Identifying STEDable BF2-Azadipyrromethene Fluorophores
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Solution Screening of STED Properties
2.2. 2D STED Imaging with 1
2.3. 3D STED Imaging with 1
2.4. STED Imaging with 2 and 3
2.5. Anti-Stokes Imaging with 4
3. Experimental
3.1. Materials
3.2. General
3.3. Preparation of Aqueous PS20 Solutions
3.4. STED Feasibility Study with Aqueous PS20/Fluorophores Solutions
3.5. Cell Imaging
3.6. Preparation of Aqueous P188 Solutions for Cell Imaging [25]
3.7. Microscope Settings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jahr, W.; Velicky, P.; Danzl, J.G. Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. Methods 2020, 174, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Widengren, J.; Lee, J.-C. Fluorescent probes for STED optical nanoscopy. Nanomaterials 2022, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, R.; Wang, Z.; Zhou, Y.; Shen, Q.; Ji, W.; Dang, D.; Meng, L.; Tang, B.Z. Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. Chem. Soc. Rev. 2021, 50, 667–690. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W. Far-field optical nanoscopy. Science 2007, 316, 1153–1158. [Google Scholar] [CrossRef]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef]
- Müller, T.; Schumann, C.; Kraegeloh, A. STED microscopy and its applications: New insights into cellular processes on the nanoscale. ChemPhysChem 2012, 13, 1986–2000. [Google Scholar] [CrossRef]
- Pisfil, M.G.; Nadelson, I.; Bergner, B.; Rottmeier, S.; Thomae, A.W.; Dietzel, S. Stimulated emission depletion microscopy with a single depletion laser using five fluorochromes and fluorescence lifetime phasor separation. Sci. Rep. 2022, 12, 14027. [Google Scholar] [CrossRef]
- Stephan, T.; Roesch, A.; Riedel, D.; Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 2019, 9, 12419. [Google Scholar] [CrossRef]
- Spahn, C.; Grimm, J.B.; Lavis, L.D.; Lampe, M.; Heilemann, M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett. 2019, 19, 500–505. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.; Wu, Z.; He, Y.; Shan, C.; Chai, P.; Ma, C.; Tian, M.; Teng, J.; Jin, D.; et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat. Commun. 2020, 11, 3699. [Google Scholar] [CrossRef]
- Wurm, C.A.; Kolmakov, K.; Göttfert, F.; Ta, H.; Bossi, M.; Schill, H.; Berning, S.; Jakobs, S.; Donnert, G.; Belov, V.N.; et al. Novel red fluorophores with superior performance in STED microscopy. Opt. Nanoscopy 2012, 1, 7. [Google Scholar] [CrossRef]
- Butkevich, A.N.; Weber, M.; Delgado, A.R.C.; Ostersehlt, L.M.; D’Este, E.; Hell, S.W. Photoactivatable fluorescent dyes with hydrophilic caging groups and their use in multicolor nanoscopy. J. Am. Chem. Soc. 2021, 143, 18388–18393. [Google Scholar] [CrossRef] [PubMed]
- Butkevich, A.N.; Mitronova, G.Y.; Sidenstein, S.C.; Klocke, J.L.; Kamin, D.; Meineke, D.N.H.; D’Este, E.; Kraemer, P.-T.; Danzl, J.G.; Belov, V.N.; et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. 2016, 55, 3290–3294. [Google Scholar] [CrossRef]
- Fernandez, A.; Kielland, N.; Makda, A.; Carragher, N.O.; González-García, M.C.; Espinar-Barranco, L.; González-Vera, J.A.; Orte, A.; Lavilla, R.; Vendrell, M. A multicomponent reaction platform towards multimodal near-infrared BODIPY dyes for STED and fluorescence lifetime imaging. RSC Chem. Biol. 2022, 3, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Ren, T.-B.; D’Este, E.; Xiong, M.; Xiong, B.; Johnsson, K.; Zhang, X.-B.; Wang, L.; Yuan, L. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nat. Commun. 2022, 13, 2264. [Google Scholar] [CrossRef]
- Grimm, F.; Rehman, J.; Stoldt, S.; Khan, T.A.; Schlötel, J.G.; Nizamov, S.; John, M.; Belov, V.N.; Hell, S.W. Rhodamines with a chloronicotinic acid fragment for live cell superresolution STED microscopy. Chem. Eur. J. 2021, 27, 6070–6076. [Google Scholar] [CrossRef]
- Bénard, M.; Schapman, D.; Chamot, C.; Dubois, F.; Levallet, G.; Komuro, H.; Galas, L. Optimization of advanced live-cell imaging through red/near-infrared dye labeling and fluorescence lifetime-based strategies. Int. J. Mol. Sci. 2021, 22, 11092. [Google Scholar] [CrossRef]
- Vicidomini, G.; Moneron, G.; Eggeling, C.; Rittweger, E.; Hell, S.W. STED with wavelengths closer to the emission maximum. Opt. Express 2012, 20, 5225–5236. [Google Scholar] [CrossRef]
- Bordenave, M.D.; Balzarotti, F.; Stefani, F.D.; Hell, S.W. STED nanoscopy with wavelengths at the emission maximum. J. Phys. D Appl. Phys. 2016, 49, 365102. [Google Scholar] [CrossRef]
- Ma, Y.; Ha, T. Fight against background noise in stimulated emission depletion nanoscopy. Phys. Biol. 2019, 16, 051002. [Google Scholar] [CrossRef]
- Hernàndez, I.C.; Peres, C.; Zanacchi, F.C.; d’Amora, M.; Christodoulou, S.; Bianchini, P.; Diaspro, A.; Vicidomini, G.J. A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy. Biophotonics 2014, 7, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Hanne, J.; Falk, H.J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S.J.; Hell, S.W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Han, X.; Hu, W.; Bai, H.; Peng, B.; Ji, L.; Fan, Q.; Li, L.; Huang, W. Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations. Chem. Soc. Rev. 2020, 49, 7533–7567. [Google Scholar] [CrossRef]
- Wu, D.; Daly, H.C.; Grossi, M.; Conroy, E.; Li, B.; Gallagher, W.M.; Elmes, R.; O’Shea, D.F. RGD conjugated cell uptake off to on responsive NIR-AZA fluorophores: Applications toward intraoperative fluorescence guided surgery. Chem. Sci. 2019, 10, 6944–6956. [Google Scholar] [CrossRef] [PubMed]
- Curtin, N.; Garre, M.; Bodin, J.-B.; Solem, N.; Méallet-Renault, R.; O’Shea, D.F. Exploiting directed self-assembly and disassembly for off-to-on fluorescence responsive live cell imaging. RSC Adv. 2022, 12, 35655–35665. [Google Scholar] [CrossRef]
- Curtin, N.; Wu, D.; Cahill, R.; Sarkar, A.; Aonghusa, P.M.; Zhuk, S.; Barberio, M.; Al-Taher, M.; Marescaux, J.; Diana, M.; et al. Dual color imaging from a single BF2-azadipyrromethene fluorophore demonstrated in vivo for lymph node identification. Int. J. Med. Sci. 2021, 18, 1541–1553. [Google Scholar] [CrossRef]
- Wu, D.; Cheung, S.; Devocelle, M.; Zhang, L.-J.; Chen, Z.-L.; O’Shea, D.F. Synthesis and assessment of a maleimide functionalized BF2 azadipyrromethene near-infrared fluorochrome. Chem. Commun. 2015, 51, 16667–16670. [Google Scholar] [CrossRef]
- Daly, H.C.; Sampedro, G.; Bon, C.; Wu, D.; Ismail, G.; Cahill, R.A.; O’Shea, D.F. BF2-azadipyrromethene NIR-emissive fluorophores with research and clinical potential. Eur. J. Med. Chem. 2017, 135, 392–400. [Google Scholar] [CrossRef]
- Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher, W.M.; O’Shea, D.F. In vitro demonstration of the heavy-atom effect for photodynamic therapy. J. Am. Chem. Soc. 2004, 126, 10619–10631. [Google Scholar] [CrossRef]
- Wu, D.; O’Shea, D.F. Synthesis and properties of BF2-3,3-dimethyldiarylazadipyrromethene near-infrared fluorophores. Org. Lett. 2013, 15, 3392–3395. [Google Scholar] [CrossRef]
- Taherian, A.; Li, X.; Liu, Y.; Haas, T.A. Differences in integrin expression and signaling within human breast cancer cells. BMC Cancer 2011, 11, 293. [Google Scholar] [CrossRef]
- Schoen, I.; Aires, L.; Ries, J.; Vogel, V. Nanoscale invaginations of the nuclear envelope: Shedding new light on wormholes with elusive function. Nucleus 2017, 8, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Descloux, A.; Grußmayer, K.S.; Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods 2019, 16, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Henne, W.M.; Reese, M.L.; Goodman, J.M. The assembly of lipid droplets and their roles in challenged cells. EMBO J. 2018, 37, 12. [Google Scholar] [CrossRef]
- Zhu, W.; Qu, H.; Xu, K.; Jia, B.; Li, H.; Du, Y.; Liu, G.; Wei, H.-J.; Zhao, H.-Y. Differences in the starvation-induced autophagy response in MDA-MB-231 and MCF-7 breast cancer cells. Anim Cells Syst. 2017, 21, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019, 20, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Malhas, A.; Goulbourne, C.; Vaux, D.J. The nucleoplasmic reticulum: Form and function. Trends Cell Biol. 2011, 21, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Barger, S.R.; Penfield, L.; Bahmanyar, S. Coupling lipid synthesis with nuclear envelope remodeling. Trends Biochem. Sci. 2022, 47, 52–65. [Google Scholar] [CrossRef]
- Liu, T.; Stephan, T.; Chen, P.; Keller-Findeisen, J.; Chen, J.; Riedel, D.; Yang, Z.; Jakobs, S.; Chen, Z. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc. Natl. Acad. Sci. USA 2022, 119, 52. [Google Scholar] [CrossRef] [PubMed]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef]
- Chiu, L.-d.; Ichimura, T.; Sekiya, T.; Machiyama, H.; Watanabe, T.; Fujita, H.; Ozawa, T.; Fujita, K. Protein expression guided chemical profiling of living cells by the simultaneous observation of Raman scattering and anti-Stokes fluorescence emission. Sci. Rep. 2017, 7, 43569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Comp | λabs (nm) | λem (nm) b | 775 nm/λmax (%) c | τflu (ns) | ɸflu d |
---|---|---|---|---|---|
1 | 623 | 648 | 3 | 3.6 | 0.41 |
2 | 656 | 682 | 8 | 2.2 | 0.34 |
3 | 656 | 686 | 9 | 3.9 | 0.44 |
4 | 700 | 732 | 22 | 3.1 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtin, N.; Garre, M.; Wu, D.; O’Shea, D.F. Identifying STEDable BF2-Azadipyrromethene Fluorophores. Molecules 2023, 28, 1415. https://doi.org/10.3390/molecules28031415
Curtin N, Garre M, Wu D, O’Shea DF. Identifying STEDable BF2-Azadipyrromethene Fluorophores. Molecules. 2023; 28(3):1415. https://doi.org/10.3390/molecules28031415
Chicago/Turabian StyleCurtin, Niamh, Massimiliano Garre, Dan Wu, and Donal F. O’Shea. 2023. "Identifying STEDable BF2-Azadipyrromethene Fluorophores" Molecules 28, no. 3: 1415. https://doi.org/10.3390/molecules28031415
APA StyleCurtin, N., Garre, M., Wu, D., & O’Shea, D. F. (2023). Identifying STEDable BF2-Azadipyrromethene Fluorophores. Molecules, 28(3), 1415. https://doi.org/10.3390/molecules28031415