ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication and Optical Charachterization of the ALP-Biosensor
2.2. CM-GCE Response to L-Ascorbic Acid
2.3. Biosensor Response to 2-Phospho-L-Ascorbic Acid
2.4. Biosensor Response to the 2,4-D Herbicide
2.5. Reproducibility of the Biosensor Response
2.6. Re-Usability of the Biosensor
2.7. Other Detectable Pesticides
3. Materials and Methods
3.1. Chemicals
3.2. Equipment
3.3. Preparation of the MWCNTs/ERGO/GCE Electrode
3.4. Preparation of the Biosensor
3.5. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Flasiński, M.; Hac-Wydro, K. Natural vs synthetic auxin: Studies on the interactions between plant hormones and biological membrane lipids. Environ. Res. 2014, 133, 123–134. [Google Scholar] [CrossRef]
- 2,4 D. Available online: https://www.invasive.org/gist/products/handbook/10.24-D.pdf (accessed on 5 January 2023).
- Environmental Protection Agency (EPA). Reregistration Eligibility Decision for Aliphatic Alcohols Reregistration Eligibility Decision for Aliphatic Alcohols; Environmental Protection Agency (EPA): Washington, DC, USA, 2007. [Google Scholar]
- Rossouw, G.; Rogiers, S.; Holzapfel, B.; Schmidtke, L. Auxin-type herbicide drift: Effects on grapevine leaf functioning and reproductive performance. IVES Tech. Rev. Vine Wine 2021, 1–2, 4869. [Google Scholar] [CrossRef]
- Peterson, M.A.; Mcmaster, S.A.; Riechers, D.E.; Skelton, J.; Stahlman, P.W. 2,4-D Past, Present, and Future: A Review; Cambridge University Press: Cambridge, UK, 2016; pp. 303–345. [Google Scholar] [CrossRef]
- Bradberry, S.M.; Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Mechanisms of Toxicity, Clinical Features, and Management of Acute Chlorophenoxy Herbicide Poisoning: A Review. J. Toxicol. Clin. Toxicol. 2000, 38, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Maire, M.A.; Rast, C.; Landkocz, Y.; Vasseur, P. 2,4-Dichlorophenoxyacetic acid: Effects on Syrian hamster embryo (SHE) cell transformation, c-Myc expression, DNA damage and apoptosis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007, 631, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Malik, A. Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140. [Google Scholar] [CrossRef]
- Yao, S.; Meyer, A.; Henze, G. Comparison of amperometric and UV-spectrophotometric monitoring in the HPLC analysis of pesticides. Fresenius. J. Anal. Chem. 1991, 339, 207–211. [Google Scholar] [CrossRef]
- Kaur, N.; Prabhakar, N. Current scenario in organophosphates detection using electrochemical biosensors. TrAC-Trends Anal. Chem. 2017, 92, 62–85. [Google Scholar] [CrossRef]
- Sil, A.; Saha, S.; Barman, M.; Pramanik, K.; Chakraborty, S. Recent Advances in Biosensors for Pesticide Residue Detection. Chem. Sci. Rev. Lett. 2021, 10, 1–35. [Google Scholar] [CrossRef]
- Christopher, F.C.; Kumar, P.S.; Christopher, F.J.; Joshiba, G.J.; Madhesh, P. Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J. Clean. Prod. 2020, 269, 122356. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Costa-García, A.; De La Escosura- Muñiz, A. Electrochemical (bio)sensors for pesticides detection using screen-printed electrodes. Biosensors 2020, 10, 32. [Google Scholar] [CrossRef]
- Karadurmus, L.; Kaya, S.I.; Ozkan, S.A. Recent advances of enzyme biosensors for pesticide detection in foods. J. Food Meas. Charact. 2021, 15, 4582–4595. [Google Scholar] [CrossRef]
- Shyuan, L.K.; Heng, L.Y.; Ahmad, M.; Aziz, S.A.; Ishak, Z. Evaluation of pesticide and heavy metal toxicity using immobilized enzyme alkaline phosphatase with an electrochemical biosensor. Asian J. Biochem. 2008, 3, 359–365. [Google Scholar] [CrossRef]
- Mazzei, F.; Montilla, S.; Pilloton, R.; Botre, F.; Botre, C.; Podesta, E. Alkaline phosphatase inhibition based electrochemical sensors for the detection of pesticides. J. Electroanal. Chem. 2004, 574, 95–100. [Google Scholar] [CrossRef]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Antiochia, R.; Favero, G.; Mazzei, F. Inhibition-based first-generation electrochemical biosensors: Theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection. Anal. Bioanal. Chem. 2016, 408, 3203–3211. [Google Scholar] [CrossRef]
- Serp, P. Carbon; Elsivier: Amsterdam, The Netherlands, 2013; Volume 7, ISBN 9780080965291. [Google Scholar]
- Schlesinger, O.; Alfonta, L. Encapsulation of Microorganisms, Enzymes, and Redox Mediators in Graphene Oxide and Reduced Graphene Oxide, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 609, ISBN 9780128152409. [Google Scholar]
- Kurbanoglu, S.; Ozkan, S.A.; Merkoçi, A. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens. Bioelectron. 2017, 89, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, C.; Wu, Q.; Wang, Z. Analytical Methods Determination of carbamate pesticides in water and fruit samples using carbon nanotube reinforced hollow fiber liquid-phase microextraction followed by high performance liquid chromatography. Anal. Method 2011, 1410–1417. [Google Scholar] [CrossRef]
- Amine, A.; Arduini, F.; Moscone, D.; Palleschi, G. Recent advances in biosensors based on enzyme inhibition. Biosens. Bioelectron. 2016, 76, 180–194. [Google Scholar] [CrossRef]
- Wang, Y.X.; Rinawati, M.; Huang, W.H.; Cheng, Y.S.; Lin, P.H.; Chen, K.J.; Chang, L.Y.; Ho, K.C.; Su, W.N.; Yeh, M.H. Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor. Carbon N. Y. 2022, 186, 406–415. [Google Scholar] [CrossRef]
- Sekine, T.; Wang, Y.-F.; Hong, J.; Takeda, Y.; Miura, R.; Watanabe, Y.; Abe, M.; Mori, Y.; Wang, Z.; Kumaki, D.; et al. Artificial Cutaneous Sensing of Object Slippage using Soft Robotics with Closed-Loop Feedback Process. Small Sci. 2021, 1, 2100002. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.J.; Choi, J.W. Electrical property of graphene and its application to electrochemical biosensing. Nanomaterials 2019, 9, 297. [Google Scholar] [CrossRef]
- Texter, J. Graphene dispersions. Curr. Opin. Colloid Interface Sci. 2014, 19, 163–174. [Google Scholar] [CrossRef]
- Sharma, V.V.; Gualandi, I.; Vlamidis, Y.; Tonelli, D. Electrochemical behavior of reduced graphene oxide and multi-walled carbon nanotubes composites for catechol and dopamine oxidation. Electrochim. Acta 2017, 246, 415–423. [Google Scholar] [CrossRef]
- Du, W.; Wu, H.; Chen, H.; Xu, G.; Li, C. Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon N. Y. 2020, 158, 568–579. [Google Scholar] [CrossRef]
- Zhou, A.; Bai, J.; Hong, W.; Bai, H. Electrochemically reduced graphene oxide: Preparation, composites, and applications. Carbon N. Y. 2022, 191, 301–332. [Google Scholar] [CrossRef]
- Feng, M.; Han, H.; Zhang, J.; Tachikawa, H. Electrochemical sensors based on carbon nanotubes. Electrochem. Sens. Biosens. Biomed. Appl. 2008, 459–501. [Google Scholar] [CrossRef]
- Vlamidis, Y.; Gualandi, I.; Tonelli, D. Amperometric biosensors based on reduced GO and MWCNTs composite for polyphenols detection in fruit juices. J. Electroanal. Chem. 2017, 799, 285–292. [Google Scholar] [CrossRef]
- Britz, D. Mathematical Modeling of Biosensors; Springer: Berlin/Heidelberg, Germany, 2010; Volume 25, ISBN 9783030655044. [Google Scholar]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef]
- Kaliyaraj, A.; Kumar, S.; Zhang, Y.; Li, D.; Compton, R.G. Electrochemistry Communications A mini-review: How reliable is the drop casting technique ? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Hara, T.O.; Singh, B. Electrochemical Biosensors for Detection of Pesticides and Heavy Metal Toxicants in Water: Recent Trends and Progress. ACS Environ. Sci. Technol. Water 2021, 1, 462–478. [Google Scholar] [CrossRef]
- Loh, K.S.; Lee, Y.H.; Musa, A.; Salmah, A.A.; Zamri, I. Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors 2008, 8, 5775–5791. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Amine, A. Biosensors based on enzyme inhibition. Adv. Biochem. Eng. Biotechnol. 2014, 140, 299–326. [Google Scholar] [CrossRef] [PubMed]
AAP Concentration | 2,4-D Concentration | Inhibition Degree (ID) |
---|---|---|
3.0 mM | 40 pM | 7.68% |
5.0 mM | 40 pM | 2.91% |
10 mM | 40 pM | 3.26% |
Biosensor | 1 | 2 | 3 |
---|---|---|---|
2,4-D concentration range | 0.04–24 nM | 0.04–24 nM | 0.04–24 nM |
Equation of the calibration curve | y = 0.11x + 1.1 | y = 0.11x + 1.2 | y = 0.13x + 1.7 |
Correlation coefficient (R2) | 0.856 | 0.925 | 0.983 |
Biosensor Structure * | AA Oxidation Potential (V vs. SCE) | Linear Range (nM) | LoD (nM) | Ref. |
---|---|---|---|---|
Pt/CellAc/GOD-Nylon/ALP | 0.36 | 23–181 | 9.0 | [16] |
SPE-MWCNTs/PVA-SbQ/ALP | 0.61 | 9.5–498 | 4.5 | [17] |
SPCE/ALP/sol-gel chitosan | 0.56 | 4.5–271 | 2.3 | [15] |
SPCE/Fe2O3/ALP/sol-gel chitosan | 0.56 | 2.3–136 | 1.8 | [37] |
GCE/MWCNTs-ERGO/ALP/BSA-GA | 0.30 | 0.04–24 | 0.02 | This work |
Pesticide | Malathion | Parathion | Parathion-Methyl |
---|---|---|---|
Substrate | 3.0 mM AAP | 3.0 mM AAP | 3.0 mM AAP |
Pesticide concentration range | 0.02–14 nM | 0.02–14 nM | 0.02–14 nM |
Equation of the calibration curve | y = 0.10x + 1.2 | y = 0.075x + 0.82 | y = 0.096x + 1.1 |
Correlation coefficient (R2) | 0.970 | 0.981 | 0.975 |
* Limit of detection (LoD) | 2.7 pM | 9.9 pM | 2.1 pM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gianvittorio, S.; Gualandi, I.; Tonelli, D. ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection. Molecules 2023, 28, 1532. https://doi.org/10.3390/molecules28041532
Gianvittorio S, Gualandi I, Tonelli D. ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection. Molecules. 2023; 28(4):1532. https://doi.org/10.3390/molecules28041532
Chicago/Turabian StyleGianvittorio, Stefano, Isacco Gualandi, and Domenica Tonelli. 2023. "ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection" Molecules 28, no. 4: 1532. https://doi.org/10.3390/molecules28041532
APA StyleGianvittorio, S., Gualandi, I., & Tonelli, D. (2023). ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection. Molecules, 28(4), 1532. https://doi.org/10.3390/molecules28041532