Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines
Abstract
:1. Introduction
2. Results
2.1. Cell Cycle Arrest by Synthesized Peptide
2.2. Down-Regulation of CDK-4 and CDK-6 Expressions by SKACP003 in Breast Cancer Cell Lines
2.3. Down-Regulation of C-Myc, P68 and COX-2genes Expression by SKACP003
2.4. SKACP003 Reduces Cell Migration
2.5. SKACP003 Induced Apoptosis in MCF-7, MDA-MB-231 and MDA-MB-453 Breast Cancer Cell Lines
2.6. Effect of SKACP003 on the Cytoplasmic β-Catenin Level
3. Discussion
3.1. Cell Cycle Arrest by Synthesized Peptide
3.2. Down-Regulation of CDK-4 and CDK-6 Expressions by SKACP003 in Breast Cancer Cell Lines
3.3. Down-Regulation of C-Myc, P68 and COX-2genes Expression by SKACP003
3.4. SKACP003 Reduces Cell Migration
3.5. SKACP003 Induced Apoptosis in MCF-7, MDA-MB-231 and MDA-MB-453 Breast Cancer Cell Lines
3.6. Effect of SKACP003 on the Cytoplasmic β-Catenin Level
4. Materials and Methods
4.1. Cell Culture
4.2. Peptide Synthesis
4.3. Cell Cycle Assay
4.4. Reverse Transcriptase Polymerase Chain Reaction
4.5. Western Blot Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Malvia, S.; Bagadi, S.A.; Dubey, U.S.; Saxena, S. Epidemiology of Breast Cancer in Indian Women. Asia Pac. J. Clin. Oncol. 2017, 13, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Benna, S.; Shai, Y.; Jacobsen, F.; Steinstraesser, L. Oncolytic Activities of Host Defense Peptides. Int. J. Mol. Sci. 2011, 12, 8027–8051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedl, S.; Zweytick, D.; Lohner, K. Membrane-Active Host Defense Peptides–Challenges and Perspectives for the Development of Novel Anticancer Drugs. Chem. Phys. Lipids 2011, 164, 766–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the Selectivity and Efficacy of Defense Peptides with Respect to Cancer Cells. Med. Res. Rev. 2013, 33, 190–234. [Google Scholar] [CrossRef] [PubMed]
- Gatti, L.; Zunino, F. Overview of Tumor Cell Chemoresistance Mechanisms. Methods Mol Med. 2005, 111, 127–148. [Google Scholar] [PubMed]
- Dhanya Lenin, K.L.; Iyer, R.V.; Raveendran, A.; Anju, M.V.; Philip, R.; Antony, S.P. β-Defensins from Common Goby (Pomatoschistus microps) and Silver Trevally (Pseudocaranx georgianus): Molecular Characterization and Phylogenetic Analysis. Mol. Biol. Rep. 2021, 48, 4943–4951. [Google Scholar] [CrossRef]
- Teixeira, V.; Feio, M.J.; Bastos, M. Role of Lipids in the Interaction of Antimicrobial Peptides with Membranes. Prog. Lipid Res. 2012, 51, 149–177. [Google Scholar] [CrossRef]
- Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P.S. In Silico Models for Designing and Discovering Novel Anticancer Peptides. Sci. Rep. 2013, 3, 2984. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. From Antimicrobial to Anticancer Peptides. A Review. Front. Microbiol. 2013, 4, 294. [Google Scholar] [CrossRef] [Green Version]
- Mulder, K.C.L.; Lima, L.A.; Miranda, V.J.; Dias, S.C.; Franco, O.L. Current Scenario of Peptide-Based Drugs: The Key Roles of Cationic Antitumor and Antiviral Peptides. Front. Microbiol. 2013, 4, 321. [Google Scholar] [CrossRef]
- Schweizer, F. Cationic Amphiphilic Peptides with Cancer-Selective Toxicity. Eur. J. Pharmacol. 2009, 625, 190–194. [Google Scholar] [CrossRef]
- Hoskin, D.W.; Ramamoorthy, A. Studies on Anticancer Activities of Antimicrobial Peptides. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2008, 1778, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Jafari, A.; Babajani, A.; Sarrami Forooshani, R.; Yazdani, M.; Rezaei-Tavirani, M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front. Oncol. 2022, 12, 819563. [Google Scholar] [CrossRef]
- Wang, L.N.; Yu, B.; Han, G.Q.; He, J.; Chen, D.W. Design, Expression and Characterization of Recombinant Hybrid Peptide Attacin-Thanatin in Escherichia Coli. Mol. Biol. Rep. 2010, 37, 3495–3501. [Google Scholar] [CrossRef]
- VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, Depsipeptide): A Natural Product Recently Approved for Cutaneous T-Cell Lymphoma. J. Antibiot. (Tokyo) 2011, 64, 525–531. [Google Scholar] [CrossRef]
- Logan, C.Y.; Nusse, R. The Wnt Signaling Pathway in Development and Disease. Annu. Rev. Cell Dev. Biol. 2004, 20, 781–810. [Google Scholar] [CrossRef] [Green Version]
- Kimelman, D.; Xu, W. β-Catenin Destruction Complex: Insights and Questions from a Structural Perspective. Oncogene 2006, 25, 7482–7491. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Giles, R.H.; Van Es, J.H.; Clevers, H. Caught up in a Wnt Storm: Wnt Signaling in Cancer. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2003, 1653, 1–24. [Google Scholar] [CrossRef]
- Nusse, R.; Varmus, H.E. Many Tumors Induced by the Mouse Mammary Tumor Virus Contain a Provirus Integrated in the Same Region of the Host Genome. Cell 1982, 31, 99–109. [Google Scholar] [CrossRef]
- Nusse, R.; Varmus, H.E. Wnt Genes. Cell 1992, 69, 1073–1087. [Google Scholar] [CrossRef] [PubMed]
- Clevers, H. Wnt/β-Catenin Signaling in Development and Disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peifer, M.; Polakis, P. Wnt Signaling in Oncogenesis and Embryogenesis—A Look Outside the Nucleus. Science (1979) 2000, 287, 1606–1609. [Google Scholar] [CrossRef] [PubMed]
- Tarapore, R.S.; Siddiqui, I.A.; Mukhtar, H. Modulation of Wnt/β-Catenin Signaling Pathway by Bioactive Food Components. Carcinogenesis 2012, 33, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-J.; Hsu, L.-S.; Shia, Y.-T.; Lin, M.-W.; Lin, C.-M. The β-Catenin/TCF Complex as a Novel Target of Resveratrol in the Wnt/β-Catenin Signaling Pathway. Biochem. Pharmacol. 2012, 84, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Sundram, V.; Chauhan, S.C.; Ebeling, M.; Jaggi, M. Curcumin Attenuates β-Catenin Signaling in Prostate Cancer Cells through Activation of Protein Kinase D1. PLoS ONE 2012, 7, e35368. [Google Scholar] [CrossRef]
- Dakeng, S.; Duangmano, S.; Jiratchariyakul, W.; U-Pratya, Y.; Bögler, O.; Patmasiriwat, P. Inhibition of Wnt Signaling by Cucurbitacin B in Breast Cancer Cells: Reduction of Wnt-associated Proteins and Reduced Translocation of Galectin-3-mediated Β-catenin to the Nucleus. J. Cell. Biochem. 2012, 113, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Preet, R.; Mohapatra, P.; Das, D.; Satapathy, S.R.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Lycopene Synergistically Enhances Quinacrine Action to Inhibit Wnt-TCF Signaling in Breast Cancer Cells through APC. Carcinogenesis 2013, 34, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Murillo, G.; Peng, X.; Torres, K.E.O.; Mehta, R.G. Deguelin Inhibits Growth of Breast Cancer Cells by Modulating the Expression of Key Members of the Wnt Signaling PathwayDeguelin Actions in MDA-MB-231 Cells. Cancer Prev. Res. 2009, 2, 942–950. [Google Scholar] [CrossRef] [Green Version]
- Selvarathinam, K.; Thekkumalai, M.; Perumalsamy, B.; Vilwanathan, R. Design and Synthesis of a Novel Antimicrobial Peptide Targeting β-Catenin in Human Breast Cancer Cell Lines. Int. J. Pept. Res. Ther. 2021, 27, 1849–1860. [Google Scholar] [CrossRef]
- Shang, S.; Hua, F.; Hu, Z.W. The Regulation of β-Catenin Activity and Function in Cancer: Therapeutic Opportunities. Oncotarget 2017, 8, 33972–33989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahecha, A.M.; Wang, H. The Influence of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2 and -9 in Angiogenesis, Metastasis, and Prognosis of Endometrial Cancer. Onco Targets Ther. 2017, 10, 4617–4624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Zhang, X.; Zheng, J.J. Inhibiting the Wnt Signaling Pathway with Small Molecules. In Targeting the Wnt Pathway in Cancer; Goss, K., Kahn, M., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Zhong, Y.; Katavolos, P.; Nguyen, T.; Lau, T.; Boggs, J.; Sambrone, A.; Kan, D.; Merchant, M.; Harstad, E.; Diaz, D. Tankyrase Inhibition Causes Reversible Intestinal Toxicity in Mice with a Therapeutic Index < 1. Toxicol. Pathol. 2016, 44, 267–278. [Google Scholar] [PubMed]
- Mariotti, L.; Pollock, K.; Guettler, S. Regulation of Wnt/Β-catenin Signalling by Tankyrase-dependent Poly (ADP-ribosyl) Ation and Scaffolding. Br. J. Pharmacol. 2017, 174, 4611–4636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, O.; Peña, C.; García, J.M.; Larriba, M.J.; Ordóñez-Morán, P.; Navarro, D.; Barbáchano, A.; López de Silanes, I.; Ballestar, E.; Fraga, M.F. The Wnt Antagonist DICKKOPF-1 Gene Is Induced by 1α, 25-Dihydroxyvitamin D 3 Associated to the Differentiation of Human Colon Cancer Cells. Carcinogenesis 2007, 28, 1877–1884. [Google Scholar] [CrossRef]
- Smith, D.C.; Rosen, L.S.; Chugh, R.; Goldman, J.W.; Xu, L.; Kapoun, A.; Brachmann, R.K.; Dupont, J.; Stagg, R.J.; Tolcher, A.W. First-in-Human Evaluation of the Human Monoclonal Antibody Vantictumab (OMP-18R5; Anti-Frizzled) Targeting the WNT Pathway in a Phase I Study for Patients with Advanced Solid Tumors. J. Clin. Oncol. 2013, 31, 2540. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Xia, W.; Wang, J.C.; Kwong, K.Y.; Spohn, B.; Wen, Y.; Pestell, R.G.; Hung, M.-C. β-Catenin, a Novel Prognostic Marker for Breast Cancer: Its Roles in Cyclin D1 Expression and Cancer Progression. Proc. Natl. Acad. Sci. USA 2000, 97, 4262–4266. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Song, Z.; Tong, C.; Hu, D.; Bi, X.; Augenlicht, L.H.; Yang, W. Sulindac Suppresses β-Catenin Expression in Human Cancer Cells. Eur. J. Pharmacol. 2008, 583, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Rathinakumar, R.; Walkenhorst, W.F.; Wimley, W.C. Broad-Spectrum Antimicrobial Peptides by Rational Combinatorial Design and High-Throughput Screening: The Importance of Interfacial Activity. J. Am. Chem. Soc. 2009, 131, 7609–7617. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, B.; Zhang, W.; Yan, J.; Li, J.; Wang, R. Antitumor Effects, Cell Selectivity and Structure–Activity Relationship of a Novel Antimicrobial Peptide Polybia-MPI. Peptides (N. Y.) 2008, 29, 963–968. [Google Scholar] [CrossRef]
- Wang, D.-M.; Jiao, X.; Plotnikoff, N.P.; Griffin, N.; Qi, R.-Q.; Gao, X.-H.; Shan, F.-P. Killing Effect of Methionine Enkephalin on Melanoma in Vivo and in Vitro. Oncol. Rep. 2017, 38, 2132–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunda, N.K. Antimicrobial Peptides as Novel Therapeutics for Non-Small Cell Lung Cancer. Drug Discov. Today 2020, 25, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Theansungnoen, T.; Maijaroen, S.; Jangpromma, N.; Yaraksa, N.; Daduang, S.; Temsiripong, T.; Daduang, J.; Klaynongsruang, S. Cationic Antimicrobial Peptides Derived from Crocodylus Siamensis Leukocyte Extract, Revealing Anticancer Activity and Apoptotic Induction on Human Cervical Cancer Cells. Protein. J. 2016, 35, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, M.; Ericsson, A.C. Antimicrobial Peptides: Potential Application in Liver Cancer. Front. Microbiol. 2019, 10, 1257. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Hou, X.; Wang, L.; Gao, Y.; Wu, D.; Xi, X.; Zhou, M.; Kwok, H.F.; Duan, J.; Chen, T. Two Novel Dermaseptin-like Antimicrobial Peptides with Anticancer Activities from the Skin Secretion of Pachymedusa Dacnicolor. Toxins 2016, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Avand, A.; Akbari, V.; Shafizadegan, S. In Vitro Cytotoxic Activity of a Lactococcus Lactis Antimicrobial Peptide against Breast Cancer Cells. Iran J. Biotechnol. 2018, 16, e1867. [Google Scholar] [CrossRef] [Green Version]
- Ujiki, M.B.; Milam, B.; Ding, X.-Z.; Roginsky, A.B.; Salabat, M.R.; Talamonti, M.S.; Bell, R.H.; Gu, W.; Silverman, R.B.; Adrian, T.E. A Novel Peptide Sansalvamide Analogue Inhibits Pancreatic Cancer Cell Growth through G0/G1 Cell-Cycle Arrest. Biochem. Biophys. Res. Commun. 2006, 340, 1224–1228. [Google Scholar] [CrossRef]
- Nojima, H. Cell Cycle Checkpoints, Chromosome Stability and the Progression of Cancer. Hum. Cell 1997, 10, 221–230. [Google Scholar]
- Hadjadj, D.; Kim, S.-J.; Denecker, T.; Driss, L.B.; Cadoret, J.-C.; Maric, C.; Baldacci, G.; Fauchereau, F. A Hypothesis-Driven Approach Identifies CDK4 and CDK6 Inhibitors as Candidate Drugs for Treatments of Adrenocortical Carcinomas. Aging (Albany N. Y.) 2017, 9, 2695. [Google Scholar] [CrossRef] [Green Version]
- Brabletz, T.; Jung, A.; Dag, S.; Hlubek, F.; Kirchner, T. β-Catenin Regulates the Expression of the Matrix Metalloproteinase-7 in Human Colorectal Cancer. Am. J. Pathol. 1999, 155, 1033–1038. [Google Scholar] [CrossRef]
- Guturi, K.K.N.; Sarkar, M.; Bhowmik, A.; Das, N.; Ghosh, M.K. DEAD-Box Protein P68 Is Regulated by β-Catenin/Transcription Factor 4 to Maintain a Positive Feedback Loop in Control of Breast Cancer Progression. Breast Cancer Res. 2014, 16, 496. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, B.; Saffrich, R.; Zwicker, J.; Henglein, B.; Müller, R.; Ansorge, W.; Eilers, M. Activation of Cyclin-dependent Kinases by Myc Mediates Induction of Cyclin A, but Not Apoptosis. EMBO J. 1996, 15, 3065–3076. [Google Scholar] [CrossRef]
- Leone, G.; DeGregori, J.; Sears, R.; Jakoi, L.; Nevins, J.R. Myc and Ras Collaborate in Inducing Accumulation of Active Cyclin E/Cdk2 and E2F. Nature 1997, 387, 422–426. [Google Scholar] [CrossRef]
- Galaktionov, K.; Chen, X.; Beach, D. Cdc25 Cell-Cycle Phosphatase as a Target of c-Myc. Nature 1996, 382, 511–517. [Google Scholar] [CrossRef]
- Daksis, J.I.; Lu, R.Y.; Facchini, L.M.; Marhin, W.W.; Penn, L.J. Myc Induces Cyclin D1 Expression in the Absence of de Novo Protein Synthesis and Links Mitogen-Stimulated Signal Transduction to the Cell Cycle. Oncogene 1994, 9, 3635–3645. [Google Scholar]
- Lee, H.K.; Jeong, S. β-Catenin Stabilizes Cyclooxygenase-2 MRNA by Interacting with AU-Rich Elements of 3′-UTR. Nucleic Acids Res. 2006, 34, 5705–5714. [Google Scholar] [CrossRef]
- Qu, B.; Liu, B.; Du, Y.; Chen, J.; Cheng, Y.; Xu, W.; Wang, X. Wnt/Β-catenin Signaling Pathway May Regulate the Expression of Angiogenic Growth Factors in Hepatocellular Carcinoma. Oncol. Lett. 2014, 7, 1175–1178. [Google Scholar] [CrossRef] [Green Version]
- Jänicke, R.U. MCF-7 Breast Carcinoma Cells Do Not Express Caspase-3. Breast Cancer Res. Treat. 2009, 117, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.M.; Ranganathan, V.; Farnsworth, M.L.; Kavallaris, M.; Lock, R.B. Bcl-2 Inhibits Bax Translocation from Cytosol to Mitochondria during Drug-Induced Apoptosis of Human Tumor Cells. Cell Death Differ. 2000, 7, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, L.; Yuan, X.; Ou, Y.; Zhu, X.; Cheng, Z.; Zhang, P.; Wu, X.; Meng, Y.; Zhang, L. The Relationship between the Bcl-2/Bax Proteins and the Mitochondria-Mediated Apoptosis Pathway in the Differentiation of Adipose-Derived Stromal Cells into Neurons. PLoS ONE 2016, 11, e0163327. [Google Scholar] [CrossRef] [Green Version]
- Tornesello, A.L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F.M.; Tornesello, M.L. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020, 25, 2850. [Google Scholar] [CrossRef] [PubMed]
- Selvam, R.; Subashchandran, K.P. Synthesis of Biologically Active Hydrophobic Peptide by Using Novel Polymer Support: Improved Fmoc Solid Phase Methodology. Int. J. Pept. Res. Ther. 2015, 21, 91–97. [Google Scholar] [CrossRef]
- Misra, R.; Sahoo, S.K. Coformulation of Doxorubicin and Curcumin in Poly (D, L-Lactide-Co-Glycolide) Nanoparticles Suppresses the Development of Multidrug Resistance in K562 Cells. Mol. Pharm. 2011, 8, 852–866. [Google Scholar] [CrossRef] [PubMed]
SN | Gene | Forward Primer | Reverse Primer | Annealing Temperature (°C) |
---|---|---|---|---|
1. | C-Myc | 5′-TGCCTTGGTTCATCTGGGTC-3′ | 5′-GCTTAGGAGTGCTTGGGACA-3′ | 53.8 |
2. | BCL2 | 5′-CTTTGAGTTCGGTGGGGTCA-3′ | 5′-GGGCCGTACAGTTCCACAAA-3′ | 53.8 |
3. | BAX | 5′-CGTGTCTGATCAATCCCCGAT-3′ | 5′-AGCTAGGGTCAGAGGGTCAT-3′ | 54.4 |
4. | CDK4 | 5′-ACCAGATGGCACTTACACCC-3′ | 5′-GGCAGCCCAATCAGGTCAAA-3′ | 53.8 |
5. | CDK6 | 5′-ACAGAGCACCCGAAGTCTTG-3′ | 5′-GGGAGTCCAATCACGTCCAA-3′ | 53.8 |
6. | MMP 2 | 5′-TGATGGCATCGCTCAGATCC-3′ | 5′-GGCCTCGTATACCGCATCAA-3′ | 53.8 |
7. | MMP 7 | 5′-CAATTGTCTCTGGACGGCAG-3′ | 5′-CTGAGCCTGTTCCCACTGTA-3′ | 53.8 |
8. | CASP9 | 5′-CATCCCAGGAAGGCAACAAG-3′ | 5′-GGGAAGCATGGCTAGGACTC-3′ | 53.8 |
9. | CASP8 | 5′-GGCTTTGACCACGACCTTTG-3′ | 5′-TCAGTGCCATAGATGATGCCC-3′ | 54.1 |
10. | CASP3 | 5′-GCAAGTTACAGTGATGCTGTGC-3′ | 5′-CCATGCCCACAGATGCCTAA-3′ | 54.3 |
11. | COX2 | 5′-GTCTGGTGCCTGGTCTGATG-3′ | 5′-GCCACTCAAGTGTTGCACAT-3′ | 53.9 |
12. | P68 | 5′-GGGATGGCCAGTTGCTCTAA-3′ | 5′-AGCACCAAACAAATAGGCCC-3′ | 52.8 |
13. | VEGF-A | 5′-GTATAAGTCCTGGAGCGTTCCCT-3′ | 5′-TTTAACTCAAGCTGCCTCGCC-3′ | 61.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvarathinam, K.; Subramani, P.; Thekkumalai, M.; Vilwanathan, R.; Selvarajan, R.; Abia, A.L.K. Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines. Molecules 2023, 28, 930. https://doi.org/10.3390/molecules28030930
Selvarathinam K, Subramani P, Thekkumalai M, Vilwanathan R, Selvarajan R, Abia ALK. Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines. Molecules. 2023; 28(3):930. https://doi.org/10.3390/molecules28030930
Chicago/Turabian StyleSelvarathinam, Kanitha, Prabhu Subramani, Malarvili Thekkumalai, Ravikumar Vilwanathan, Ramganesh Selvarajan, and Akebe Luther King Abia. 2023. "Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines" Molecules 28, no. 3: 930. https://doi.org/10.3390/molecules28030930
APA StyleSelvarathinam, K., Subramani, P., Thekkumalai, M., Vilwanathan, R., Selvarajan, R., & Abia, A. L. K. (2023). Wnt Signaling Pathway Collapse upon β-Catenin Destruction by a Novel Antimicrobial Peptide SKACP003: Unveiling the Molecular Mechanism and Genetic Activities Using Breast Cancer Cell Lines. Molecules, 28(3), 930. https://doi.org/10.3390/molecules28030930