Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Computational Studies
2.2. Synthesis
2.3. Photophysical Studies
3. Experimental Details
3.1. General Experimental and Computational Information
3.2. Procedure for the Preparation of 1-Phenylindolizine-3-Carbaldehyde (1Ph-CHO)
3.3. General Procedure for the Preparation of Indolizine-BODIPY Dyes 2Ph and 1Ph
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hong, G.; Antaris, A.L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 1–22. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, F. Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew. Chem. Int. Ed. 2021, 60, 16294–16308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, X.; Wan, J.-B.; Xu, F.; Zhao, N.; Chen, M. Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. Small 2021, 17, 2103780. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Bellotti, E. Numerical Study of the Intrinsic Recombination Carriers Lifetime in Extended Short-Wavelength Infrared Detector Materials: A Comparison between InGaAs and HgCdTe. J. Appl. Phys. 2016, 119, 205702. [Google Scholar] [CrossRef]
- Vittadello, L.; Klenen, J.; Koempe, K.; Kocsor, L.; Szaller, Z.; Imlau, M. NIR-to-NIR Imaging: Extended Excitation Up to 2.2 Μm Using Harmonic Nanoparticles with a Tunable HIGh EneRgy (TIGER) Widefield Microscope. Nanomaterials 2021, 11, 3193. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, D.C.; Sordillo, L.A.; Sordillo, P.P.; Shi, L.; Alfano, R.R. Short Wavelength Infrared Optical Windows for Evaluation of Benign and Malignant Tissues. J. Biomed. Opt. 2017, 22, 045002. [Google Scholar] [CrossRef]
- Barton, J.B.; Demro, J.C.; Amber, R.; Gasparian, G.; Lange, M. Performance of an Uncooled Camera Utilizing an SWIR InGaAs 256x256 FPA for Imaging in the 1.0 Um-1.7 Um Spectral Band. In Defense Public Release Technical Report; ADA399438; Defense Technical Information Center: Fort Belvoir, VA, USA, 1998. [Google Scholar]
- Li, H.; Wang, X.; Li, X.; Zeng, S.; Chen, G. Clearable Shortwave-Infrared-Emitting NaErF4 Nanoparticles for Noninvasive Dynamic Vascular Imaging. Chem. Mater. 2020, 32, 3365–3375. [Google Scholar] [CrossRef]
- Chinnathambi, S.; Shirahata, N. Recent Advances on Fluorescent Biomarkers of Near-Infrared Quantum Dots for in Vitro and in Vivo Imaging. Sci. Technol. Adv. Mater. 2019, 20, 337–355. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.A.; Aellen, M.; Franke, D.; So, P.T.C.; Bruns, O.T.; Bawendi, M.G. Absorption by Water Increases Fluorescence Image Contrast of Biological Tissue in the Shortwave Infrared. Proc. Natl. Acad. Sci. USA 2018, 115, 9080–9085. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, B.; Zhao, M.; Wang, S.; Lei, Z.; Lu, L.; Zhang, H.; Feng, L.; Dou, C.; Yin, D.; et al. J-Aggregates of Cyanine Dye for NIR-II in Vivo Dynamic Vascular Imaging beyond 1500 Nm. J. Am. Chem. Soc. 2019, 141, 19221–19225. [Google Scholar] [CrossRef]
- Ansteatt, S.; Meares, A.; Ptaszek, M. Amphiphilic Near-IR-Emitting 3,5-Bis(2-Pyrrolylethenyl)BODIPY Derivatives: Synthesis, Characterization, and Comparison with Other (Hetero)Arylethenyl-Substituted BODIPYs. J. Org. Chem. 2021, 86, 8755–8765. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Guo, M.; Pan, Q.; Zhou, M.; Xu, L.; Rao, Y.; Wang, K.; Yin, B.; Zhou, J.; Song, J. Rhodium-Catalyzed Annulation of Pyrrole Substituted BODIPYs with Alkynes to Access π-Extended Polycyclic Heteroaromatic Molecules and NIR Absorption. Org. Chem. Front. 2021, 8, 868–875. [Google Scholar] [CrossRef]
- Kubota, Y.; Kimura, K.; Jin, J.; Manseki, K.; Funabiki, K.; Matsui, M. Synthesis of Near-Infrared Absorbing and Fluorescing Thiophene-Fused BODIPY Dyes with Strong Electron-Donating Groups and Their Application in Dye-Sensitised Solar Cells. New J. Chem. 2019, 43, 1156–1165. [Google Scholar] [CrossRef]
- Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, K. Bright, Color-Tunable Fluorescent Dyes in the Visible–Near-Infrared Region. J. Am. Chem. Soc. 2008, 130, 1550–1551. [Google Scholar] [CrossRef] [PubMed]
- Jean-Gérard, L.; Vasseur, W.; Scherninski, F.; Andrioletti, B. Recent Advances in the Synthesis of [a]-Benzo-Fused BODIPY Fluorophores. Chem. Commun. 2018, 54, 12914–12929. [Google Scholar] [CrossRef]
- Liu, D.; He, Z.; Zhao, Y.; Yang, Y.; Shi, W.; Li, X.; Ma, H. Xanthene-Based NIR-II Dyes for In Vivo Dynamic Imaging of Blood Circulation. J. Am. Chem. Soc. 2021, 143, 17136–17143. [Google Scholar] [CrossRef]
- Chatterjee, S.; Meador, W.E.; Smith, C.; Chandrasiri, I.; Zia, M.F.; Nguyen, J.; Dorris, A.; Flynt, A.; Watkins, D.L.; Hammer, N.I.; et al. SWIR Emissive RosIndolizine Dyes with Nanoencapsulation in Water Soluble Dendrimers. RSC Adv. 2021, 11, 27832–27836. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-H.; Zhang, Z.; Yang, Y.-C.; Chan, Y.-H. Polymethine-Based Semiconducting Polymer Dots with Narrow-Band Emission and Absorption/Emission Maxima at NIR-II for Bioimaging. Angew. Chem. Int. Ed. 2021, 60, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Cosco, E.D.; Spearman, A.L.; Ramakrishnan, S.; Lingg, J.G.P.; Saccomano, M.; Pengshung, M.; Arús, B.A.; Wong, K.C.Y.; Glasl, S.; Ntziachristos, V.; et al. Shortwave Infrared Polymethine Fluorophores Matched to Excitation Lasers Enable Non-Invasive, Multicolour in Vivo Imaging in Real Time. Nat. Chem. 2020, 12, 1123–1130. [Google Scholar] [CrossRef]
- Li, B.; Zhao, M.; Feng, L.; Dou, C.; Ding, S.; Zhou, G.; Lu, L.; Zhang, H.; Chen, F.; Li, X.; et al. Organic NIR-II Molecule with Long Blood Half-Life for in Vivo Dynamic Vascular Imaging. Nat. Commun. 2020, 11, 3102. [Google Scholar] [CrossRef]
- Huckaba, A.J.; Giordano, F.; McNamara, L.E.; Dreux, K.M.; Hammer, N.I.; Tschumper, G.S.; Zakeeruddin, S.M.; Grätzel, M.; Nazeeruddin, M.K.; Delcamp, J.H. Indolizine-Based Donors as Organic Sensitizer Components for Dye-Sensitized Solar Cells. Adv. Energy Mater. 2015, 5, 1401629. [Google Scholar] [CrossRef]
- McNamara, L.E.; Rill, T.A.; Huckaba, A.J.; Ganeshraj, V.; Gayton, J.; Nelson, R.A.; Sharpe, E.A.; Dass, A.; Hammer, N.I.; Delcamp, J.H. Indolizine–Squaraines: NIR Fluorescent Materials with Molecularly Engineered Stokes Shifts. Chem.-Eur. J. 2017, 23, 12494–12501. [Google Scholar] [CrossRef]
- Meador, W.E.; Autry, S.A.; Bessetti, R.N.; Gayton, J.N.; Flynt, A.S.; Hammer, N.I.; Delcamp, J.H. Water-Soluble NIR Absorbing and Emitting Indolizine Cyanine and Indolizine Squaraine Dyes for Biological Imaging. J. Org. Chem. 2020, 85, 4089–4095. [Google Scholar] [CrossRef]
- Gayton, J.; Autry, S.A.; Meador, W.; Parkin, S.R.; Hill, G.A., Jr.; Hammer, N.I.; Delcamp, J.H. Indolizine-Cyanine Dyes: Near Infrared Emissive Cyanine Dyes with Increased Stokes Shifts. J. Org. Chem. 2019, 84, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Ndaleh, D.; Smith, C.; Loku Yaddehige, M.; Shaik, A.K.; Watkins, D.L.; Hammer, N.I.; Delcamp, J.H. Shortwave Infrared Absorptive and Emissive Pentamethine-Bridged Indolizine Cyanine Dyes. J. Org. Chem. 2021, 86, 15376–15386. [Google Scholar] [CrossRef]
- Rathnamalala, C.S.L.; Gayton, J.N.; Dorris, A.L.; Autry, S.A.; Meador, W.; Hammer, N.I.; Delcamp, J.H.; Scott, C.N. Donor–Acceptor–Donor NIR II Emissive Rhodindolizine Dye Synthesized by C–H Bond Functionalization. J. Org. Chem. 2019, 84, 13186–13193. [Google Scholar] [CrossRef]
- Gayathri, T.; Karnewar, S.; Kotamraju, S.; Singh, S.P. High Affinity Neutral Bodipy Fluorophores for Mitochondrial Tracking. ACS Med. Chem. Lett. 2018, 9, 618–622. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, I.; Zhang, D.; Costela, Á.; Martín, V.; Sastre, R.; Xiao, Y. Red-Edge Laser Action from Borondipyrromethene Dyes. J. Appl. Phys. 2010, 107, 073105. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Pascual-ahuir, J.L.; Silla, E.; Tuñon, I. GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J. Comput. Chem. 1994, 15, 1127–1138. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Miertuš, S.; Tomasi, J. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Pohjala, E. A Facile Synthesis of Stable Dihydroindolizines via Intramolecular 1,5-Cyclization of Ylides. Tetrahedron Lett. 1972, 13, 2585–2588. [Google Scholar] [CrossRef]
- Cheng, J.M.H.; Chee, S.H.; Dölen, Y.; Verdoes, M.; Timmer, M.S.M.; Stocker, B.L. An Efficient Synthesis of a 6″-BODIPY-α-Galactosylceramide Probe for Monitoring α-Galactosylceramide Uptake by Cells. Carbohydr. Res. 2019, 486, 107840. [Google Scholar] [CrossRef]
- Kalinin, A.A.; Smirnov, M.A.; Islamova, L.N.; Fazleeva, G.M.; Vakhonina, T.A.; Levitskaya, A.I.; Fominykh, O.D.; Ivanova, N.V.; Khamatgalimov, A.R.; Nizameev, I.R.; et al. Synthesis and Characterization of New Second-Order NLO Chromophores Containing the Isomeric Indolizine Moiety for Electro-Optical Materials. Dyes Pigments 2017, 147, 444–454. [Google Scholar] [CrossRef]
- Peterson, J.A.; Wijesooriya, C.; Gehrmann, E.J.; Mahoney, K.M.; Goswami, P.P.; Albright, T.R.; Syed, A.; Dutton, A.S.; Smith, E.A.; Winter, A.H. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light. J. Am. Chem. Soc. 2018, 140, 7343–7346. [Google Scholar] [CrossRef]
- Mula, S.; Elliott, K.; Harriman, A.; Ziessel, R. Energy Transfer by Way of an Exciplex Intermediate in Flexible Boron Dipyrromethene-Based Allosteric Architectures. J. Phys. Chem. A 2010, 114, 10515–10522. [Google Scholar] [CrossRef]
- Brzeczek, A.; Piwowar, K.; Domagala, W.; Mikołajczyk, M.M.; Walczak, K.; Wagner, P. Systematic Elongation of Thienyl Linkers and Their Effect on Optical and Electrochemical Properties in Carbazole–BODIPY Donor–Acceptor Systems. RSC Adv. 2016, 6, 36500–36509. [Google Scholar] [CrossRef]
- Hoogendoorn, S.; Blom, A.E.M.; Willems, L.I.; van der Marel, G.A.; Overkleeft, H.S. Synthesis of PH-Activatable Red Fluorescent BODIPY Dyes with Distinct Functionalities. Org. Lett. 2011, 13, 5656–5659. [Google Scholar] [CrossRef]
- Fedeli, S.; Paoli, P.; Brandi, A.; Venturini, L.; Giambastiani, G.; Tuci, G.; Cicchi, S. Azido-Substituted BODIPY Dyes for the Production of Fluorescent Carbon Nanotubes. Chem.-Eur. J. 2015, 21, 15349–15353. [Google Scholar] [CrossRef]
- James, N.S.; Chen, Y.; Joshi, P.; Ohulchanskyy, T.Y.; Ethirajan, M.; Henary, M.; Strekowsk, L.; Pandey, R.K. Evaluation of Polymethine Dyes as Potential Probes for Near Infrared Fluorescence Imaging of Tumors: Part-1. Theranostics 2013, 3, 692–702. [Google Scholar] [CrossRef]
- Rurack, K.; Spieles, M. Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600–1000 Nm. Anal. Chem. 2011, 83, 1232–1242. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, B.; Yang, J.; Baryshnikov, G.V.; Zhou, Y.; Ågren, H.; Zou, Q.; Zhu, L. Large Red-Shifted NIR Absorption in Azulenyl- and Iodinated-Modified BODIPYs Sensitive to Aggregation and Protonation Stimuli. Dyes Pigments 2022, 197, 109867. [Google Scholar] [CrossRef]
- Cosco, E.D.; Caram, J.R.; Bruns, O.T.; Franke, D.; Day, R.A.; Farr, E.P.; Bawendi, M.G.; Sletten, E.M. Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging. Angew. Chem. Int. Ed. 2017, 56, 13126–13129. [Google Scholar] [CrossRef]
- Dou, K.; Feng, W.; Fan, C.; Cao, Y.; Xiang, Y.; Liu, Z. Flexible Designing Strategy to Construct Activatable NIR-II Fluorescent Probes with Emission Maxima beyond 1200 Nm. Anal. Chem. 2021, 93, 4006–4014. [Google Scholar] [CrossRef]
- Parker, C.A.; Rees, W.T. Correction of Fluorescence Spectra and Measurement of Fluorescence Quantum Efficiency. Analyst 1960, 85, 587–600. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent Molecular Orbital Methods. XXIII. A Polarization-type Basis Set for Second-row Elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef] [Green Version]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
Dye | λmaxabs (nm|eV) | λmaxemis (nm|eV) | ε (M−1 cm−1) | Φ (%) | MB (M−1 cm−1) | Stokes Shift (eV) |
---|---|---|---|---|---|---|
DMA | 707|1.75 | 760|1.63 | 87,500 | 34.6 ± 1.8 | 30,300 | 0.12 |
2Ph | 798|1.55 | 867|1.43 | 97,000 | 3.5 ± 0.3 | 3400 | 0.12 |
1Ph | 797|1.56 | 872|1.42 | 121,000 | 5.6 ± 0.6 | 6800 | 0.14 |
1Ph-TFA 1 | 1027|1.21 | 1061|1.17 | 133,500 | 0.0020 ± 0.0001 | 2.7 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saucier, M.A.; Smith, C.; Kruse, N.A.; Hammer, N.I.; Delcamp, J.H. Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes. Molecules 2023, 28, 1287. https://doi.org/10.3390/molecules28031287
Saucier MA, Smith C, Kruse NA, Hammer NI, Delcamp JH. Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes. Molecules. 2023; 28(3):1287. https://doi.org/10.3390/molecules28031287
Chicago/Turabian StyleSaucier, Matthew A., Cameron Smith, Nicholas A. Kruse, Nathan I. Hammer, and Jared H. Delcamp. 2023. "Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes" Molecules 28, no. 3: 1287. https://doi.org/10.3390/molecules28031287
APA StyleSaucier, M. A., Smith, C., Kruse, N. A., Hammer, N. I., & Delcamp, J. H. (2023). Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes. Molecules, 28(3), 1287. https://doi.org/10.3390/molecules28031287