Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties
Abstract
:1. Introduction
2. Results
2.1. Metabolites Profile of Caulerpa lentillifera via HPLC-ESI-HRMS/MS Analysis
2.2. Radical Scavenging Activity (Antioxidant Properties) of Caulerpa lentillifera
2.3. The Anti-obesity Potential of Caulerpa lentillifera via Lipase Inhibitory Activity
2.4. Cytotoxicity Properties of C. lentillifera
2.5. Antiproliferative Activity of Caulerpa lentillifera
3. Discussion
4. Materials and Methods
4.1. Preparation of Caulerpa lentillifera
4.2. Caulerpa lentillifera Extraction
4.2.1. Maceration Extraction Method (Cold Extraction)
4.2.2. Soxhlet Extraction Method (Hot Extraction)
4.3. Metabolomic Profiling Analysis
4.4. Antioxidant Activity by ABTS and DPPH Radical Scavenging Activity Assay (ABTS and DPPH Inhibition) (%)
4.5. Cytotoxicity Evaluation of Caulerpa lentillifera Using MTT Assay
4.6. Anticancer Evaluation of Caulerpa lentillifera via Antiproliferative Activity
4.7. In Vitro Anti-Obesity via Lipase Inhibition Assay (%)
4.8. Management and Analysis of Data
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido, G.E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and microalgae: An overview for unlocking their potential in global aquaculture development. FAO Fish. Aquac. Circ. 2021, 1229, 48. Available online: https://archimer.ifremer.fr/doc/00705/81738/ (accessed on 10 January 2023).
- Das, M.K.; Silpavathi, L.; Das, D. Pharmacognosy and In-vivo anticancer potential of an indigenous marine macroalga, Ulvafasciata Delile from Visakhapatnam coast, India. Orient. Pharm. Exp. Med. 2021, 21, 433–442. Available online: https://link.springer.com/article/10.1007/s13596-021-00594-3 (accessed on 10 January 2023). [CrossRef]
- Paul, N.A.; Neveux, N.; Magnusson, M.; de Nys, R. Comparative production and nutritional value of “sea grapes”—The tropical green seaweeds Caulerpa lentillifera and C. racemosa. J. Appl. Phycol. 2013, 26, 1833–1844. Available online: https://link.springer.com/article/10.1007/s10811-013-0227-9 (accessed on 10 January 2023). [CrossRef]
- Zhang, M.; Ma, Y.; Che, X.; Huang, Z.; Chen, P.; Xia, G.; Zhao, M. Comparative Analysis of Nutrient Composition of Caulerpa lentillifera from Different Regions. J. Ocean Univ. China 2019, 19, 439–445. [Google Scholar] [CrossRef]
- Syakilla, N.; George, R.; Chye, F.Y.; Pindi, W.; Mantihal, S.; Wahab, N.A.; Fadzwi, F.M.; Gu, P.H.; Matanjun, P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022, 11, 2832. Available online: https://www.mdpi.com/1827680 (accessed on 10 January 2023). [CrossRef] [PubMed]
- Pooja, S. Algae used as Medicine and Food-A Short Review. J. Appl. Pharm. Sci. Res. 2014, 6, 33–35. [Google Scholar]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers. Mar. Drugs 2018, 16, 400. Available online: https://www.mdpi.com/1660-3397/16/11/400/htm (accessed on 10 January 2023). [CrossRef] [PubMed] [Green Version]
- Permatasari, H.K.; Bulain, S.; Amar, N.; Azizah, M.R.; Muslim, F.Z.; Daud, V.P.A.; Nurkolis, F. Anticancer Properties of Caulerpa racemosa: A Review Study. Nutr. Clin. Y Diet. Hosp. 2022, 42, 110–121. Available online: https://revista.nutricion.org/index.php/ncdh/article/download/278/237 (accessed on 10 January 2023).
- Belyagoubi, L.; Belyagoubi-Benhammou, N.; Atik-Bekkara, F.; Abdelouahid, D.E. Influence of harvest season and different polarity solvents on biological activities, phenolic compounds and lipid-soluble pigment contents of Spirogyra sp. from Algeria. Orient. Pharm. Exp. Med. 2021, 22, 359–369. Available online: https://link.springer.com/article/10.1007/s13596-021-00551-0 (accessed on 10 January 2023). [CrossRef]
- Darmawan, M.; Zamani, N.P.; Irianto, H.E.; Madduppa, H. Molecular Characterization of Caulerpa racemosa (Caulerpales, Chlorophyta) from Indonesia Based on the Plastid tufA Gene. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2021, 16, 101–109. Available online: http://www.bbp4b.litbang.kkp.go.id/squalen-bulletin/index.php/squalen/article/view/588 (accessed on 10 January 2023). [CrossRef]
- Nurkolis, F.; Yusuf, V.M.; Yusuf, M.; Kusuma, R.J.; Gunawan, W.B.; Hendra, I.W.; Radu, S.; Taslim, N.A.; Mayulu, N.; Sabrina, N.; et al. Metabolomic Proling, In Vitro Antioxidant and Cytotoxicity Properties of Caulerpa racemosa: Functional Food of the Future from Algae. Res. Sq. 2022, 2158307, pp. 1–25. Available online: https://www.researchsquare.com/article/rs-2158307/latest.pdf (accessed on 10 January 2023).
- Kuswari, M.; Nurkolis, F.; Mayulu, N.; Ibrahim, F.M.; Taslim, N.A.; Wewengkang, D.S.; Sabrina, N.; Arifin, G.R.; Mantik, K.E.K.; Bahar, M.R.; et al. Sea grapes extract improves blood glucose, total cholesterol, and PGC-1α in rats fed on cholesterol- and fat-enriched diet. F1000Research 2021, 10, 718. [Google Scholar] [CrossRef] [PubMed]
- Permatasari, H.K.; Firani, N.K.; Prijadi, B.; Irnandi, D.F.; Riawan, W.; Yusuf, M.; Amar, N.; Chandra, L.A.; Yusuf, V.M.; Subali, A.D.; et al. Kombucha drink enriched with sea grapes (Caulerpa racemosa) as potential functional beverage to contrast obesity: An in vivo and in vitro approach. Clin. Nutr. ESPEN 2022, 49, 232–240. Available online: https://www.sciencedirect.com/science/article/pii/S2405457722002406 (accessed on 10 January 2023). [CrossRef]
- Sharma, B.R.; Rhyu, D.Y. Anti-diabetic effects of Caulerpa lentillifera: Stimulation of insulin secretion in pancreatic ß-cells and enhancement of glucose uptake in adipocytes. Asian Pac. J. Trop. Biomed. 2014, 4, 575–580. Available online: https://www.sciencedirect.com/science/article/pii/S2221169115301325 (accessed on 10 January 2023). [CrossRef] [PubMed] [Green Version]
- Manoppo, J.I.C.; Nurkolis, F.; Pramono, A.; Ardiaria, M.; Murbawani, E.A.; Yusuf, M.; Qhabibi, F.R.; Yusuf, V.M.; Amar, N.; Karim, M.R.A.; et al. Amelioration of obesity-related metabolic disorders via supplementation of Caulerpa lentillifera in rats fed with a high-fat and high-cholesterol diet. Front. Nutr. 2022, 9, 1010867. Available online: https://www.researchgate.net/profile/Faqrizal-Qhabibi/publication/363581598_Amelioration_of_Obesity-related_Metabolic_Disorders_Via_Supplementation_of_Caulerpa_lentillifera_in_Rats_Fed_With_a_High-fat_and_High-cholesterol_Diet/links/632365f30a70852150f7cd (accessed on 10 January 2023). [CrossRef] [PubMed]
- Shah, M.D.; Maran, B.A.V.; Shaleh, S.R.M.; Zuldin, W.H.; Gnanaraj, C.; Yong, Y.S. Therapeutic Potential and Nutraceutical Profiling of North Bornean Seaweeds: A Review. Mar. Drugs 2022, 20, 101. Available online: https://www.mdpi.com/1660-3397/20/2/101 (accessed on 10 January 2023). [CrossRef]
- Dissanayake, I.H.; Bandaranayake, U.; Keerthirathna, L.R.; Manawadu, C.; Silva, R.M.; Mohamed, B.; Rizwan, A.; Peiris, D.C. Integration of in vitro and in-silico analysis of Caulerpa racemosa against antioxidant, antidiabetic, and anticancer activities. Sci. Rep. 2022, 12, 20848. Available online: https://www.nature.com/articles/s41598-022-24021-y (accessed on 10 January 2023). [CrossRef] [PubMed]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 2020, 21, 315–327. [Google Scholar] [CrossRef]
- Permatasari, H.K.; Nurkolis, F.; Hardinsyah, H.; Taslim, N.A.; Sabrina, N.; Ibrahim, F.M.; Visnu, J.; Kumalawati, D.A.; Febriana, S.A.; Sudargo, T.; et al. Metabolomic Assay, Computational Screening, and Pharmacological Evaluation of Caulerpa racemosa as an Anti-obesity with Anti-aging by Altering Lipid Profile and Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-α Levels. Front. Nutr. 2022, 9, 1412. Available online: https://www.frontiersin.org/articles/10.3389/fnut.2022.939073/full (accessed on 10 January 2023). [CrossRef]
- Fazelian, S.; Moradi, F.; Agah, S.; Hoseini, A.; Heydari, H.; Morvaridzadeh, M.; Omidi, A.; Pizarro, A.B.; Ghafouri, A.; Heshmati, J. Effect of omega-3 fatty acids supplementation on cardio-metabolic and oxidative stress parameters in patients with chronic kidney disease: A systematic review and meta-analysis. BMC Nephrol. 2021, 22, 160. [Google Scholar] [CrossRef]
- Iwamoto, H.; Izumi, K.; Natsagdorj, A.; Naito, R.; Makino, T.; Kadomoto, S.; Hiratsuka, K.; Shigehara, K.; Kadono, Y.; Narimoto, K.; et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells. Prostate 2018, 79, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Botelho, A.F.M.; Miranda, A.L.S.; Freitas, T.G.; Milani, P.F.; Barreto, T.; Cruz, J.S.; Melo, M.M. Comparative Cardiotoxicity of Low Doses of Digoxin, Ouabain, and Oleandrin. Cardiovasc. Toxicol. 2020, 20, 539–547. [Google Scholar] [CrossRef] [PubMed]
- L’Hôte, V.; Courbeyrette, R.; Pinna, G.; Cintrat, J.C.; Le Pavec, G.; Delaunay-Moisan, A.; Mann, C.; Thuret, J.-Y. Ouabain and chloroquine trigger senolysis of BRAF-V600E-induced senescent cells by targeting autophagy. Aging Cell 2021, 20, e13447. [Google Scholar] [CrossRef] [PubMed]
- Niksic, H.; Becic, F.; Koric, E.; Gusic, I.; Omeragic, E.; Muratovic, S.; Miladinovic, B.; Duric, K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021, 11, 13178. Available online: https://www.nature.com/articles/s41598-021-92679-x (accessed on 10 January 2023). [CrossRef]
- Pangestuti, R.; Haq, M.; Rahmadi, P.; Chun, B.-S. Nutritional Value and Biofunctionalities of Two Edible Green Seaweeds (Ulva lactuca and Caulerpa racemosa) from Indonesia by Subcritical Water Hydrolysis. Mar. Drugs 2021, 19, 578. Available online: https://www.mdpi.com/1660-3397/19/10/578/htm (accessed on 10 January 2023). [CrossRef]
- Aroyehun, A.Q.B.; Razak, S.A.; Palaniveloo, K.; Nagappan, T.; Rahmah, N.S.N.; Jin, G.W.; Chellappan, D.K.; Chellian, J.; Kunnath, A.P. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Properties, Antioxidative Capacity and Anti-Diabetic Potential. Foods 2020, 9, 1313. Available online: https://www.mdpi.com/2304-8158/9/9/1313/htm (accessed on 10 January 2023). [CrossRef]
- You, Y.; Song, H.; Wang, L.; Peng, H.; Sun, Y.; Ai, C.; Wen, C.; Zhu, B.; Song, S. Structural characterization and SARS-CoV-2 inhibitory activity of a sulfated polysaccharide from Caulerpa lentillifera. Carbohydr. Polym. 2022, 280, 119006. [Google Scholar] [CrossRef]
- Udensi, U.K.; Tchounwou, P.B. Dual effect of oxidative stress on leukemia cancer induction and treatment. J. Exp. Clin. Cancer Res. 2014, 33, 106. [Google Scholar] [CrossRef] [Green Version]
- Arany, I.; Hall, S.; Reed, D.K.; Dixit, M. The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells. Mol. Med. Rep. 2016, 14, 2771–2777. Available online: https://www.spandidos-publications.com/mmr/14/3/2771 (accessed on 10 January 2023). [CrossRef] [Green Version]
- Takaki, A.; Kawai, D.; Yamamoto, K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int. J. Mol. Sci. 2013, 14, 20704–20728. Available online: https://www.mdpi.com/59072 (accessed on 10 January 2023). [CrossRef] [Green Version]
- Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxidative Med. Cell. Longev. 2016, 2016, 7891574. Available online: https://www.hindawi.com/journals/omcl/2016/7891574/ (accessed on 10 January 2023). [CrossRef] [PubMed] [Green Version]
- You, Y.; Song, H.; Yan, C.; Ai, C.; Tong, Y.; Zhu, B.; Song, S. Dietary fibers obtained from Caulerpa lentillifera prevent high-fat diet-induced obesity in mice by regulating the gut microbiota and metabolite profiles. Food Funct. 2022, 13, 11262–11272. Available online: https://pubs.rsc.org/en/content/articlehtml/2022/fo/d2fo01632j (accessed on 10 January 2023). [CrossRef] [PubMed]
- Patil, S.; Patil, M.; Maheshwari, V.L.; Patil, R.H. Pancreatic Lipase (PL) Inhibitors from Medicinal Plants and Their Potential Applications in the Management of Obesity. In Natural Products as Enzyme Inhibitors; Maheshwari, V.L., Patil, R.H., Eds.; Springer: Singapore, 2022; pp. 153–167. [Google Scholar]
- Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. Available online: https://www.sciencedirect.com/science/article/pii/S0753332220305060 (accessed on 10 January 2023). [CrossRef] [PubMed]
- Hecker, L.; Logsdon, N.J.; Kurundkar, D.; Kurundkar, A.; Bernard, K.; Hock, T.; Meldrum, E.; Sanders, Y.Y.; Thannickal, V.J. Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance. Sci. Transl. Med. 2014, 6, 231ra47. Available online: https://www.science.org/doi/abs/10.1126/scitranslmed.3008182 (accessed on 10 January 2023). [CrossRef] [Green Version]
- Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. Available online: https://www.sciencedirect.com/science/article/pii/S2213231714000329 (accessed on 10 January 2023). [CrossRef] [Green Version]
- Permatasari, H.K.; Nurkolis, F.; Ben Gunawan, W.; Yusuf, V.M.; Yusuf, M.; Kusuma, R.J.; Sabrina, N.; Muharram, F.R.; Taslim, N.A.; Mayulu, N.; et al. Modulation of gut microbiota and markers of metabolic syndrome in mice on cholesterol and fat enriched diet by butterfly pea flower kombucha. Curr. Res. Food Sci. 2022, 5, 1251–1265. [Google Scholar] [CrossRef]
- Nemudzivhadi, V.; Masoko, P. In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (euphorbiaceae) leaf extracts. Evid. Based Complement. Altern. Med. 2014, 2014, 625961. Available online: https://www.hindawi.com/journals/ecam/2014/625961/ (accessed on 10 January 2023). [CrossRef] [Green Version]
- Salawu, K.M.; Ajaiyeoba, E.O.; Ogbole, O.O.; Adeniji, J.A.; Faleye, T.C.; Agunu, A. Antioxidant, Brine Shrimp Lethality, and Antiproliferative Properties of Gel and Leaf Extracts of Aloe schweinfurthii and Aloe vera. J. Herbs Spices Med. Plants 2017, 23, 263–271. Available online: https://www.tandfonline.com/doi/abs/10.1080/10496475.2017.1318328 (accessed on 10 January 2023). [CrossRef]
Sample | Compounds | Molecular Formula | Retention Time (Min) | Area Max (Peak Area) | Observed MW HR-ESIMS m/z |
---|---|---|---|---|---|
ME | 3-[3-(beta-d-Glucopyranosyloxy)-2-hydroxyphenyl]propanoic acid | C15H20O9 | 15.5 | 2,607,709,506.66 | 344.11 |
Choline | C5H13NO | 0.948 | 1,702,868,432.32 | 104.11 | |
Betaine | C5H11NO2 | 0.952 | 815,230,823.19 | 117.08 | |
2-(1H-indol-3-yl)-3-[4-(trifluoromethyl)phenyl]acrylonitrile | C18H11F3N2 | 10.763 | 484,746,646.13 | 312.09 | |
2-(3,4-dihydroxyphenyl)acetamide | C8H9NO3 | 0.931 | 464,700,110.40 | 167.06 | |
Isoamylamine | C5H13N | 0.916 | 204,192,224.93 | 87.1 | |
Palmitoleic acid | C16H30O2 | 15.894 | 188,602,459.59 | 254.22 | |
α-Linolenic acid | C18H30O2 | 20.046 | 75,757,786.32 | 278.44 | |
MEA | 2,2,6,6-Tetramethyl-1-piperidinol (TEMPO) | C9H19NO | 12.259 | 312,358,366.23 | 156.14 |
9-Oxo-10(E),12(E)-octadecadienoic acid | C18H30O3 | 17.615 | 128,180,581.48 | 294.22 | |
13-hydroperoxy-9Z,11E-octadecadienoic acid | C18H32O4 | 17.427 | 123,110,274.85 | 312.23 | |
ethyl 3-oxo-5,6-diphenyl-2,3- dihydropyridazine-4-carboxylate | C19H16N2O3 | 17.351 | 73,810,505.50 | 320.12 | |
Ouabain | C29H44O12 | 20.518 | 57,317,714.92 | 584.66 | |
(3S,3aR,4S,4aR,7aR,8R,9aR)-3,4a,8- trimethyl-2,5-dioxo- 2H,3H,3aH,4H,4aH,5H,7aH,8H,9H,9aHazuleno[6,5-b]furan-4-yl 2-methylpropanoate | C19H26O5 | 14.874 | 51,133,618.50 | 334.18 | |
MH | 5-(2-Thienyl)nicotinic acid | C10H7NO2S | 0.927 | 209,833,574.73 | 205.02 |
Oleamide | C18H35NO | 21.564 | 113,705,808.63 | 281.27 | |
4-{[(4,6-Dimethoxypyrimidin-2-yl)amino]methylidene}-2-phenyl-4,5-dihydro-1,3-oxazol-5-one | C16H14N4O4 | 11.582 | 85,055,308.35 | 326.1 | |
1,2-dihydroxyheptadec-16-yn-4-yl acetate | C19H34O4 | 15.669 | 79,749,057.14 | 326.25 | |
Adenosine | C10H13N5O4 | 1.024 | 79,366,759.62 | 267.1 | |
SE | Betaine | C5H11NO2 | 0.902 | 615,708,699.02 | 117.08 |
dl-β-Leucine | C6H13NO2 | 0.901 | 104,452,391.68 | 131.09 | |
α-Eleostearic acid | C18H30O2 | 16.928 | 82,954,091.16 | 278.22 | |
Choline | C5H13NO | 0.906 | 62,987,796.05 | 104.11 | |
Palmitoleic acid | C16H30O2 | 16.654 | 37,079,182.87 | 254.22 | |
Stearoyl Ethanolamide | C20H41NO2 | 22.8 | 33,398,733.18 | 309.3 | |
Levalbuterol | C13H21NO3 | 13.398 | 25,493,790.28 | 239.15 | |
SEA | Hexadecanamide | C16H33NO | 21.916 | 353,793,967.91 | 255.26 |
2,2,6,6-Tetramethyl-1-piperidinol (TEMPO) | C9H19NO | 12.294 | 274,478,961.83 | 156.14 | |
Ethyl palmitoleate | C18H34O2 | 18.681 | 75,543,295.89 | 282.26 | |
2-(3-Chloro-2-fluorophenyl)-2,3-dihydroisothiazol-3-one | C9H5ClFNOS | 0.835 | 60,193,728.47 | 228.98 | |
Cafestol | C20H28O3 | 17.434 | 39,577,349.70 | 316.2 | |
Shogaol | C17H24O3 | 13.132 | 16,983,601.06 | 276.17 | |
SH | Octadec-9-ynoic acid | C18H32O2 | 17.367 | 18,964,856.34 | 280.45 |
3,5-di-tert-Butyl-4-hydroxybenzaldehyde | C15H22O2 | 16.951 | 17,509,512.15 | 234.16 | |
Sphingosine (d18:1) | C18H37NO2 | 20.015 | 16,138,319.09 | 299.5 | |
γ-Linolenic acid ethyl ester | C20H34O2 | 17.72 | 13,897,675.48 | 306.26 | |
8Z,11Z,14Z-Eicosatrienoic acid | C20H34O2 | 18.548 | 8,618,378.15 | 306.2545 |
Hours of Incubation | LC50 (μg/mL) | |||||
---|---|---|---|---|---|---|
ME | MEA | MH | SE | SEA | SH | |
24 h | 2719.00 | 4677.87 | 4397.29 | 2111.90 | 4190.67 | 8445.30 |
48 h | 1867 | 1354 | 2090 | 1575 | 3440 | 5000 |
Extract | Colorectal | Hepatoma | Breast Cancer Cell Lines | Leukemia | Control Cell Lines | |||||
---|---|---|---|---|---|---|---|---|---|---|
HCT-8 | Hep G2 | KAIMR C1 | MDA-MB-231 | MCF-7 | KG-1a | K-562 | HL-60 | Human Epithelial | PBMC | |
ME | 170.10 | 1065.00 | 160.80 | 320.50 | 100.90 | 508.50 | 1500.30 | 315.50 | 850.90 | 4040.00 |
MEA | 540.60 | 744.60 | 885.01 | 1230.50 | 1800.30 | 1260.80 | 1328.50 | 2505.90 | 4040.60 | 3074.10 |
MH | 184.00 | 283.00 | 100.50 | 280.50 | 350.20 | 340.50 | 2705.60 | 3805.50 | 5009.00 | 7080.00 |
SE | 160.50 | 870.60 | 640.60 | 104.10 | 840.60 | 645.60 | 954.60 | 1085.01 | 2008.00 | 3024.30 |
SEA | 587.50 | 934.30 | 1084.00 | 2085.00 | 1509.00 | 2580.50 | 1934.30 | 3084.00 | 4031.10 | 4598.00 |
SH | 2003.50 | 3282.00 | 3056.00 | 3824.80 | 2506.00 | 2503.10 | 3203.00 | 3003.00 | 5056.00 | 5033.00 |
M/ Control | 0.188 | 0.101 | 0.798 | 0.665 | 1.409 | 0.167 | 0.458 | 1.034 | 0.134 | 0.204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurkolis, F.; Taslim, N.A.; Qhabibi, F.R.; Kang, S.; Moon, M.; Choi, J.; Choi, M.; Park, M.N.; Mayulu, N.; Kim, B. Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties. Molecules 2023, 28, 1365. https://doi.org/10.3390/molecules28031365
Nurkolis F, Taslim NA, Qhabibi FR, Kang S, Moon M, Choi J, Choi M, Park MN, Mayulu N, Kim B. Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties. Molecules. 2023; 28(3):1365. https://doi.org/10.3390/molecules28031365
Chicago/Turabian StyleNurkolis, Fahrul, Nurpudji Astuti Taslim, Faqrizal Ria Qhabibi, Sojin Kang, Myunghan Moon, Jinwon Choi, Min Choi, Moon Nyeo Park, Nelly Mayulu, and Bonglee Kim. 2023. "Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties" Molecules 28, no. 3: 1365. https://doi.org/10.3390/molecules28031365
APA StyleNurkolis, F., Taslim, N. A., Qhabibi, F. R., Kang, S., Moon, M., Choi, J., Choi, M., Park, M. N., Mayulu, N., & Kim, B. (2023). Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties. Molecules, 28(3), 1365. https://doi.org/10.3390/molecules28031365