Deactivation and Regeneration of Nitrogen Doped Carbon Catalyst for Acetylene Hydrochlorination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Performance Evaluation
2.2. Physical Characterization
2.3. Analysis of Catalytic Active Sites
2.4. Stability and Deactivation Reasons
2.5. Stability and Deactivation Reasons
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.2.1. Preparation of Series Carbon and Nitrogen Materials
3.2.2. Synthesis Procedure for D-GH-T Samples
3.2.3. Synthesis of Regeneration xZnCl2/Used-H Catalysts
3.3. Characterizations
3.4. Description of Catalytic Tests and Analytical Criteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kaiser, S.K.; Surin, I.; Amorós-Pérez, A.; Büchele, S.; Krumeich, F.; Clark, A.H.; Román-Martínez, M.C.; Lillo-Ródenas, M.A.; Pérez-Ramírez, J. Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nat. Commun. 2021, 12, 4016. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.J.; Wei, C.C.; Yin, X.; Kang, L.H.; Zhu, M.Y.; Dai, B. The effect of sp2 content in carbon on its catalytic activity for acetylene hydrochlorination. Nanomaterials 2022, 12, 2619. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Y.J.; Chao, S.L.; Dong, X.B.; Chen, W.X.; Luo, J.; Liu, C.G.; Wang, D.S.; Chen, C.; Li, W.; et al. Single-atom AuI-N3 site for acetylene hydrochlorination reaction. ACS Catal. 2020, 10, 1865–1870. [Google Scholar] [CrossRef]
- Shang, S.S.; Zhao, W.; Wang, Y.; Li, X.Y.; Zhang, J.L.; Han, Y.; Li, W. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. ACS Catal. 2017, 7, 3510–3520. [Google Scholar] [CrossRef]
- Wang, B.L.; Yue, Y.X.; Jin, C.X.; Lu, J.Y.; Wang, S.S.; Yu, L.; Guo, L.L.; Li, R.R.; Hu, Z.-T.; Pan, Z.Y.; et al. Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism. Appl. Catal. B-Environ. 2020, 272, 118944. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, B.L.; Yue, Y.X.; Sheng, G.F.; Lai, H.X.; Wang, S.S.; Yu, L.; Zhang, Q.F.; Feng, F.; Hu, Z.-T.; et al. Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. J. Catal. 2019, 373, 240–249. [Google Scholar] [CrossRef]
- Lin, R.H.; Kaiser, S.K.; Hauert, R.; Pérez-Ramírez, J. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination. ACS Catal. 2018, 8, 1114–1121. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, Y.; Kang, L.H.; Zhu, M.Y.; Dai, B. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. J. Catal. 2014, 311, 288–294. [Google Scholar] [CrossRef]
- Wei, S.H.; Qiu, Y.Y.; Sun, X.C.; Wang, X.L.; Li, H.T.; Lan, G.J.; Liu, J.; Li, Y. Sustainable nanoporous carbon catalysts derived from melamine assisted cross-linking of poly(vinyl chloride) waste for acetylene hydrochlorination. ACS Sustain. Chem. Eng. 2022, 10, 10476–10485. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.Y.; Zhang, M.M.; Li, L.F.; Yao, L.S.; Peng, W.C.; Zhang, J.L. Hollow carbon nanospheres decorated with abundant pyridinic N+O− for efficient acetylene hydrochlorination. ACS Sustain. Chem. Eng. 2022, 10, 194–203. [Google Scholar] [CrossRef]
- Qiao, X.L.; Liu, X.Y.; Zhou, Z.Q.; Guan, Q.X.; Li, W. Constructing green mercury-free catalysts with single pyridinic N species for acetylene hydrochlorination and mechanism investigation. Catal. Sci. Technol. 2021, 11, 2327. [Google Scholar] [CrossRef]
- Wang, J.; Gong, W.Q.; Zhu, M.Y.; Dai, B. Effect of carbon defects on the nitrogen-doped carbon catalytic performance for acetylene hydrochlorination. Appl. Catal. A Gen. 2018, 564, 72–78. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Ali, S.; Lan, G.L.; Tong, H.Q.; Fan, J.T.; Liu, H.Y.; Li, B.; Han, W.F.; Tang, H.D.; Liu, H.Z.; et al. Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination. Carbon 2019, 146, 406–412. [Google Scholar] [CrossRef]
- Li, X.Y.; Pan, X.L.; Yu, L.; Ren, P.J.; Wu, X.; Sun, L.T.; Jiao, F.; Bao, X.H. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nat. Commun. 2014, 5, 3688. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.Y.; Wang, Q.Q.; Chen, K.; Wang, Y.; Huang, C.F.; Dai, H.; Yu, F.; Kang, L.H.; Dai, B. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination. ACS Catal. 2015, 5, 5306–5316. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, P.; Pan, X.L.; Ma, H.; Bao, X.H. Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Appl. Catal. B-Environ. 2017, 210, 116–120. [Google Scholar] [CrossRef]
- Dong, X.Z.; Liu, G.Y.; Chen, Z.A.; Zhang, Q.; Xu, Y.P.; Liu, Z.M. Activated carbon supported nitrogen-containing diheterocycle mercury-free catalyst for acetylene hydrochlorination. Mol. Catal. 2022, 525, 112366. [Google Scholar] [CrossRef]
- Lu, F.J.; Lu, Y.S.; Zhu, M.Y.; Dai, B. Macroporous carbon material with high nitrogen content for excellent catalytic performance of acetylene hydrochlorination. ChemistrySelect 2020, 5, 878–885. [Google Scholar] [CrossRef]
- Lu, Y.S.; Lu, F.J.; Zhu, M.Y. Nitrogen-modified metal-free carbon materials for acetylene hydrochlorination. J. Taiwan Inst. Chem. E. 2020, 113, 198–203. [Google Scholar] [CrossRef]
- Du, F.F.; Zhao, X.W.; Lu, W.J.; Guo, Z.H.; Shuang, S.M.; Dong, C. Dual-ligand functionalized carbon nanodots as green fluorescent nanosensors for cellular dual receptor-mediated targeted imaging. Analyst 2019, 144, 6729–6735. [Google Scholar] [CrossRef]
- Li, F.Y.; Zimmerman, A.R.; Hu, X.; Yu, Z.B.; Huang, J.; Gao, B. One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl2. Chemosphere 2020, 254, 126866. [Google Scholar] [CrossRef] [PubMed]
- Li, B.W.; Hu, J.C.; Xiong, H.; Xiao, Y. Application and properties of microporous carbons activated by ZnCl2: Adsorption behavior and activation mechanism. ACS Omega 2020, 5, 9398–9407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.Z.; Xu, J.L.; Zhou, S.; Zhao, N.; Wong, C.-P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193–202. [Google Scholar] [CrossRef]
- Deng, C.M.; Zhu, M.Y. New type nitrogen-doped carbon material applied to deep adsorption desulfurization. Energy Fuel 2020, 34, 9320–9327. [Google Scholar] [CrossRef]
- Xu, S.; Niu, M.; Zhao, G.W.; Ming, S.J.; Li, X.Y.; Zhu, Q.L.; Ding, L.X.; Kim, M.J.; Alothman, A.A.; Mushab, M.S.S.; et al. Size control and electronic manipulation of Ru catalyst over B, N co-doped carbon network for high-performance hydrogen evolution reaction. Nano Res. 2022; accepted. [Google Scholar] [CrossRef]
- Liu, Y.W.; Zhang, H.Y.; Li, X.Y.; Wang, L.J.; Dong, Y.Z.; Li, W.; Zhang, J.L. Solvent-assisted synthesis of N-doped activated carbon-based catalysts for acetylene hydrochlorination. Appl. Catal. A-Gen. 2021, 611, 117902. [Google Scholar] [CrossRef]
- Zhang, C.L.; Kang, L.H.; Zhu, M.Y.; Dai, B. Nitrogen-doped active carbon as a metal-free catalyst for acetylene hydrochlorination. RSC Adv. 2015, 5, 7461–7468. [Google Scholar] [CrossRef]
- Lu, F.J.; Xu, D.; Lu, Y.S.; Dai, B.; Zhu, M.Y. High nitrogen carbon material with rich defects as a highly efficient metal-free catalyst for excellent catalytic performance of acetylene hydrochlorination. Chin. J. Chem. Eng. 2021, 29, 196–203. [Google Scholar] [CrossRef]
- Shen, Z.B.; Liu, Y.; Han, Y.J.; Qin, Y.J.; Li, J.H.; Xing, P.; Jiang, B. Nitrogen-doped porous carbon from biomass with superior catalytic performance for acetylene hydrochlorination. RSC Adv. 2020, 10, 14556–14569. [Google Scholar] [CrossRef]
- Mei, S.; Gu, J.J.; Ma, T.Z.; Li, X.Y.; Hu, Y.B.; Li, W.; Zhang, J.L.; Han, Y. N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chem. Eng. J. 2019, 371, 118–129. [Google Scholar] [CrossRef]
Catalyst | SBET (m2g−1) | V (cm3g−1) | D (nm) | C | N | O |
---|---|---|---|---|---|---|
D-GH-600 | 37.40 | 0.05 | 5.27 | 84.84 | 8.52 | 6.63 |
D-GH-800 | 466.99 | 0.25 | 2.49 | 87.73 | 6.28 | 5.99 |
D-GH-1000 | 368.51 | 0.24 | 2.41 | 90.04 | 4.08 | 5.88 |
D-GH-1200 | 50.89 | 0.02 | 2.38 | 92.56 | 1.96 | 5.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Wang, Q.; Zhu, M.; Dai, B. Deactivation and Regeneration of Nitrogen Doped Carbon Catalyst for Acetylene Hydrochlorination. Molecules 2023, 28, 956. https://doi.org/10.3390/molecules28030956
Lu F, Wang Q, Zhu M, Dai B. Deactivation and Regeneration of Nitrogen Doped Carbon Catalyst for Acetylene Hydrochlorination. Molecules. 2023; 28(3):956. https://doi.org/10.3390/molecules28030956
Chicago/Turabian StyleLu, Fangjie, Qinqin Wang, Mingyuan Zhu, and Bin Dai. 2023. "Deactivation and Regeneration of Nitrogen Doped Carbon Catalyst for Acetylene Hydrochlorination" Molecules 28, no. 3: 956. https://doi.org/10.3390/molecules28030956
APA StyleLu, F., Wang, Q., Zhu, M., & Dai, B. (2023). Deactivation and Regeneration of Nitrogen Doped Carbon Catalyst for Acetylene Hydrochlorination. Molecules, 28(3), 956. https://doi.org/10.3390/molecules28030956