An Analytical Protocol for the Differentiation and the Potentiometric Determination of Fluorine-Containing Fractions in Bovine Milk
Abstract
:1. Introduction
2. Results and Discussion
2.1. Classification of the Different Forms of Fluorine Present in Milk
2.2. Analytical Methods
2.2.1. Diffusible (Inorganic) Fluorine
Method M1—Determination of Free Ionic Fluoride (FIF)
Method M2-Total Inorganic Fluorine (TIF)
Method M3-Total Fluorine (TF)
2.2.2. Non-Diffusible (Organic) Fluorine
Method M4—Free Inorganic Fluoride and Caseins-Bonded Fluorine (FIF + CBF)
Method M5—Free Inorganic Fluoride and Proteins-Bonded Fluorine (FIF + PBF)
Method M6-Lipids-Bonded Fluorine (LBF)
2.2.3. Quantification
2.3. Validation
2.3.1. LoD and LoQ
2.3.2. Precision
2.3.3. Trueness
2.4. Application of the Protocol to Cow’s Milk
3. Experimental
3.1. Samples
3.2. Instrumentation and Labware
3.3. Reagents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Weinstein, L.H.; Davison, A.W. Fluorides in the Environment: Effects on Plants and Animals; CABI Digital Library: Wallingford, UK, 2004; 287p, ISBN 978-0-85199-872-5. [Google Scholar]
- Schmedt auf der Günne, J.; Mangstl, M.; Kraus, F. Occurrence of Difluorine F2 in Nature-In Situ Proof and Quantification by NMR Spectroscopy. Angew. Chem. Int. Ed. 2012, 51, 7847–7849. [Google Scholar] [CrossRef] [PubMed]
- Fluorine: Essential nutrient? Nutr. Rev. 2009, 12, 156–158. [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Fluoride. EFSA J. 2013, 11, 3332. [Google Scholar] [CrossRef]
- Dean, H.T.; Arnold, F.A., Jr.; Elvove, E. Domestic Water and Dental Caries: V. Additional Studies of the Relation of Fluoride Domestic Waters to Dental Caries Experience in 4,425 White Children, Aged 12 to 14 Years, of 13 Cities in 4 States. Public Health Rep. 1942, 57, 1155–1179. [Google Scholar] [CrossRef]
- Everett, E.T. Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics. J. Dent. Res. 2010, 90, 552–560. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Fluoride in Drinking Water: A Scientific Review of EPA’s Standards; The National Academies Press: Washington, DC, USA, 2006; 530p. [Google Scholar] [CrossRef]
- Johnston, N.R.; Strobel, S.A. Principles of Fluoride Toxicity and the Cellular Response: A Review. Arch. Toxic. 2020, 94, 1051–1069. [Google Scholar] [CrossRef]
- Lech, T. Fatal Cases of Acute Suicidal Sodium and Accidental Zinc Fluorosilicate Poisoning. Review of Acute Intoxications Due to Fluoride Compounds. Forensic Sci. Int. 2011, 206, e20–e24. [Google Scholar] [CrossRef]
- Whitford, G.M.; Pashley, D.H.; Reynolds, K.E. Fluoride Tissue Distribution: Short-Term Kinetics. Am. J. Physiol.-Ren. Physiol. 1979, 236, F141–F148. [Google Scholar] [CrossRef]
- Hunstadbraten, K. Fluoride in caries prophylaxis at the turn of the century. Bull. Hist. Dent. 1982, 30, 117–120. [Google Scholar]
- Sampaio, F.C.; Levy, S.M. Systemic Fluoride. In Fluoride and the Oral Environment; Buzalaf, M.A.R., Ed.; Karger: Basel, Switzerland, 2011; pp. 133–145. [Google Scholar] [CrossRef]
- Buzalaf, M.A.R.; Levy, S.M. Fluoride Intake of Children: Considerations for Dental Caries and Dental Fluorosis. In Fluoride and the Oral Environment; Buzalaf, M.A.R., Ed.; Karger: Basel, Switzerland, 2011; pp. 1–19. [Google Scholar] [CrossRef]
- European Union. Commission Directive 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Off. J. Eur. Union 2008, L285, 9–12. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:285:0009:0012:EN:PDF (accessed on 15 November 2022).
- Venkateswarlu, P. Determination of Fluorine in Biological Materials: A Review. Adv. Dent. Res. 1994, 8, 80–86. [Google Scholar] [CrossRef]
- Taves, D.R. Effect of Silicone Grease on Diffusion of Fluoride. Anal. Chem. 1968, 40, 204–206. [Google Scholar] [CrossRef]
- Taves, D.R. Separation of fluoride by rapid diffusion using hexamethyldisiloxane. Talanta 1968, 15, 969–974. [Google Scholar] [CrossRef]
- Taves, D.R. Determination of submicromolar concentrations of fluoride in biological samples. Talanta 1968, 15, 1015–1023. [Google Scholar] [CrossRef]
- Hall, R.J. The diffusion of fluoride with hexamethyldisiloxane. Talanta 1969, 16, 129–133. [Google Scholar] [CrossRef]
- Sara, R.; Wänninen, E. Separation and determination of fluoride by diffusion with hexamethyldisiloxane and use of a fluoride-sensitive electrode. Talanta 1975, 22, 1033–1036. [Google Scholar] [CrossRef]
- Taves, D.R. Evidence That There Are Two Forms of Fluoride in Human Serum. Nature 1968, 217, 1050–1051. [Google Scholar] [CrossRef]
- Maier, F.J. Manual of Water Fluoridation Practice; McGraw-Hill: New York, NY, USA, 1963; 234p, ISBN 978-0070397187. [Google Scholar]
- Jones, S.; Burt, B.A.; Petersen, P.E.; Lennon, M.A. The effective use of fluorides in public health. Bull. World Health Organ. 2005, 83, 670–676. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626340/pdf/16211158.pdf (accessed on 15 November 2022).
- Banoczy, J.; Rugg-Gunn, A.; Woodward, M. Milk Fluoridation for the Prevention. Acta Med. Acad. 2013, 42, 156–167. [Google Scholar] [CrossRef]
- Lights, A.E.; Smith, F.A.; Gardner, D.E.; Hodge, H.C. Effect of fluoridated milk on deciduous teeth. J. Am. Dent. Assoc. 1958, 56, 249–250. [Google Scholar] [CrossRef]
- Rao, G.S. Dietary Intake and Bioavailability of Fluoride. Annu. Rev. Nutr. 1984, 4, 115–136. [Google Scholar] [CrossRef] [PubMed]
- Stephen, K.W.; Boyle, I.T.; Campbell, D.; McNee, S.; Boyle, P. Five-Year Double-Blind Fluoridated Milk Study in Scotland. Commun. Dent. Oral. Epidemiol. 1984, 12, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Recommendations for using fluoride to prevent and control dental caries in the United States. MMWR 2001, 50, 1–42. Available online: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5014a1.htm (accessed on 15 November 2022).
- Mariño, R.; Villa, A.; Guerrero, S. A Community Trial of Fluoridated Powdered Milk in Chile. Commun. Dent. Oral. Epidemiol. 2001, 29, 435–442. [Google Scholar] [CrossRef]
- Jackson, R.D.; Brizendine, E.J.; Kelly, S.A.; Hinesley, R.; Stookey, G.K.; Dunipace, A.J. The Fluoride Content of Foods and Beverages from Negligibly and Optimally Fluoridated Communities. Commun. Dent. Oral. Epidemiol. 2002, 30, 382–391. [Google Scholar] [CrossRef]
- Mariño, R.; Traub, F.; Lekfuangfu, P.; Niyomsilp, K. Cost-Effectiveness Analysis of a School-Based Dental Caries Prevention Program Using Fluoridated Milk in Bangkok, Thailand. BMC Oral Health 2018, 18, 24. [Google Scholar] [CrossRef] [Green Version]
- Petersen, P.E. Long Term Evaluation of the Clinical Effectiveness of Community Milk Fluoridation in Bulgaria. Commun. Dent. Health 2015, 32, 199–203. [Google Scholar] [CrossRef]
- Venkateswarlu, P.; Singer, L.; Armstrong, W.D. Determination of Ionic (plus Ionizable) Fluoride in Biological Fluids. Anal. Biochem. 1971, 42, 350–359. [Google Scholar] [CrossRef]
- Venkateswarlu, P. A Micro Method for Direct Determination of Ionic Fluoride in Body Fluids with the Hanging Drop Fluoride Electrode. Clin. Chim. Acta 1975, 59, 277–282. [Google Scholar] [CrossRef]
- Beddows, C.G.; Kirk, D. Determination of Fluoride Ion in Bovine Milk Using a Fluoride Ion-Selective Electrode. Analyst 1981, 106, 1341–1344. [Google Scholar] [CrossRef]
- Duff, E.J. Total and Ionic Fluoride in Milk. Caries Res. 1981, 15, 406–408. [Google Scholar] [CrossRef]
- Taves, D.R. Dietary Intake of Fluoride Ashed (Total Fluoride) v. Unashed (Inorganic Fluoride) Analysis of Individual Foods. Br. J. Nutr. 1983, 49, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Takatsu, A.; Chiba, K.; Ozaki, M.; Fuwa, K.; Haraguchi, H. Direct Determination of Trace Fluorine in Milk by Aluminum Monofluoride Molecular Absorption Spectrometry Utilizing an Electrothermal Graphite Furnace. Spectrochim. Acta B At. Spectrosc. 1984, 39, 365–370. [Google Scholar] [CrossRef]
- Tashkov, W.; Benchev, I.; Rizov, N.; Kolarska, A. Fluoride Determination in Fluorinated Milk by Headspace Gas Chromatography. Chromatographia 1990, 29, 544–546. [Google Scholar] [CrossRef]
- Nedeljković, M.; Antonijević, B.; Matović, V. Simplified Sample Preparation for Fluoride Determination in Biological Material. Analyst 1991, 116, 477–478. [Google Scholar] [CrossRef]
- van Staden, J.F.; van Rensburg, S.D.J. Improvement on the Microdiffusion Technique for the Determination of Ionic and Ionizable Fluoride in Cows’ Milk. Analyst 1991, 116, 807–810. [Google Scholar] [CrossRef]
- Chlubek, D. Interakcje fluorków ze składnikami mleka. Ann. Acad. Med. Stetin. 1993, 39, 23–38. [Google Scholar] [CrossRef]
- Liu, C.; Wyborny, L.E.; Chan, J.T. Fluoride content of dairy milk from supermarket. Fluoride 1995, 28, 10–16. Available online: http://www.fluorideresearch.org/281/files/FJ1995_v28_n1_p010-016.pdf (accessed on 15 November 2022).
- Kimarua, R.W.; Kariuki, D.N.; Njenga, L.W. Comparison of Two Microdiffusion Methods Used to Measure Ionizable Fluoride in Cows’ Milk. Analyst 1995, 120, 2245–2247. [Google Scholar] [CrossRef]
- Kahama, R.W.; Kariuki, D.N.; Kariuki, H.N.; Njenga, L.W. Fluorosis in Children and Sources of Fluoride Around Lake Elmentaita Region of Kenya. Fluoride 1997, 30, 19–25. Available online: http://www.fluorideresearch.org/301/files/FJ1997_v30_n1_p019-025.pdf (accessed on 15 November 2022).
- Kahama, R.W.; Damen, J.J.M.; (Bob) ten Cate, J.M. Enzymatic Release of Sequestered Cows’ Milk Fluoride for Analysis by the Hexamethyldisiloxane Microdiffusion Method. Analyst 1997, 122, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Peres, R.C.R.; Coppi, L.C.; Volpato, M.C.; Groppo, F.C.; Cury, J.A.; Rosalen, P.L. Cariogenic Potential of Cows’, Human and Infant Formula Milks and Effect of Fluoride Supplementation. Br. J. Nutr. 2008, 101, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yiping, H.; Caiyun, W. Ion Chromatography for Rapid and Sensitive Determination of Fluoride in Milk after Headspace Single-Drop Microextraction with in Situ Generation of Volatile Hydrogen Fluoride. Anal. Chim. Acta 2010, 661, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, N.; Akman, S. Determination of Fluorine in Milk Samples via Calcium-Monofluoride by Electrothermal Molecular Absorption Spectrometry. Food Chem. 2013, 138, 650–654. [Google Scholar] [CrossRef]
- Ozbek, N.; Akman, S. Determination of Fluorine in Milk and Water via Molecular Absorption of Barium Monofluoride by High-Resolution Continuum Source Atomic Absorption Spectrometer. Microchem. J. 2014, 117, 111–115. [Google Scholar] [CrossRef]
- Gupta, P. Concentration of Fluoride in Cow’s and Buffalo’s Milk in Relation to Varying Levels of Fluoride Concentration in Drinking Water of Mathura City in India—A Pilot Study. J. Clin. Diagn. Res. 2015, 9, LC05–LC07. [Google Scholar] [CrossRef]
- Akman, S.; Welz, B.; Ozbek, N.; Pereira, É.R. Chapter 5: Fluorine Determination in Milk, Tea and Water by High-Resolution, High-Temperature Molecular Absorption Spectrometry. In Food and Nutritional Components in Focus; Preedy, V.R., Ed.; The Royal Society of Chemistry: London, UK, 2015; pp. 75–95. [Google Scholar] [CrossRef]
- Esala, S.; Vuori, E.; Helle, A. Effect of Maternal Fluorine Intake on Breast Milk Fluorine Content. Br. J. Nutr. 1982, 48, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Esala, S.; Vuori, E.; Niinistö, L. Determination of Nanogram Amounts of Fluorine in Breast Milk by Ashing-Diffusion Method and the Fluoride Electrode. Mikrochim. Acta 1983, 79, 155–165. [Google Scholar] [CrossRef]
- Koparal, E.; Ertugrul, F.; Oztekin, K. Fluoride Levels in Breast Milk and Infant Foods. J. Clin. Pediatr. Dent. 2000, 24, 299–302. [Google Scholar] [CrossRef]
- Şener, Y.; Tosun, G.; Kahvecioğlu, F.; Gökalp, A.; Koç, H. Fluoride levels of human plasma and breast milk. Eur. J. Dent. 2007, 1, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Campus, G.; Congiu, G.; Cocco, F.; Sale, S.; Cagetti, M.G.; Sanna, G.; Lingström, P.; Garcia-Godoy, F. Fluoride content in breast milk after the use of fluoridated food supplement. A randomized clinical trial. Am. J. Dent. 2014, 27, 199–202. [Google Scholar]
- Poureslami, H.; Khazaeli, P.; Mahvi, A.H.; Poureslami, K.; Poureslami, P.; Haghani, J.; Aghaei, M. Fluoride level in the breast milk in Koohbanan, a city with endemic dental fluorosis. Fluoride 2016, 49, 485–494. Available online: https://www.fluorideresearch.org/494Pt2/files/FJ2016_v49_n4Pt2_p485-494_pq.pdf (accessed on 15 November 2022).
- Hossein Mahvi, A.; Ghanbarian, M.; Ghanbarian, M.; Khosravi, A.; Ghanbarian, M. Determination of Fluoride Concentration in Powdered Milk in Iran 2010. Br. J. Nutr. 2011, 107, 1077–1079. [Google Scholar] [CrossRef] [Green Version]
- Bussell, R.M.; Nichol, R.; Toumba, K.J. Fluoride Levels in UK Infant Milks. Eur. Arch. Paediatr. Dent. 2016, 17, 177–185. [Google Scholar] [CrossRef]
- Noh, H.J.; Sohn, W.; Kim, B.I.; Kwon, H.K.; Choi, C.H.; Kim, H.-Y. Estimation of Fluoride Intake From Milk-Based Infant Formulas and Baby Foods. Asia Pac. J. Public Health 2013, 27, NP1300–NP1309. [Google Scholar] [CrossRef]
- Molska, A.; Gutowska, I.; Baranowska-Bosiacka, I.; Noceń, I.; Chlubek, D. The Content of Elements in Infant Formulas and Drinks Against Mineral Requirements of Children. Biol. Trace Elem. Res. 2014, 158, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Frant, M.S.; Ross, J.W., Jr. Electrode for Sensing Fluoride Ion Activity in Solution. Science 1966, 154, 1553–1555. [Google Scholar] [CrossRef]
- Wieczorek, P.; Sumujlo, D.; Chlubek, D.; Machoy, Z. Interaction of fluoride ions with milk proteins studied by gel filtration. Fluoride 1992, 25, 171–174. Available online: https://www.fluorideresearch.online/254/files/FJ1992_v25_n4_p165-210.pdf (accessed on 15 November 2022).
- Campus, G.; Gaspa, L.; Pilo, M.; Scanu, R.; Spano, N.; Cagetti, M.G.; Sanna, G. Performance differences of two potentiometric fluoride determination methods in hard dental tissue. Fluoride 2007, 40, 111–115. Available online: https://www.fluorideresearch.org/402/files/FJ2007_v40_n2_p111-115.pdf (accessed on 15 November 2022).
- Campus, G.; Cagetti, M.G.; Spano, N.; Denurra, S.; Cocco, F.; Bossu, M.; Pilo, M.I.; Sanna, G.; Garcia-Godoy, F. Laboratory enamel fluoride uptake from fluoride products. Am. J. Dent. 2012, 25, 13–16. [Google Scholar]
- Campus, G.; Carta, G.; Cagetti, M.G.; Bossù, M.; Sale, S.; Cocco, F.; Conti, G.; Nardone, M.; Sanna, G.; Strohmenger, L.; et al. Fluoride Concentration from Dental Sealants. J. Dent. Res. 2013, 92, S23–S28. [Google Scholar] [CrossRef] [PubMed]
- Cagetti, M.G.; Carta, G.; Cocco, F.; Sale, S.; Congiu, G.; Mura, A.; Strohmenger, L.; Lingstrom, P.; Campus, G.; Bossù, M.; et al. Effect of Fluoridated Sealants on Adjacent Tooth Surfaces: A 30-Mo Randomized Clinical Trial. J. Dent. Res. 2014, 93 (Suppl. 1), 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spano, N.; Guccini, V.; Ciulu, M.; Floris, I.; Nurchi, V.M.; Panzanelli, A.; Pilo, M.I.; Sanna, G. Free fluoride determination in honey by ion-specific electrode potentiometry: Method assessment, validation and application to real unifloral samples. Arab. J. Chem. 2018, 11, 492–500. [Google Scholar] [CrossRef]
- Campbell, A.D. Determination of Fluoride in Various Matrices. Pure Appl. Chem. 1987, 59, 695–702. [Google Scholar] [CrossRef] [Green Version]
- Muňoz, A.; Gómez, M.; Palacios, M.A.; Camara, C. Evaluation of Nitric-Induced Teflon Degradation by Spectrochemical Fluoride Analysis and Scanning Microscopy. Fresenius J. Anal. Chem. 1993, 345, 524–526. [Google Scholar] [CrossRef]
- Singer, L.; Ophaug, R.H. Determination of Fluoride in Foods. J. Agric. Food Chem. 1986, 34, 510–513. [Google Scholar] [CrossRef]
- Venkateswarlu, P. Evaluation of Analytical Methods for Fluorine in Biological and Related Materials. J. Dent. Res. 1990, 69, 514–521. [Google Scholar] [CrossRef]
- Carbonaro, M.; Cappelloni, M.; Sabbadini, S.; Carnovale, E. Disulfide Reactivity and In Vitro Protein Digestibility of Different Thermal-Treated Milk Samples and Whey Proteins. J. Agric. Food Chem. 1997, 45, 95–100. [Google Scholar] [CrossRef]
- Kitabatake, N.; Kinekawa, Y.-I. Digestibility of Bovine Milk Whey Protein and β-Lactoglobulin in Vitro and in vivo. J. Agric. Food Chem. 1998, 46, 4917–4923. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. (Eds.) Dairy Chemistry and Biochemistry; Blackie Academic Professional: London, UK, 1998; 478p. [Google Scholar]
- Cervone, F.; Diaz Brito, J.; Di Prisco, G.; Garofano, F.; Noroña, L.G.; Traniello, S.; Zito, R. Simple Procedures for the Separation and Identification of Bovine Milk Whey Proteins. Biochim. et Biophys. Acta (BBA)-Protein Struct. 1973, 295, 555–563. [Google Scholar] [CrossRef]
- ISO 1211:2010–IDF 1:2010; Milk—Determination of Fat Content—Gravimetric Method (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2010.
- Landry, J.-C.; Cupelin, F.; Michal, C. Potentiometric Determination of Fluoride by a Combination of Continuous-Flow Analysis and the Gran Addition Method. Analyst 1981, 106, 1275–1280. [Google Scholar] [CrossRef]
- Goncalves, D.A.; Jones, B.T.; Donati, G.L. The Reversed-Axis Method to Estimate Precision in Standard Additions Analysis. Microchem. J. 2016, 124, 155–158. [Google Scholar] [CrossRef]
- Andersen, J.E.T. The Standard Addition Method Revisited. Trends Anal. Chem. 2017, 89, 21–33. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 8th ed.; W.H. Freeman: New York, NY, USA, 2010; ISBN 1429264845. [Google Scholar]
- Wisconsin Department of Natural Resources Laboratory Certification Program. Analytical Detection Limit Guidance & Laboratory Guide for Determining Method Detection Limits, PUBL-TS-056-96. 1996. Available online: http://www.iatl.com/content/file/LOD%20Guidance%20Document.pdf (accessed on 15 November 2022).
- International Union of Pure and Applied Chemistry. Recommendations for Nomenclature of ION-Selective Electrodes. Pure Appl. Chem. 1976, 48, 127–132. [Google Scholar] [CrossRef]
- Horwitz, W. Evaluation of Analytical Methods Used for Regulation of Foods and Drugs. Anal. Chem. 1982, 54, 67–76. [Google Scholar] [CrossRef]
- Dirks, B.; Jongeling-Eijndhoven, J.M.P.A.; Flissebaalje, T.D.; Gedalia, I. Total and Free Ionic Fluoride in Human and Cow’s Milk as Determined by Gas-Liquid Chromatography and the Fluoride Electrode. Caries Res. 1974, 8, 181–186. [Google Scholar] [CrossRef]
- Bessho, Y. Determination of Total Fluorine and Ionizable Fluorine Levels in Milk. Showa Shigakkai Zasshi 1987, 7, 154–165. [Google Scholar] [CrossRef]
- Venkateswarlu, P. Sodium Biphenyl Method for Determination of Covalently Bound Fluorine in Organic Compounds and Biological Materials. Anal. Chem. 1982, 54, 1132–1137. [Google Scholar] [CrossRef]
Analytical Methods | Fluorine Fractions Measured | |
---|---|---|
M1 | Free Ionic Fluoride (FIF) | FIF |
M2 | Total Inorganic Fluorine (TIF) | TIF |
M3 | Total Fluorine (TF) | TF |
M4 | FIF and Caseins-Bonded Fluorine (CBF) | FIF + CBF |
M5 | FIF and Proteins-Bonded Fluorine (PBF) | FIF + PBF |
M6 | Lipids-Bonded Fluorine (LBF) | LBF |
Indirectly measurable fractions of fluorine | ||
M2-M1 | Inorganic Bonded Fluorine (IBF) | IBF |
M5-M4 | Whey-Bonded Fluorine (WBF) | WBF |
LoD and LoQ, μg dm−3 | LoD a | LoD b | LoQ a | |||
---|---|---|---|---|---|---|
1.3 | 6.6 | 4.0 | ||||
M1 | M2 | M3 | M4 | M5 | M6 | |
Intermediate precision, CV% | 10 | 7 | 10 | 14 | 7 | 12 |
Trueness, Recovery % | 110 ± 10 c | 100 ± 10 c | 100 ± 10 c 100 ± 8 d | 88 ± 9 c | 90 ± 9 c | 100 ± 10 c |
Methods | Fractions | Samples | Average | Range b | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
Direct | M1 | FIF | 42 ± 4 | 40 ± 3 | 43 ± 5 | 51 ± 4 | 47 ± 6 | 45 ± 10 | 40–51 |
M2 | TIF | 180 ± 10 | 169 ± 4 | 136 ± 2 | 190 ± 20 | 160 ± 10 | 170 ± 20 | 136–182 | |
M3 | TF | 460 ± 80 | 450 ± 10 | 400 ± 60 | 510 ± 20 | 480 ± 30 | 500 ± 100 | 396–510 | |
M4 | FIF + CBF | 170 ± 10 | 150 ± 9 | 160 ± 20 | 180 ± 6 | 160 ± 10 | 160 ± 30 | 150–180 | |
M5 | FIF + PBF | 324 ± 6 | 335 ± 15 | 300 ± 20 | 319 ± 4 | 340 ± 10 | 320 ± 30 | 296–342 | |
M6 | LBF | 50 ± 10 | 50 ± 10 | 40 ± 10 | 60 ± 10 | 40 ± 10 | 50 ± 20 | 44–58 | |
Indirect | M2−M1 | IBF | 140 ± 10 | 129 ± 5 | 93 ± 5 | 140 ± 20 | 110 ± 10 | 120 ± 30 | 93–140 |
M4−M1 | CBF | 130 ± 10 | 110 ± 9 | 120 ± 20 | 129 ± 7 | 110 ± 10 | 120 ± 30 | 110–131 | |
M5−M1 | PBF | 282 ± 7 | 300 ± 20 | 250 ± 20 | 268 ± 6 | 300 ± 10 | 280 ± 30 | 268–295 | |
M5−M4 | WBF | 150 ± 10 | 180 ± 20 | 130 ± 30 | 139 ± 9 | 180 ± 20 | 160 ± 40 | 131–185 | |
M5−M1 + M6 | TOF | 330 ± 10 | 340 ± 20 | 290 ± 20 | 330 ± 10 | 340 ± 10 | 330 ± 30 | 302–343 | |
M5 + M6 + M2−M1 | TIF + TOF | 510 ± 20 | 510 ± 20 | 440 ± 20 | 510 ± 20 | 500 ± 20 | 500 ± 40 | 438–514 | |
(TIF + TOF) a/TF (%) | 110 | 112 | 110 | 101 | 105 | 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spano, N.; Bortolu, S.; Addis, M.; Langasco, I.; Mara, A.; Pilo, M.I.; Sanna, G.; Urgeghe, P.P. An Analytical Protocol for the Differentiation and the Potentiometric Determination of Fluorine-Containing Fractions in Bovine Milk. Molecules 2023, 28, 1349. https://doi.org/10.3390/molecules28031349
Spano N, Bortolu S, Addis M, Langasco I, Mara A, Pilo MI, Sanna G, Urgeghe PP. An Analytical Protocol for the Differentiation and the Potentiometric Determination of Fluorine-Containing Fractions in Bovine Milk. Molecules. 2023; 28(3):1349. https://doi.org/10.3390/molecules28031349
Chicago/Turabian StyleSpano, Nadia, Sara Bortolu, Margherita Addis, Ilaria Langasco, Andrea Mara, Maria I. Pilo, Gavino Sanna, and Pietro P. Urgeghe. 2023. "An Analytical Protocol for the Differentiation and the Potentiometric Determination of Fluorine-Containing Fractions in Bovine Milk" Molecules 28, no. 3: 1349. https://doi.org/10.3390/molecules28031349
APA StyleSpano, N., Bortolu, S., Addis, M., Langasco, I., Mara, A., Pilo, M. I., Sanna, G., & Urgeghe, P. P. (2023). An Analytical Protocol for the Differentiation and the Potentiometric Determination of Fluorine-Containing Fractions in Bovine Milk. Molecules, 28(3), 1349. https://doi.org/10.3390/molecules28031349