; Huang, M.; Yang, S. Potential Anti-Inflammatory Effects of Pingyin Rose Essential Oil on Lipopolysaccharide-Induced HaCaT Cells. Res. Sq. 2022. in review. [Google Scholar]
- Tsankova, E.; Ognyanov, I. Germazone, a Novel Tricyclic Sesquiterpene Ketone in the Essential Oil from Geranium Macrorrhizum L. Tetrahedron Lett. 1976, 17, 3833–3836. [Google Scholar] [CrossRef]
- ISO 9842:2003; Oil of Rose (Rosa × Damascena Miller). ISO: Geneva, Switzerland, 2003.
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of Essential Oils. TrAC Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Healthcare. European Pharmacopoeia Supplements 10.6–10.8, 10th ed.; European Directorate for the Quality of Medicines & Healthcare: Strasbourg, France, 2021; ISBN 978-92-871-8686-7. [Google Scholar]
No | Compounds | Formula | Mw | RIref 1 (DB5) | RIexp (DB5) | Rel.%, as Determined by GC-FID | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | KS | R | ||||||
1. | Ethanol | C2H6O | 46 | 459 | n.d. | 0.03 | 0.03 | 0.02 | 0.04 | 0.09 | 0.01 |
2. | β-Pinene | C10H16 | 136 | 974 | 981 | n.d. 2 | n.d. | n.d. | n.d. | 0.08 | 0.01 |
3. | β-Myrcene | C10H16 | 136 | 988 | 987 | 0.1 | tr. 3 | 0.01 | tr. | 0.03 | 0.02 |
4. | Furane, 2-pentyl- | C9H14O | 138 | 984 | 988 | 0.1 | tr. | n.d. | n.d. | 0.02 | 0.01 |
5. | p-Cymene | C10H14 | 134 | 1022 | 1027 | 0.1 | tr. | tr. | n.d. | 0.02 | tr. |
6. | Limonene | C10H16 | 136 | 1024 | 1032 | 0.03 | 0.04 | tr. | tr. | 0.05 | tr. |
7. | Benzyl alcohol | C7H8O | 108 | 1026 | 1033 | 0.04 | 0.02 | 0.05 | 0.04 | n.d. | n.d. |
8. | α-Ocimene | C10H16 | 136 | 1032 | 1037 | n.d. | n.d. | n.d. | n.d. | 0.11 | n.d. |
9. | β-Ocimene | C10H16 | 136 | 1044 | 1045 | n.d. | n.d. | n.d. | n.d. | 0.07 | 0.01 |
10. | Linalool oxide | C10H18O2 | 213 | 1067 | 1073 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.06 |
11. | α-Terpinolene | C10H16 | 136 | 1086 | 1089 | 0.02 | 0.01 | 0.01 | 0.01 | 0.06 | n.d. |
12. | Linalool | C10H18O | 154 | 1095 | 1099 | 2.13 | 1.98 | 2.02 | 2.06 | 1.49 | 1.98 |
13. | Nonanal | C9H18O | 142 | 1100 | 1104 | 0.17 | 0.16 | 0.16 | 0.16 | 0.06 | n.d. |
14. | cis-Rose oxide | C10H18O | 154 | 1106 | 1112 | 0.09 | 0.06 | 0.07 | 0.07 | 0.19 | 0.11 |
15. | Phenyl ethyl alcohol | C8H10O | 122 | 1106 | 1116 | 2.13 | 2.07 | 2.09 | 2.13 | 0.05 | 0.47 |
16. | trans-Rose oxide | C10H18O | 154 | 1122 | 1129 | 0.04 | 0.05 | 0.04 | 0.04 | 0.07 | 0.06 |
17. | Nerol oxide | C10H16O | 152 | 1154 | 1153 | 0.05 | 0.03 | 0.04 | 0.03 | 0.07 | 0.04 |
18. | Camphor | C10H16O | 152 | 1141 | 1155 | 0.02 | 0.02 | 0.02 | 0.02 | tr. | 0.01 |
19. | 4-Terpineol | C10H18O | 154 | 1174 | 1191 | 0.22 | 0.21 | 0.22 | 0.22 | 0.03 | 0.08 |
20. | α-Terpineol | C10H18O | 154 | 1200 | 1200 | 0.63 | 0.61 | 0.62 | 0.63 | 0.36 | 0.16 |
21. | α-Ionene | C13H18 | 174 | 1255 | 1220 | 0.04 | tr. | tr. | tr. | tr. | 0.04 |
22. | p-Menth-1-en-9-al | C10H16O | 152 | 1232 | 1224 | 0.07 | 0.03 | 0.03 | n.d. | n.d. | 0.02 |
23. | Citronellol | C10H20O | 156 | 1223 | 1232 | 39.01 | 38.51 | 36.69 | 39.09 | 39.51 | 48.32 |
24. | Nerol 4 | C10H18O | 154 | 1227 | n.d. | 6.35 | 6.77 | 5.94 | 6.36 | 2.97 | 5.97 |
25. | Citronellal | C10H18O | 154 | 1165 | 1241 | 0.26 | 0.49 | 0.34 | 0.46 | 1.40 | 0.42 |
26. | Neral | C10H16O | 152 | 1235 | 1242 | 0.42 | 0.38 | 0.48 | 0.27 | tr. | tr. |
27. | Geraniol | C10H18O | 154 | 1249 | 1249 | 7.55 | 7.59 | 7.64 | 7.88 | 8.66 | 19.88 |
28. | Linalyl acetate | C12H20O2 | 196 | 1254 | 1253 | 0.28 | 0.37 | 0.36 | 0.30 | n.d. | n.d. |
29. | Phenyl ethyl acetate | C10H12O | 164 | 1258 | 1258 | 0.46 | 0.78 | 1.00 | 0.99 | 053 | 1.78 |
30. | Geranial | C10H16O | 152 | 1264 | 1269 | 0.19 | 0.19 | 0.20 | 0.18 | 0.91 | 0.76 |
31. | Citronellyl formate | C11H20O2 | 184 | 1271 | 1273 | 0.04 | 0.02 | 0.03 | 0.03 | 0.21 | 0.55 |
32. | Neryl formate | C11H18O2 | 182 | 1280 | 1281 | 0.03 | 0.02 | 0.03 | 0.03 | tr. | 0.25 |
33. | trans-Anethole | C10H12O | 148 | 1282 | 1291 | 0.03 | 0.02 | 0.02 | 0.02 | tr. | 0.06 |
34. | 2-Undecanone | C11H22O | 170 | 1293 | 1292 | 0.01 | 0.01 | 0.01 | 0.01 | 0.27 | tr. |
35. | Geranyl formate | C11H18O2 | 182 | 1298 | 1297 | 0.10 | 0.13 | 0.13 | 0.12 | tr. | 0.29 |
36. | Citronellyc acid | C12H22O2 | 198 | 1312 | 1302 | 0.14 | tr. | tr. | 0.14 | tr. | tr. |
37. | 2-Methylnaphthalene | C11H10 | 142 | 1310 | 1316 | tr. | 0.02 | 0.02 | 0.02 | 0.42 | n.d. |
38. | Methyl geranate | C10H16O2 | 168 | 1322 | 1322 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.01 |
39. | Methylnaphthalene (isomer) | C11H10 | 142 | 1318 | 1324 | tr. | 0.01 | 0.01 | tr. | 0.03 | 0.11 |
40. | Citronellyl acetate + Geranic acid 5 | C12H22O2/C10H16O2 | 198/168 | 1350 | 1350 | 1.32 | 1.00 | 1.24 | 1.29 | 3.03 | 1.76 |
41. | Eugenol + Neryl acetate | C10H12O2/C12H20O2 | 164/196 | 1356 | 1358 | 0.15 | 0.14 | 0.15 | 0.14 | 0.74 | 0.63 |
42. | Geranyl acetate | C12H20O2 | 196 | 1379 | 1378 | 0.11 | 0.11 | 0.11 | 0.11 | 0.58 | 0.66 |
43. | α-Copaene | C15H24 | 204 | 1374 | 1381 | 0.02 | 0.02 | 0.02 | 0.02 | 0.13 | 0.06 |
44. | Daucene | C15H24 | 204 | 1380 | 1390 | 0.01 | 0.01 | 0.01 | 0.01 | 0.34 | tr. |
45. | 2-Dodecanone | C12H24O | 184 | 1388 | 1394 | n.d. | n.d. | n.d | 0.01 | 0.07 | tr. |
46. | β-Bourbonene | C15H24 | 204 | 1388 | 1396 | 0.11 | 0.12 | 0.12 | 0.11 | tr. | tr. |
47. | β-Elemene | C15H24 | 204 | 1389 | 1398 | tr. | tr. | tr. | tr. | tr. | 0.28 |
48. | Methyl eugenol | C11H14O2 | 178 | 1403 | 1402 | 0.03 | 0.03 | 0.03 | 0.03 | 0.81 | 3.11 |
49. | α-Bisabolene | C15H24 | 204 | 1500 | 1422 | tr. | tr. | tr. | 0.01 | 0.04 | 0.02 |
50. | β-Gurjunene | C15H24 | 204 | 1431 | 1431 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.16 |
51. | trans-β-Caryophyllene | C15H24 | 204 | 1455 | 1435 | 0.41 | 0.39 | 0.39 | 0.38 | 0.07 | 0.05 |
52. | α-Bergamotene | C15H24 | 204 | 1432 | 1442 | tr. | tr. | tr. | tr. | tr. | 0.10 |
53. | Germacrene D | C15H24 | 204 | 1451 | 1444 | 0.06 | 0.07 | 0.06 | 0.06 | n.d. | 0.08 |
54. | Neryl acetone | C13H22O | 194 | 1455 | 1450 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 |
55. | α-Humulene | C15H22 | 204 | 1464 | 1470 | 0.04 | 0.04 | 0.04 | 0.04 | 0.19 | tr. |
56. | γ-Muurolene | C15H24 | 204 | 1478 | 1475 | 0.04 | 0.04 | 0.04 | 0.04 | 0.81 | 0.30 |
57. | γ-Cadinene | C15H24 | 204 | 1513 | 1476 | tr. | tr. | tr. | tr. | 3.35 | tr. |
58. | Pentadecene | C15H32 | 212 | n.d. | 1483 | 0.12 | 0.12 | 0.13 | 0.12 | n.d. | n.d. |
59. | α-Amorphene | C15H24 | 204 | 1483 | 1486 | 0.05 | 0.05 | 0.05 | 0.05 | 1.14 | 0.15 |
60. | ar-Curcumene | C15H22 | 204 | 1479 | 1488 | n.d. | n.d. | n.d. | n.d. | 0.18 | n.d. |
61. | Phenyl ethyl 2-methyl butanoate | C13H18O2 | 206 | 1490 | 1491 | 0.07 | 0.07 | 0.07 | 0.06 | 0.04 | 0.02 |
62. | epi-Cubebol | C15H24O | 220 | 1494 | 1495 | 0.46 | 0.43 | 0.44 | 0.43 | 2.70 | 0.49 |
63. | 2-Tridecanone | C13H26O | 198 | 1496 | 1496 | 0.02 | 0.02 | 0.02 | tr. | tr. | 0.06 |
64. | Pentadecane | C15H32 | 212 | 1500 | 1500 | 0.07 | 0.13 | 0.13 | 0.12 | 0.12 | 0.04 |
65. | Benzyl tiglate | C12H14O2 | 190 | 1497 | 1502 | 0.05 | 0.07 | 0.07 | 0.07 | 0.04 | 0.06 |
66. | α-Farnesene | C15H24 | 204 | 1505 | 1506 | 0.05 | 0.05 | 0.06 | 0.05 | 0.61 | 0.06 |
67. | γ-Muurolene | C15H24 | 204 | 1478 | 1509 | 0.06 | 0.06 | 0.06 | 0.05 | 0.35 | 0.27 |
68. | γ-Bisabolene | C15H24 | 204 | 1515 | 1515 | 0.02 | 0.02 | 0.02 | 0.02 | 0.26 | tr. |
69. | iso-Germacrene D | C16H26 | 218 | n.d. | 1516 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.29 |
70. | Dauca-8,11-diene (Isodaucene) | C15H24 | 204 | 1500 | 1519 | n.d. | n.d. | n.d. | n.d. | 1.26 | 0.24 |
71. | α-Agarofuran | C15H24O | 220 | 1548 | 1522 | 0.03 | 0.02 | 0.02 | 0.02 | 0.28 | 0.10 |
72. | α-Muurolene | C15H24 | 204 | 1500 | 1526 | 0.08 | 0.08 | 0.03 | 0.03 | 0.06 | 0.30 |
73. | δ-Cadinene | C15H24 | 204 | 1522 | 1529 | 0.01 | 0.09 | 0.09 | 0.08 | 0.15 | 0.52 |
74. | Nerolidol | C15H26O | 222 | 1561 | 1565 | 0.06 | 0.07 | 0.07 | 0.07 | 0.22 | 0.04 |
75. | Hexadecene | C16H32 | 224 | n.d. | 1581 | 0.04 | 0.04 | 0.04 | 0.04 | 0.02 | 0.02 |
76. | Phenyl ethyl tiglate | C13H16O2 | 204 | 1584 | 1590 | 0.05 | 0.05 | 0.05 | 0.03 | 0.05 | |
77. | Ethyl laurate | C14H28O2 | 228 | 1594 | 1592 | 0.05 | 0.05 | 0.05 | 0.03 | 0.22 | 0.12 |
78. | Aromadendrene epoxide | C15H24O | 220 | 1639 | 1599 | 0.08 | 0.08 | 0.08 | 0.08 | 0.44 | 0.05 |
79. | α-Cubenol | C15H26O | 222 | 1645 | 1644 | 0.06 | 0.05 | 0.05 | 0.05 | tr. | 0.05 |
80. | α-Eugesmol | C15H26O | 222 | 1649 | 1650 | 0.93 | 0.92 | 0.93 | 0.94 | 0.06 | tr. |
81. | Caryophylla-4(12),8(13)-dien-5α-ol | C15H24O | 220 | 1639 | 1659 | 0.14 | 0.15 | 0.16 | 0.14 | 0.60 | 0.31 |
82. | α-Copaene-11-ol | C15H24O | 220 | n.d. | 1666 | 0.07 | 0.06 | 0.08 | 0.07 | 0.19 | 0.07 |
83. | τ-Muurolol | C15H26O | 222 | 1640 | 1672 | 0.13 | 0.15 | 0.14 | 0.13 | 0.14 | 0.10 |
84. | Bisabolol oxide | C15H26O2 | 238 | 1656 | 1671 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.22 |
85. | α-Eudesmol | C15H26O | 222 | 1652 | 1676 | 1.44 | 1.43 | 1.42 | 1.46 | 0.10 | tr. |
86. | Ledene oxide + Heptadecene | C15H24O/C17H34 | 220/238 | n.d. | 1680 | 0.81 | 0.84 | 0.83 | 0.81 | 0.61 | tr. |
87. | α-Bisabolol | C15H26O | 222 | 1701 | 1698 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.48 |
88. | 2-Pentadecanone + Heptadecane | C15H30O/C17H36 | 226/240 | 1700 | 1700 | 1.59 | 1.67 | 1.66 | 1.66 | 1.44 | tr. |
89. | Nootkatol | C15H22O | 218 | 1714 | 1707 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.08 |
90. | trans-β-Farnesol | C15H26O | 222 | 1714 | 1722 | 0.51 | 0.57 | 0.60 | 0.60 | 1.76 | 0.05 |
91. | Heptadecadiene | C17H32 | 236 | n.d. | 1729 | 0.98 | 0.93 | 0.92 | 0.93 | n.d. | n.d. |
92. | Farnesal | C15H24O | 220 | 1715 | 1745 | 0.07 | 0.08 | 0.08 | 0.07 | 0.36 | tr. |
93. | Ylangenal | C15H22O | 218 | 1764 | 1765 | n.d. | n.d. | n.d. | n.d. | 2.96 | tr. |
94. | Octadecene | C18H36 | 252 | n.d. | 1779 | 0.11 | 0.11 | 0.11 | 0.11 | 0.06 | 0.04 |
95. | Cinnamaldehyde, 3,4-dimethoxy- | C11H12O3 | 192 | 1790 | 1782 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.13 |
96. | Benzyl benzoate | C14H12O2 | 212 | 1759 | 1772 | 0.13 | 0.12 | 0.13 | 0.13 | 0.15 | 0.11 |
97. | Ethyl myristate | C16H32O | 256 | 1795 | 1792 | 0.02 | 0.02 | 0.02 | 0.02 | 0.11 | n.d. |
98. | Octadecane | C18H38 | 254 | 1800 | 1800 | 0.09 | 0.10 | 0.09 | 0.09 | n.d. | tr. |
99. | Germazone | C15H22O | 218 | 1746 | 1814 | 0.02 | 0.01 | 0.01 | 0.01 | 0.53 | 0.74 |
100. | Phenyl ethyl octanoate | C16H24O2 | 248 | 1847 | 1856 | 0.13 | 0.12 | 0.13 | 0.14 | n.d. | n.d. |
101. | Nonadecene | C19H38 | 266 | n.d. | 1879 | 4.51 | 4.28 | 4.27 | 4.38 | 0.34 | 0.03 |
102. | n-Nonadecane | C19H40 | 268 | 1900 | 1900 | 11.82 | 11.08 | 10.94 | 10.87 | tr. | tr. |
103. | Eicosene | C20H42 | 282 | n.d. | 1976 | 0.11 | 0.12 | 0.12 | 0.11 | tr. | 0.02 |
104. | Eicosane | C20H42 | 282 | 2000 | 2000 | 0.84 | 0.80 | 0.79 | 0.80 | 0.11 | 0.02 |
105. | Geranic acid, 2-phenyl ethyl ester | C10H16O2 | 168 | 2081 | 2056 | 0.10 | 0.02 | 0.11 | 0.09 | n.d. | 0.08 |
106. | Heneicosane | C21H44 | 296 | 2100 | 2100 | 7.05 | 6.71 | 6.56 | 5.63 | 1.49 | 0.49 |
107. | Docosane | C22H46 | 310 | 2200 | 2200 | 0.27 | 0.25 | 0.20 | 0.25 | 0.08 | 0.08 |
108. | Tricosene | C23H46 | 322 | n.d. | 2289 | 0.02 | 0.02 | 0.04 | 0.02 | 0.31 | 0.09 |
109. | Tricosane | C23H48 | 324 | 2300 | 2300 | 2.33 | 2.21 | 1.67 | 2.10 | 1.34 | 1.30 |
110. | Tetracosane | C24H50 | 338 | 2400 | 2400 | 0.12 | 0.11 | 0.14 | 0.11 | 0.07 | 0.09 |
111. | Pentacosane | C25H52 | 352 | 2500 | 2500 | 0.43 | 0.41 | 0.31 | 0.39 | 0.21 | 0.46 |
112. | Heptacosane | C27H56 | 380 | 2700 | 2700 | 0.18 | 0.18 | 0.13 | 0.17 | 0.03 | 0.12 |
Total Identified compounds | 99.40 | 96.74 | 96.81 | 98.78 | 88.74 | 96.71 | |||||
Aliphatic hydrocarbons | 31.49 | 30.11 | 29.08 | 28.71 | 6.23 | 2.80 | |||||
Aliphatics (alcohols, esters, fatty acids) | 1.89 | 1.96 | 1.94 | 1.93 | 2.26 | 0.19 | |||||
Monoterpene hydrocarbons | 0.25 | 0.05 | 0.02 | 0.01 | 0.42 | 0.04 | |||||
Monoterpenes oxygenated | 58.84 | 57.64 | 58.38 | 60.82 | 59.58 | 81.39 | |||||
Aromatic-compounds | 0.44 | 0.42 | 0.47 | 0.46 | 0.22 | 0.38 | |||||
Sesquiterpenes hydrocarbons | 1.23 | 1.20 | 1.20 | 1.19 | 8.98 | 1.69 | |||||
Sesquiterpenes oxygenated | 3.51 | 3.57 | 3.62 | 3.62 | 7.36 | 2.19 | |||||
Phenylpropanoids | 2.34 | 2.26 | 2.29 | 2.32 | 1.60 | 4.27 |
No | Compounds | Rel.%, as Determined by GC-FID | ISO 9842:2003 1 | KS | ISO 25157:2013 2 | R | ||||
---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | StDev(D) | ||||||
1. | Ethanol | 0.03 | 0.03 | 0.02 | 0.04 | 0.01 | ≤2.0 | 0.09 | 1.0–3.5 | Tr 3. |
2. | cis-Rose oxide | 0.09 | 0.06 | 0.07 | 0.07 | 0.01 | n.d. 4. | 0.19 | ≤0.5 | 0.11 |
3. | Linalool | 2.13 | 1.98 | 2.02 | 2.06 | 0.06 | ≤2.0 | 1.49 | 1.0–3.5 | 1.98 |
4. | Phenylethanol | 2.13 | 2.07 | 2.09 | 2.13 | 0.03 | ≤3.5 | 0.05 | ≤0.3 | 0.47 |
5. | Citronellol | 39.01 | 38.51 | 36.69 | 39.09 | 1.12 | 20.0–34.0 | 39.51 | 40.0–50.0 | 48.32 |
6. | Nerol | 6.35 | 6.77 | 5.94 | 6.36 | 0.34 | 5.0–12.0 | 2.97 | 2.0–5.5 | 5.97 |
7. | Geraniol | 7.55 | 7.59 | 7.64 | 7.88 | 0.15 | 15.0–22.0 | 8.78 | 6.0–18.0 | 19.88 |
8. | Geranyl acetate | 0.11 | 0.11 | 0.11 | 0.11 | 0.00 | -n.d. | 0.58 | 2.5–4.5 | 0.66 |
9. | Eugenol | 0.15 | 0.14 | 0.15 | 0.14 | 0.01 | ≤2.0 | 0.74 | n.d. | 0.63 |
10. | Methyl eugenol | 0.03 | 0.03 | 0.03 | 0.03 | 0.00 | ≤3.0 | 0.81 | 0.8–2.0 | 3.11 |
11. | Heptadecane 5 | 1.59 | 1.67 | 1.66 | 1.66 | 0.04 | 1.0–2.5 | 1.44 | n.d. | tr. |
12. | Farnesol | 0.51 | 0.57 | 0.60 | 0.60 | 0.04 | -n.d. | 1.76 | 2.0–3.5 | tr. |
13. | Nonadecene | 4.51 | 4.28 | 4.27 | 4.38 | 0.11 | -n.d. | 0.34 | n.d. | tr. |
14. | Nonadecane | 11.82 | 11.08 | 10.94 | 10.87 | 0.44 | 8.0–15.0 | n.d. | n.d. | tr. |
15. | Eicosane | 0.84 | 0.80 | 0.79 | 0.80 | 0.02 | n.d. | 0.12 | n.d. | tr. |
16. | Heneicosane | 7.05 | 6.71 | 6.56 | 5.63 | 0.61 | 3.0–5.5 | 1.49 | 0.6–2.0 | 0.49 |
17. | Tricosane | 2.33 | 2.21 | 1.67 | 2.10 | 0.29 | n.d. | 1.54 | 0.6–2.0 | 1.30 |
18. | Pentacosane | 0.33 | 0.46 | 0.39 | 0.38 | 0.05 | n.d. | 0.21 | n.d. | 0.46 |
19. | Heptacosane | 0.18 | 0.18 | 0.13 | 0.17 | 0.02 | n.d. | <0.05 | n.d. | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobreva, A.; Nedeltcheva-Antonova, D. Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China. Molecules 2023, 28, 1281. https://doi.org/10.3390/molecules28031281
Dobreva A, Nedeltcheva-Antonova D. Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China. Molecules. 2023; 28(3):1281. https://doi.org/10.3390/molecules28031281
Chicago/Turabian StyleDobreva, Ana, and Daniela Nedeltcheva-Antonova. 2023. "Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China" Molecules 28, no. 3: 1281. https://doi.org/10.3390/molecules28031281
APA StyleDobreva, A., & Nedeltcheva-Antonova, D. (2023). Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China. Molecules, 28(3), 1281. https://doi.org/10.3390/molecules28031281