Proximate Composition and Nutritional Values of Selected Wild Plants of the United Arab Emirates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Amino Acid Composition of Plants
2.2. Fatty Acid Composition of Plants
2.3. Nutrient Contents of Plants
2.4. Vitamin and Mineral Composition
3. Materials and Methods
3.1. Collection and Preparation of Samples
3.2. Nutritional Analysis
3.3. Amino Acid and Vitamin Analysis
3.4. Fatty Acid Composition
3.5. Trace Elemental Analysis and Proximate Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madouh, T.A.; Al-Sabbagh, T.A. Nutritional quality and adaptation of several native plant species of Kuwait to the farming system as potential livestock feed. Int. J. Env. Earth Sci. 2021, 2, 1–8. [Google Scholar]
- FAO. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Carvalho, A.M.; Barata, A.M. The Consumption of Wild Edible Plants. In Wild Plants Mushrooms Nuts Functional Food Properties and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 159–198. [Google Scholar]
- Powell, B.; Thilsted, S.; Ickowitz, A.; Termote, C.; Sunderland, T.; Herforth, A. Improving diets with wild and cultivated biodiversity from across the landscape. Food Secur. 2015, 7, 535–554. [Google Scholar] [CrossRef]
- Ogle, B.M. Wild Vegetables and Micronutrient Nutrition: Studies on the Significance of Wild Vegetables in Women’s Diets in Vietnam. Ph.D. Thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2001. [Google Scholar]
- Jones, A.D. Critical review of the emerging research evidence on agricultural biodiversity, diet diversity, and nutritional status in low- and middle-income countries. Nutr. Rev. 2017, 75, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Wunder, S.; Börner, J.; Shively, G.; Wyman, M. Safety nets, gap filling, and forests: A global-comparative perspective. World Dev. 2014, 64 (Suppl. 1), S29–S42. [Google Scholar] [CrossRef]
- FAO; WFP; IFAD. The State of Food Insecurity in the World 2012 Economic Growth Is Necessary but Not Sufficient to Accelerate Reduction of Hunger and Malnutrition; FAO: Rome, Italy, 2012. [Google Scholar]
- Pinela, J.; Carvalho, A.; Ferreira, I.C.F.R. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I.R.N.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant Phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Narayanankutty, A. Natural Products as PI3K/Akt Inhibitors: Implications in Preventing hepatocellular carcinoma. Curr. Mol. Pharm. 2021, 14, 760–769. [Google Scholar] [CrossRef]
- Job, J.T.; Rajagopal, R.; Alfarhan, A.; Narayanankutty, A. Borassus flabellifer Linn haustorium methanol extract mitigates fluoride-induced apoptosis by enhancing Nrf2/Haeme oxygenase 1—Dependent glutathione metabolism in intestinal epithelial cells. Drug Chem. Toxicol. 2022, 45, 2269–2275. [Google Scholar] [CrossRef]
- Narayanankutty, A. PI3K/Akt/mTOR pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Curr. Drug Targets 2019, 20, 1217–12-26. [Google Scholar] [CrossRef]
- Vinayak, N.; Arunaksharan, N.; Anusree, N. Heat Shock Proteins (HSPs): A Novel Target for Cancer Metastasis Prevention. Curr. Drug Targets 2019, 20, 727–737. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and efficacy—A review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed]
- AlFadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and technological advancements in the possible food applications of spirulina and their health benefits: A review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef]
- Scheiermann, E.; Puppa, M.A.; Rink, L.; Wessels, I. Zinc status impacts the epidermal growth factor receptor and downstream protein expression in A549 cells. Int. J. Mol. Sci. 2022, 23, 2270. [Google Scholar] [CrossRef]
- Wooten, D.J.; Sinha, I.; Sinha, R. Selenium induces pancreatic cancer cell death alone and in combination with gemcitabine. Biomedicines 2022, 10, 149. [Google Scholar] [CrossRef]
- Shahid, M.; Rao, N.K. New flowering plant species records for the United Arab Emirates. Tribulus 2016, 24, 131–136. [Google Scholar]
- Karim, F.; Dakheel, A.J. Salt Tolerant Plants of the United Arab Emirates; International Center for Biosaline Agriculture (ICBA): Dubai, United Arab Emirates, 2006. [Google Scholar]
- El-Ghonemy, A. Encyclopedia of Medicinal Plants of the United Arab Emirates; University of United Arab Emirates Press: Abu Dhabi, United Arab Emirates, 1993. [Google Scholar]
- Sakkir, S.; Kabshawi, M.; Mehairbi, M. Medicinal plants diversity and their conservation status in the United Arab Emirates (UAE). J. Med. Plants Res. 2012, 6, 1304–1322. [Google Scholar]
- Toledo, A.; Burlingame, B. Biodiversity and nutrition: A common path toward global food security and sustainable development. J. Food Compos. Anal. 2006, 19, 477–483. [Google Scholar] [CrossRef]
- Anderson, E.N.; Pearsall, D.M.; Hunn, E.S.; Turner, N.J. (Eds.) Ethnobiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Ali, A.; Deokule, S.S. Studies on Nutritional Values of Some Wild Edible Plants from Iran and India. Pak. J. Nutr. 2009, 8, 26–31. [Google Scholar]
- Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:873398-1 (accessed on 2 November 2022).
- Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77121007-1 (accessed on 2 November 2022).
- Available online: https://en.wikipedia.org/wiki/Chenopodiastrum_murale (accessed on 7 September 2022).
- Available online: https://www.ddcr.org/florafauna/Detail.aspx?Class=Plants&Referrer=Capparaceae%20(Shrubs)&Subclass=Shrubs&Id=221 (accessed on 11 September 2022).
- Available online: https://www.gbif.org/species/3873162 (accessed on 11 September 2022).
- Selvi, F.; Bigazzi, M. Leaf surface and anatomy in Boraginaceae tribe Boraginaceae with respect to ecology and taxonomy. Flora 2001, 196, 269–285. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853. [Google Scholar] [CrossRef]
- Available online: https://www.ddcr.org/florafauna/Detail.aspx?Class=Plants&Referrer=Boraginaceae%20(Shrubs)&Subclass=Shrubs&Id=264 (accessed on 17 October 2022).
- Available online: https://www.ddcr.org/florafauna/Detail.aspx?Class=Plants&Referrer=Boraginaceae%20(Shrubs)&Subclass=Shrubs&Id=220 (accessed on 17 October 2022).
- Available online: http://data.rbge.org.uk/herb/E00558486 (accessed on 24 October 2022).
- Available online: https://www.gbif.org/occurrence/574689181 (accessed on 11 September 2022).
- Alam, H.; Zamin, M.; Adnan, M.; Shah, A.N.; Alharby, H.F.; Bamagoos, A.A.; Alabdallah, N.M.; Alzahrani, S.S.; Alharbi, B.M.; Saud, S.; et al. Exploring suitability of Salsola imbricata (Fetid Saltwort) for salinity and drought conditions: A step toward sustainable landscaping under changing climate. Front. Plant Sci. 2022, 13, 900210. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Benno, B.; Hans-Jörg, B.; German, K.S. Sabkha Ecosystems: Volume II: West and Central Asia; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; pp. 143–147. ISBN 978-1-4020-5071-8. [Google Scholar]
- Hamed, A.I.; Milena, M.; Mohamed, S.G.; Usama, A.M.; Moatz, T.M.; Angela, P.; Sonia, P. Triterpene saponins from Salsola imbricata. Phytochem. Lett. 2011, 4, 353–356. [Google Scholar] [CrossRef]
- Retief, E. Zygophyllum; South African National Biodiversity Institute: Pretoria, South Africa, 2009; Available online: https://www.plantzafrica.com (accessed on 11 September 2022).
- Available online: https://web.archive.org/web/20160122050413/http://www.arkive.org/zygophyllum/zygophyllum-qatarense/ (accessed on 11 September 2022).
- Ghazanfar, S.A.; Fisher, M. Vegetation of the Arabian Peninsula; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-94-017-3637-4. [Google Scholar]
- Abdulaziz, H.; Abuzinada Hans-Jörg, B.; Krupp, F.; Böer, B.; Al Abdessalaam, Z.T. Protecting the Gulf’s Marine Ecosystems from Pollution; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; pp. 32–33. ISBN 978-3-7643-7947-6. [Google Scholar]
- Mandeel, Q.A. Microfungal community associated with rhizosphere soil of Zygophyllum qatarense in arid habitats of Bahrain. J. Arid Environ. 2002, 50, 665–681. [Google Scholar] [CrossRef]
- Available online: https://arkbiodiv.com/2017/01/08/the-strong-and-resilient-plant-of-desert-zygophyllum-zygophyllum-qatarense/ (accessed on 28 December 2022).
- Guerrero, J.L.G.; Isasa, M.E.T. Nutritional composition of leaves of Chenopodium species (C. album L., C. murale L. and C. opulifolium Shraeder). Int. J. food Sci. Nutr. 2009, 5, 321–327. [Google Scholar]
- Pelletier, D.L.; Frongillo EAJr Schroeder, D.G.; Habicht, J.P. The effects of malnutrition on child mortality in developing countries. Bull World Health Organ. 1995, 73, 443–448. [Google Scholar] [PubMed]
- Kris-Etherton, P.M.; Krummel, D.; Russell, M.E.; Dreon, D.; Mackey, S.; Borchers, J.; Wood, P.D. The effect of diet on plasma lipids, lipoproteins, and coronary heart disease. J. Am. Diet Assoc. 1988, 88, 1373–1400. [Google Scholar] [CrossRef]
- Sheela, K.; Kamal, G.; Nath, D.; Vijayalakshmi Geeta, M.Y.; Roopa, B.P. Proximate composition of underutilized green leafy vegetables in southern Karnataka. J. Human Ecol. 2004, 15, 227–229. [Google Scholar] [CrossRef]
- Aletor, V.A.; Aladetimi, O.O. Compositional evaluation of some cowpea varieties and some under-utilized edible legumes in Nigeria. Nahrung 1989, 33, 999–1007. [Google Scholar] [CrossRef]
- Okada, Y.; Okada, M. Scavenging effect of water-soluble proteins in broad beans on free radicals and active oxygen species. J. Agric. Food Chem. 1998, 42, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Shabert, J.K.; Winslow, C.; Lacey, J.M.; Wilmore, D.W. Glutamine-antioxidant supplementation increases body cell mass in aids patients with weight loss: A randomized, double-blind controlled trial. Nutrition 1999, 15, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Onuegbu, N.C.; Adedokun, I.I.; Kabuo, N.O.; Nwosu, J.N. Amino acid profile and micronutrient composition of the African Pear (Dacryodes edulis) pulp. Pak. J. Nutr. 2011, 10, 555–557. [Google Scholar] [CrossRef]
- Williamson, P.; Bevers, E.M.; Sineets, E.F.; Comfurius, P.; Schlegel, R.A.; Zwaal, R.F.A. Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets. Biochemistry 1995, 34, 10448–10455. [Google Scholar] [CrossRef] [PubMed]
- Kuhnlein, H.V. Nutrient values in indigenous wild plant greens and roots used by the Nuxalk people of Bella Coola, British Columbia. J. Food Composit. Anal. 1990, 3, 38–46. [Google Scholar] [CrossRef]
- Sridhar, R.; Lakshminarayana, G. Lipid classes, fatty acids, and tocopherols of leaves of six edible plant species. J. Agric. Food Chem. 1993, 41, 61–63. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560s–569s. [Google Scholar] [CrossRef] [PubMed]
- Aloskar, L.V.; Kakkar, K.K.; Chakra, O.J. Second Supplement to Glossary of Indian Medicinal Plants with Active Principles, Part-I (A–K), 1965–1981; NISC, CSIR: New Delhi, India, 1992; pp. 265–266. [Google Scholar]
- Trugo, L.C.; Von Baer, D.; Von Bayer, E. Lupin. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Cabellero, B., Ed.; Academic Press: Oxford, UK, 2003. [Google Scholar]
- Saha, J.; Biswal, A.K.; Deka, S.C. Chemical composition of some underutilized green leafy vegetables of Sonitpur district of Assam, India. Int. Food Res. J. 2015, 22, 1466–1473. [Google Scholar]
- Vishwakarma, K.L.; Dubey, V. Nutritional analysis of indigenous wild edible herbs used in Eastern Chattisgarh, India. Emir. J. Food Agric. 2011, 23, 554–560. [Google Scholar]
- Seal, T.; Chaudhuri, K. Effect of solvent extraction system on the antioxidant activity of some selected wild leafy vegetables of Meghalaya state in India. Int. J. Pharm. Sci. Res. 2015, 4, 1046–1051. [Google Scholar]
- Seal, T.; Chaudhuri, K. Nutritional analysis of some selected wild edible plants consumed by the tribal people of Meghalaya state in India. Int. J. Food Sci. Nutr. 2016, 1, 39–43. [Google Scholar]
- Khan, N.; Sultana, A.; Tahir, N.; Jamila, N. Nutritional composition, vitamins, minerals and toxic heavy metals analysis of Trianthema portulacastrum L., a wild edible plant from Peshawar, Khyber Pakhtunkhwa, Pakistan. Afr. J. Biotechnol. 2013, 12, 6079–6085. [Google Scholar]
- Vermani, A.; Navneet, P.; Chauhan, A. Physicochemical analysis of ash of some medicinal plants growing in Uttarakhand. India. Nat. Sci. 2006, 8, 88–91. [Google Scholar]
- Iheanacho, K.; Udebuani, A.C. Nutritional composition of some leafy vegetables consumed in Imo State, Nigeria. J. Appl. Sci. Environ. Manag. 2009, 13, 35. [Google Scholar] [CrossRef]
- Available online: https://arkbiodiv.com/2019/05/23/plants-that-are-liked-such-as-icecream-by-the-camels-part-4/ (accessed on 28 December 2022).
- FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements. Available online: https://www.fao.org/3/y2809e/y2809e.pdf (accessed on 30 December 2022).
- Stadlmayr, B.; Nilsso, E.; Mouille, B.; Medhammar, E.; Burlingame, B.; Charrondiere, R. Nutrition indicator for biodiversity on food composition. A report on the progress of data availability. J. Food Compos. Anal. 2011, 24, 692–698. [Google Scholar] [CrossRef]
- Sundriyal, M.; Sundriyal, R.C. Wild edible plants of the Sikkim Himalaya: Nutritive values of selected species. Econ. Bot. 2004, 58, 286–299. [Google Scholar] [CrossRef]
- Saikia, P.; Deka, D.C. Mineral content of some wild green leafy vegetables of North-East India. J. Chem. Pharm. Res. 2013, 5, 117–121. [Google Scholar]
- Abdus Satter, M.M.; Khan, M.M.R.R.L.; Jabin, S.A.; Abedin, N.; Islam, M.F.; Shaha, B. Nutritional quality and safety aspects of wild vegetables consume in Bangladesh. Asian Pac. J. Trop. Biomed. 2016, 6, 125–131. [Google Scholar] [CrossRef]
- Abd-Elgawad, A.M.; Elshamy, A.I.; Alrowaily, S.L.; Rowaily, L.; El-Amier, Y.A. Habitat affects the chemical profile, allelopathy, and antioxidant properties of essential oils and phenolphenolic-enriched of the invasive plant Heliotropium curassavicum. Plants 2019, 8, 482. [Google Scholar] [CrossRef]
- Shahid, S.A.; Dakheel, A.J.; Mufti, K.A.; Shabbir, G. Automated in-situ soil salinity logging in irrigated agriculture. Eur. J. Sci. Res. 2009, 26, 288–297. [Google Scholar]
- Pastor-Cavada, E.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Protein and amino acid composition of select wild legume species of tribe Fabaceae. Food Chem. 2014, 163, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niyukuri, J.; Raiti, J.; Ntakarutimana, V.; Hafidi, A. Lipid composition and antioxidant activities of some underused wild plant seeds from Burundi. Food Sci. Nutr. 2021, 9, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Szymansky, C.M.; Muscolo, A.; Yeo, M.; Colville, L.; Clatworthy, I.; Salge, T.; Seal, C.E. Elemental localisation and a reduced glutathione redox state protect seeds of the halophyte Suaeda maritima from salinity during over-wintering and germination. Environ. Exp. Bot. 2021, 190, 104569. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis. In Agricultural Chemical, Contaminants, Drugs, 15th ed.; Helrich, K., Ed.; AOAC: Arlington, VA, USA, 1990; Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 28 December 2022).
- Siew, W.L.; Tang, T.S.; Tan, Y.A. PORIM Test Methods Vol. 1; Palm Oil Research Institute of Malaysia: Kuala Lumpur, Malaysia, 1995. [Google Scholar]
- Shukla, A.; Vats, S.; Shukla, R.K. Phytochemical screening, proximate analysis and antioxidant activity of Dracaena reflexa Lam. Leaves. Ind. J. Pharm.Sci. 2015, 77, 640–644. [Google Scholar] [CrossRef] [Green Version]
Amino Acid | Chenopodium murale L. | Dipterygium glaucum Decne. | Heliotropium digynum Asch. ex C.Chr. | Heliotropium kotschyi Gürke | Salsola imbricata Forssk. | Tribulus pentandrus Forssk. | Zygophyllum qatarense Hadidi | Human Adult Requirements, mg/kg per Day |
---|---|---|---|---|---|---|---|---|
Alanine | 0.103 | 0.286 | 0.424 | 0.12 | 0.059 | 0.27 | 0.07 | - |
Arginine | 0.122 | 0.433 | 0.359 | 0.151 | 0.144 | 0.275 | 0.093 | - |
Aspartic acid | 0.213 | 0.672 | 1.35 | 0.43 | 0.163 | 0.588 | 0.133 | - |
Valine * | 0.099 | 0.27 | 0.397 | 0.14 | 0.097 | 0.274 | 0.062 | 10 |
Glutamic acid | 0.234 | 0.702 | 1.499 | 0.268 | 0.762 | 0.206 | - | |
Glycine | 0.099 | 0.28 | 0.368 | 0.118 | 0.08 | 0.336 | 0.065 | - |
Threonine * | 0.092 | 0.252 | 0.365 | 0.117 | 0.096 | 0.329 | 0.066 | 7 |
Isoleucine * | 0.082 | 0.208 | 0.296 | 0.103 | 0.049 | 0.142 | 0.056 | 10 |
Leucine * | 0.149 | 0.385 | 0.571 | 0.185 | 0.083 | 0.481 | 0.107 | 14 |
Histidine * | 0.073 | 0.134 | 0.168 | 0.08 | ND | 0.100 | ND | 8–12 |
Cystine + | 0.023 | 0.041 | 0.029 | ND | ND | 0.03 | ND | 13 |
Methionine + | 0.047 | 0.067 | 0.021 | 0.031 | 0.02 | 0.031 | 0.021 | |
Proline | 0.087 | 0.245 | 0.343 | 0.116 | 0.076 | 0.321 | 0.078 | - |
Lysine * | 0.106 | 0.287 | 0.455 | 0.124 | 0.064 | 0.267 | 0.056 | 12 |
Serine | 0.09 | 0.243 | 0.355 | 0.115 | 0.072 | 0.394 | 0.051 | - |
Tyrosine # | 0.107 | 0.178 | 0.224 | 0.113 | 0.135 | 0.219 | 0.081 | 14 |
Phenylalanine *,# | 0.134 | 0.295 | 0.374 | 0.132 | 0.072 | 0.244 | 0.088 |
Fatty Acid | TP | HD | DG | SI | HI | ZQ | CM |
---|---|---|---|---|---|---|---|
C12:0 | ND | ND | ND | ND | 0.93 | ND | ND |
C14:0 | 2.58 | 2.15 | 2.33 | 0.19 | 1.18 | 2.21 | 3.26 |
C16:0 | 32.4 | 30.7 | 24.3 | 15.7 | 19.8 | 28.2 | 32.8 |
C16:1 | ND | 1.18 | 2.03 | ND | 0.34 | 1.35 | 0.43 |
C18:0 | 48.5 | 17.2 | 16.1 | 7.61 | 12.6 | 16.9 | 50.4 |
C17:0 | 0.6 | 0.38 | ND | 0.06 | ND | 0.12 | 0.88 |
C18:1 | 10.5 | 23 | 27.9 | 51.8 | 35.5 | 25.7 | 8.58 |
C18:2 ɯ6 | 3.99 | 15 | 16.3 | 24 | 28.2 | 15.6 | 2.8 |
C18:3 ɯ3 | ND | 8.74 | 9.88 | 0.21 | 0.58 | 8.99 | 0.56 |
C20:0 | 1.09 | 1.25 | 1.16 | 0.34 | 0.84 | 1.18 | ND |
C20:1 | ND | ND | ND | 0.13 | ND | ND | ND |
Parameter | TP | HD | DG | SI | HI | ZQ | CM WHO | Recommended Rates |
---|---|---|---|---|---|---|---|---|
Saturated Fats (g/100 g) | 0.34 | 0.31 | 0.45 | 0.13 | 0.11 | 0.2 | 0.34 | 10% of total kcal/day |
Mono-Unsaturated Fats (g/100 g) | 0.19 | 0.21 | 0.21 | 0.13 | 0.23 | ND | 0.19 | - |
Poly-Unsaturated Fats (g/100 g) | 0.17 | 0.18 | 0.21 | 0.10 | 0.11 | ND | 0.17 | - |
Energy (kcal/100 g) | 95 | 98 | 124 | 25 | 57 | 32 | 22 | 18–25 (Kcal/kg bwt.)/day |
Fat (g/100 g) | 0.7 | 0.7 | 0.87 | 0.36 | 0.45 | 0.23 | 0.76 | - |
Carbohydrates (total) (g/100 g) | 16.5 | 15.8 | 22.7 | 3.7 | 10 | 5.8 | 0.7 | 130 g/day |
Proteins (g/100 g) | 5.72 | 7.21 | 6.22 | 1.87 | 3.2 | 1.57 | 3.09 | 0.75 g/kg/day |
Salt (g/100 g) | 0.042 | 0.087 | 0.071 | 3.61 | 0.594 | 1.08 | 1 | 5 g/day |
Ash (total) (g/100 g) | 6.57 | 3.9 | 3.5 | 7.6 | 4.1 | 7.78 | 6.98 | - |
Moisture (g/100 g) | 70.5 | 72.4 | 66.7 | 86.5 | 82.2 | 84.6 | 88.5 | - |
Crude Fiber (%) | 0.071 | 0.032 | 0.152 | 0.02 | 0.06 | 0.042 | 0.018 | - |
Ash (Insoluble in acids) (g/100 g) | 1.9 | 1.2 | 1 | 2.2 | 1.2 | 2.3 | 2.1 | - |
Neutral Detergent Fiber (NDF) (%) | 13.9 | 17 | 20 | 5.24 | 10 | 5.56 | 3.94 | - |
Acid Detergent Fiber (ADF) (%) | 7.78 | 10.7 | 12.2 | 0.717 | 5.67 | 1.89 | 1.69 | - |
Parameter | TP | HD | DG | SI | HI | ZQ | CM |
---|---|---|---|---|---|---|---|
Vitamin A (free Retinol) (mg/100 g) | 0.02 | 0.02 | ND | ND | ND | ND | 0.08 |
Vitamin B2 (Riboflavin) (mg/Kg) | 6.29 | ND | 1.41 | ND | ND | ND | ND |
Vitamin B3 (Niacin) (mg/100 g) | 0.37 | 0.095 | 0.21 | 0.08 | ND | 0.09 | 0.03 |
Vitamin B6 (Pyridoxin) (mg/100 g) | 0.06 | 0.03 | 0.10 | 0.03 | ND | 0.03 | 0.03 |
L-ascorbic acid (Vitamin C) (mg/100 g) | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Phosphorus (P) (mg/Kg) | 1154 | 502 | 922 | 137 | 280 | 133 | 762 |
Nitrogen (N) (mg/Kg) | 9157 | 11,532 | 9958 | 2996 | 5117 | 2514 | 4939 |
Zinc (Zn) (mg/Kg) | 642 | 87.6 | 1.92 | 27.3 | 70 | 0.233 | 36.7 |
Calcium (Ca) (mg/Kg) | 4595 | 1710 | 9662 | 6100 | 8333 | 8825 | 3753 |
Potassium (K) (mg/Kg) | 6665 | 2050 | 7476 | 4395 | 4509 | 438 | 9406 |
Species | Family | Local Name | Life Cycle | Habitat | Native Range | Uses |
---|---|---|---|---|---|---|
Chenopodium murale L. | Amaranthaceae | Abu’ efei | Annual | Plantation, fallow fields | Europe, N Africa, Arabian Peninsula, SW Asia | Vegetable, fodder |
Dipterygium glaucum Decne. | Cappraceae | Safrawi | Perennial | Sandplains | NE Africa, Arabian Peninsula, Iran, and S Asia | Fodder, medicine |
Heliotropium digynum Asch. ex C.Chr. | Boraginaceae | Kary, Jery | Perennial | Sandplains | N Africa, W Asia including Arabian Peninsula | Fodder |
Heliotropium kotschyi Gürke | Boraginaceae | Ramram | Perennial | Sandplains, gravels | NE Africa, Arabian Peninsula and parts of SW Asia | Medicine |
Salsola imbricata Forssk | Amaranthaceae | Ghadraf | Perennial | Saline sand, disturbed land | N Africa, Arabian Peninsula and SW Asia | Fodder, medicine |
Tribulus pentandrus Forssk. | Zygophyllaceae | Shersir | Perennial | Sandplains, valleys | N Africa, SW Asia | Fodder |
Zygophyllum qatarense Hadidi | Zygophyllaceae | Haram | Perennial | Sandplains, coastal areas | Arabian Peninsula | Fodder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahid, M.; Singh, R.K.; Thushar, S. Proximate Composition and Nutritional Values of Selected Wild Plants of the United Arab Emirates. Molecules 2023, 28, 1504. https://doi.org/10.3390/molecules28031504
Shahid M, Singh RK, Thushar S. Proximate Composition and Nutritional Values of Selected Wild Plants of the United Arab Emirates. Molecules. 2023; 28(3):1504. https://doi.org/10.3390/molecules28031504
Chicago/Turabian StyleShahid, Mohammad, Rakesh Kumar Singh, and Sumitha Thushar. 2023. "Proximate Composition and Nutritional Values of Selected Wild Plants of the United Arab Emirates" Molecules 28, no. 3: 1504. https://doi.org/10.3390/molecules28031504
APA StyleShahid, M., Singh, R. K., & Thushar, S. (2023). Proximate Composition and Nutritional Values of Selected Wild Plants of the United Arab Emirates. Molecules, 28(3), 1504. https://doi.org/10.3390/molecules28031504