In Silico Drug Design and Analysis of Dual Amyloid-Beta and Tau Protein-Aggregation Inhibitors for Alzheimer’s Disease Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Prediction of Drug-Target and ADMET Properties
2.2. Frontier Molecular Orbital and Global Reactivity Descriptors
2.3. Molecular Docking Analysis
2.4. Molecular Dynamics Simulations
2.5. TD-DFT Analysis and Solvent Effect
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Haghighijoo, Z.; Zamani, L.; Moosavi, F.; Emami, S. Therapeutic Potential of Quinazoline Derivatives for Alzheimer’s Disease: A Comprehensive Review. Eur. J. Med. Chem. 2022, 227, 113949. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A. Alzheimer’s Disease Therapy: Present and Future Molecules. Neuromethods 2018, 132, 3–22. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front. Aging Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef]
- Rauk, A. The Chemistry of Alzheimer’s Disease. Chem. Soc. Rev. 2009, 38, 2698–2715. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Guo, J.; Ye, X.-Y.; Xie, Y.; Xie, T. Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Res. Rev. 2022, 77, 101619. [Google Scholar] [CrossRef]
- dos Santos Picanco, L.C.; Ozela, P.F.; de Fatima de Brito Brito, M.; Pinheiro, A.A.; Padilha, E.C.; Braga, F.S.; de Paula da Silva, C.H.T.; dos Santos, C.B.R.; Rosa, J.M.C.; da Silva Hage-Melim, L.I. Alzheimer’s Disease: A Review from the Pathophysiology to Diagnosis, New Perspectives for Pharmacological Treatment. Curr. Med. Chem. 2016, 25, 3141–3159. [Google Scholar] [CrossRef]
- Wang, E.J.; Wu, M.Y.; Lu, J.H. Ferulic Acid in Animal Models of Alzheimer’s Disease: A Systematic Review of Preclinical Studies. Cells 2021, 10, 2653. [Google Scholar] [CrossRef]
- Hansson, O.; Zetterberg, H.; Vanmechelen, E.; Vanderstichele, H.; Andreasson, U.; Londos, E.; Wallin, A.; Minthon, L.; Blennow, K. Evaluation of Plasma Aβ40 and Aβ42 as Predictors of Conversion to Alzheimer’s Disease in Patients with Mild Cognitive Impairment. Neurobiol. Aging 2010, 31, 357–367. [Google Scholar] [CrossRef]
- Pradeepkiran, J.A.; Reddy, P.H. Phosphorylated Tau Targeted Small-Molecule PROTACs for the Treatment of Alzheimer’s Disease and Tauopathies. Biochim. Biophys. Acta-Mol. Basis Dis. 2021, 1867, 166162. [Google Scholar] [CrossRef]
- Malafaia, D.; Albuquerque, H.M.T.; Silva, A.M.S. Amyloid-β and Tau Aggregation Dual-Inhibitors: A Synthetic and Structure-Activity Relationship Focused Review. Eur. J. Med. Chem. 2021, 214, 113209. [Google Scholar] [CrossRef]
- Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M.Y. Advances in Tau-Focused Drug Discovery for Alzheimer’s Disease and Related Tauopathies. Nat. Rev. Drug Discov. 2009, 8, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Mazanetz, M.P.; Fischer, P.M. Untangling Tau Hyperphosphorylation in Drug Design for Neurodegenerative Diseases. Nat. Rev. Drug Discov. 2007, 6, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.D.; Di Clerico, J.; Li, B.; Corbo, C.P.; Alaniz, M.E.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of Tau at Thr212, Thr231, and Ser262 Combined Causes Neurodegeneration. J. Biol. Chem. 2010, 285, 30851–30860. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, T.; Saito, T.; Asada, A.; Fukunaga, K.; Hisanaga, S.I. Quantitative Measurement of in Vivo Phosphorylation States of Cdk5 Activator P35 by Phos-Tag SDS-PAGE. Mol. Cell. Proteom. 2010, 9, 1133–1143. [Google Scholar] [CrossRef]
- Şahin, S.; Dege, N. A Newly Synthesized Small Molecule: The Evaluation against Alzheimer’s Disease by In Silico Drug Design and Computational Structure Analysis Methods. J. Mol. Struct. 2021, 1236, 130337. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Xu, Y.; He, Z.; Liu, H.; Chen, Y.; Gao, Y.; Zhang, S.; Wang, M.; Lu, X.; Wang, C.; Zhao, Z.; et al. 3D-QSAR, Molecular Docking, and Molecular Dynamics Simulation Study of Thieno[3,2- b ]Pyrrole-5-Carboxamide Derivatives as LSD1 Inhibitors. RSC Adv. 2020, 10, 6927–6943. [Google Scholar] [CrossRef]
- Ho, T.H.; Charlet-B, N.; Poulos, M.G.; Singh, G.; Swanson, M.S.; Cooper, T.A. Muscleblind Proteins Regulate Alternative Splicing. EMBO J. 2004, 23, 3103–3112. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jiang, Y.; Dostert, K.-H.; O’Brien, C.P.; Riedel, W.; Savara, A.; Schauermann, S.; Tkatchenko, A. Catalysis beyond Frontier Molecular Orbitals: Selectivity in Partial Hydrogenation of Multi-Unsaturated Hydrocarbons on Metal Catalysts. Sci. Adv. 2017, 3, e1700939. [Google Scholar] [CrossRef] [PubMed]
- Pangajavalli, S.; Ranjithkumar, R.; Ramaswamy, S. Structural, Hirshfeld, Spectroscopic, Quantum Chemical and Molecular Docking Studies on 6b′, 7′, 8′, 9′-Tetrahydro-2H,6′H-Spiro[Acenaphthylene-1,11′-Chromeno [3,4-a]Pyrrolizine]-2,6′(6a′H,11a′H)-Dione. J. Mol. Struct. 2020, 1209, 127921. [Google Scholar] [CrossRef]
- Lotfy, K. Molecular Modeling, Docking and ADMET of Dimethylthiohydantoin Derivatives for Prostate Cancer Treatment. J. Biophys. Chem. 2015, 06, 91–117. [Google Scholar] [CrossRef]
- Sahu, V.; Sharma, P.; Kumar, A. Impact of Global and Local Reactivity Descriptors on the Hetero-Diels-Alder Reaction of Enaminothione with Various Electrophiles. J. Chil. Chem. Soc. 2014, 59, 2327–2334. [Google Scholar] [CrossRef]
- Namitha, R.; Selvi, G.; Mageswari, D. Theoretical and Experimental Investigations on the Biological Studies on Novel Triazino Quinolines. Int. J. Comput. Intell. Res. 2017, 13, 1021–1025. [Google Scholar]
- Fichou, Y.; Al-Hilaly, Y.K.; Devred, F.; Smet-Nocca, C.; Tsvetkov, P.O.; Verelst, J.; Winderickx, J.; Geukens, N.; Vanmechelen, E.; Perrotin, A.; et al. The Elusive Tau Molecular Structures: Can We Translate the Recent Breakthroughs into New Targets for Intervention? Acta Neuropathol. Commun. 2019, 7, 31. [Google Scholar] [CrossRef]
- Seidler, P.M.; Boyer, D.R.; Rodriguez, J.A.; Sawaya, M.R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D.S. Structure-Based Inhibitors of Tau Aggregation. Nat. Chem. 2018, 10, 170–176. [Google Scholar] [CrossRef]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Schrödinger, L.D.W. The PyMOL Molecular Graphics System; Version 2.0; Schrödinger: New York, NY, USA, 2020. [Google Scholar]
- Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, CA, USA, 2017. [Google Scholar]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R.; Brooks, C.L.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets. Front. Chem. 2018, 6, 362. [Google Scholar] [CrossRef]
- Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A Web Server for the In Silico Prediction of Rodent Oral Toxicity. Nucleic Acids Res. 2014, 42, W53–W58. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Gaenko, A.V.; Devarajan, A.; Gagliardi, L.; Lindh, R.; Orlandi, G. Ab Initio DFT Study of Z–E Isomerization Pathways of N–Benzylideneaniline. Theor. Chem. Acc. 2007, 118, 271–279. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. Visual Molecular Dynamics. J. Mol. Graph. 1996, 14.1, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Jacquemin, D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef]
- Laurent, A.D.; Adamo, C.; Jacquemin, D. Dye Chemistry with Time-Dependent Density Functional Theory. Phys. Chem. Chem. Phys. 2014, 16, 14334–14356. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Molecules | MW | TPSA | Log P | ESOL Log S | Log Kp (cm s−1) | Violations | Synthetic Accessibility | Target | ||
---|---|---|---|---|---|---|---|---|---|---|
Lipinski | Ghose | MAPT | Amyloid Beta | |||||||
L1 | 359.42 | 61.42 | 4.15 | −5.56 | −4.75 | 0 | 0 | 3.05 | yes | yes |
L2 | 345.39 | 61.42 | 3.88 | −5.27 | −4.92 | 0 | 0 | 2.99 | yes | yes |
L3 | 323.35 | 78.49 | 2.91 | −4.11 | −5.76 | 0 | 0 | 2.89 | yes | yes |
L4 | 337.37 | 78.49 | 3.11 | −4.41 | −5.59 | 0 | 0 | 2.96 | yes | yes |
L5 | 306.32 | 76 | 2.51 | −4.02 | −5.92 | 0 | 0 | 2.83 | yes | yes |
L6 | 309.36 | 61.42 | 3.15 | −4.42 | −5.33 | 0 | 0 | 2.89 | yes | yes |
L7 | 305.33 | 63.11 | 3.11 | −4.42 | −5.46 | 0 | 0 | 2.76 | yes | yes |
Parameters/Descriptors | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
---|---|---|---|---|---|---|---|
EHOMO (eV) | −7.73 | −7.62 | −8.43 | −8.12 | −8.30 | −7.77 | −8.06 |
ELUMO (eV) | −0.74 | −0.49 | −0.86 | −0.62 | −1.31 | −0.43 | −1.13 |
Energy band gap (eV) (ΔE = ELUMO − EHOMO) | 6.99 | 7.13 | 7.57 | 7.50 | 6.99 | 7.34 | 6.93 |
Ionization potential (I = −EHOMO) (eV) | 7.73 | 7.62 | 8.43 | 8.12 | 8.30 | 7.77 | 8.06 |
Electron affinity (eV) (A = −ELUMO) | 0.73 | 0.48 | 0.85 | 0.62 | 1.30 | 0.42 | 1.12 |
Chemical hardness (η = (I − A)/2) | 3.49 | 3.56 | 3.78 | 3.75 | 3.49 | 3.67 | 3.46 |
Chemical softness (σ = 1/2 η) | 0.14 | 0.14 | 0.13 | 0.13 | 0.14 | 0.13 | 0.14 |
Electronegativity (χ = (I + A)/2) | 4.23 | 4.05 | 4.64 | 4.37 | 4.80 | 4.10 | 4.59 |
Chemical potential (μ = −(I + A)/2) | −4.23 | −4.05 | −4.64 | −4.37 | −4.80 | −4.10 | −4.59 |
Electrophilicity index (ω = μ2/2η) | 2.56 | 2.30 | 2.84 | 2.55 | 3.30 | 2.29 | 3.04 |
Maximum charge transfer index (ΔNmax = −μ/η) | 1.21 | 1.13 | 1.22 | 1.16 | 1.37 | 1.11 | 1.32 |
Molecules | Docking Score (kcal/mol) | |
---|---|---|
Amyloid Beta | p-tau | |
L1 | −6.0 | −5.6 |
L2 | −5.8 | −5.1 |
L3 | −5.3 | −5.4 |
L4 | −5.2 | −4.6 |
L5 | −5.0 | −5.0 |
L6 | −5.0 | −5.0 |
L7 | −4.9 | −5.2 |
Reference molecule [16] | - | −5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Job, N.; Thimmakondu, V.S.; Thirumoorthy, K. In Silico Drug Design and Analysis of Dual Amyloid-Beta and Tau Protein-Aggregation Inhibitors for Alzheimer’s Disease Treatment. Molecules 2023, 28, 1388. https://doi.org/10.3390/molecules28031388
Job N, Thimmakondu VS, Thirumoorthy K. In Silico Drug Design and Analysis of Dual Amyloid-Beta and Tau Protein-Aggregation Inhibitors for Alzheimer’s Disease Treatment. Molecules. 2023; 28(3):1388. https://doi.org/10.3390/molecules28031388
Chicago/Turabian StyleJob, Nisha, Venkatesan S. Thimmakondu, and Krishnan Thirumoorthy. 2023. "In Silico Drug Design and Analysis of Dual Amyloid-Beta and Tau Protein-Aggregation Inhibitors for Alzheimer’s Disease Treatment" Molecules 28, no. 3: 1388. https://doi.org/10.3390/molecules28031388
APA StyleJob, N., Thimmakondu, V. S., & Thirumoorthy, K. (2023). In Silico Drug Design and Analysis of Dual Amyloid-Beta and Tau Protein-Aggregation Inhibitors for Alzheimer’s Disease Treatment. Molecules, 28(3), 1388. https://doi.org/10.3390/molecules28031388