Effective Removal of Sulfonamides Using Recyclable MXene-Decorated Bismuth Ferrite Nanocomposites Prepared via Hydrothermal Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Ti3C2Tx MXene and BiFeO3/MXene
2.2. Adsorption Experiments
2.2.1. Adsorption Kinetics
2.2.2. Adsorption Isotherms
2.2.3. Effect of Initial pH on the Adsorption Performance
2.2.4. Reusability Study
2.2.5. Selectivity
3. Materials and Methods
3.1. Reagents and Materials
3.2. Preparation of Ti3C2Tx MXene
3.3. Preparation of BiFeO3/MXene
3.4. Characterizations
3.5. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Oba, S.N.; Ighalo, J.O.; Aniagor, C.O.; Igwegbe, C.A. Removal of ibuprofen from aqueous media by adsorption: A comprehensive review. Sci. Total Environ. 2021, 780, 146608. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Chen, J.; Chen, X.; Wang, J.; Qiu, H. In situ synthesis of a GO/COFs composite with enhanced adsorption performance for organic pollutants in water. Environ. Sci. Nano 2022, 9, 554–567. [Google Scholar] [CrossRef]
- Jiang, H.; He, J.; Deng, C.; Hong, X.; Liang, B. Advances in Bi2WO6-Based Photocatalysts for Degradation of Organic Pollutants. Molecules 2022, 27, 8698. [Google Scholar] [CrossRef]
- Ahmad, N.; Younus, H.A.; Chughtai, A.H.; Verpoort, F. Metal-organic molecular cages: Applications of biochemical implications. Chem. Soc. Rev. 2015, 44, 9–25. [Google Scholar] [CrossRef]
- Lu, D.; Liu, C.; Qin, M.; Deng, J.; Shi, G.; Zhou, T. Functionalized ionic liquids-supported metal organic frameworks for dispersive solid phase extraction of sulfonamide antibiotics in water samples. Anal. Chim. Acta 2020, 1133, 88–98. [Google Scholar] [CrossRef]
- Bai, S.; Jin, C.; Zhu, S.; Ma, F.; Wang, L.; Wen, Q. Coating magnetite alters the mechanisms and site energy for sulfonamide antibiotic sorption on biochar. J. Hazard. Mater. 2021, 409, 125024. [Google Scholar] [CrossRef] [PubMed]
- Almajed, A.; Ahmad, M.; Usman, A.R.A.; Al-Wabel, M.I. Fabrication of sand-based novel adsorbents embedded with biochar or binding agents via calcite precipitation for sulfathiazole scavenging. J. Hazard. Mater. 2021, 405, 124249. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, L.; Zhang, Z.; Li, G. Magnetic Ti3C2T /Fe3O4/Ag substrate for rapid quantification of trace sulfonamides in aquatic products by surface enhanced Raman spectroscopy. Chin. Chem. Lett. 2022, 33, 3853–3858. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Miao, J.; Yin, Z.; Zhai, Y.; Shi, H.; Li, Z. Determination of sulfa antibiotic residues in river and particulate matter by field-amplified sample injection-capillary zone electrophoresis. Electrophoresis 2020, 41, 1584–1591. [Google Scholar] [CrossRef]
- Ye, Z.; Weinberg, H.S.; Meyer, M.T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal. Chem. 2007, 79, 1135–1144. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Zheng, Y.; Cheng, X.; Hao, J.; Shang, Q. Enhancement of pyridine derivatives containing symmetrical substituents on the photocatalytic degradation of phenol and antibiotics by Er-Fe-TiO2. Chem. Eng. J. 2021, 410, 128319. [Google Scholar] [CrossRef]
- Chen, Q.; Yi, P.; Dong, W.; Chen, Y.; He, L.; Pan, B. Decisive role of adsorption affinity in antibiotic adsorption on a positively charged MnFe2O4@CAC hybrid. Sci. Total Environ. 2020, 745, 141019. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Sim, W.; Jang, D.; Yoon, Y.; Ryu, J.; Oh, J.; Woo, J.S.; Kim, Y.M.; Lee, Y. Antibiotics in coastal aquaculture waters: Occurrence and elimination efficiency in oxidative water treatment processes. J. Hazard. Mater. 2020, 396, 122585. [Google Scholar] [CrossRef]
- Zhang, M.; He, J.; Chen, Y.; Liao, P.-Y.; Liu, Z.-Q.; Zhu, M. Visible light-assisted peroxydisulfate activation via hollow copper tungstate spheres for removal of antibiotic sulfamethoxazole. Chin. Chem. Lett. 2020, 31, 2721–2724. [Google Scholar] [CrossRef]
- Zhan, H.; Wang, Y.; Mi, X.; Zhou, Z.; Wang, P.; Zhou, Q. Effect of graphitic carbon nitride powders on adsorption removal of antibiotic resistance genes from water. Chin. Chem. Lett. 2020, 31, 2843–2848. [Google Scholar] [CrossRef]
- Liu, H.; Yu, H.; Jin, P.; Jiang, M.; Zhu, G.; Duan, Y.; Yang, Z.; Qiu, H. Preparation of mesoporous silica materials functionalized with various amino-ligands and investigation of adsorption performances on aromatic acids. Chem. Eng. J. 2020, 379, 122405. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y.; Huang, W.; Li, Z.; Wu, L.; Zhang, H.; Li, X. Refractive Index Sensors Based on Ti3C2Tx MXene Fibers. ACS Appl. Nano Mater. 2020, 3, 303–311. [Google Scholar] [CrossRef]
- Liu, P.; Xiao, P.; Lu, M.; Wang, H.; Jin, N.; Lin, Z. Lithium storage properties of Ti3C2Tx (Tx = F, Cl, Br) MXenes. Chin. Chem. Lett. 2022, in press. [Google Scholar] [CrossRef]
- Zhao, W.; Chi, H.; Zhang, S.; Zhang, X.; Li, T. One-Pot Synthesis of Cellulose/MXene/PVA Foam for Efficient Methylene Blue Removal. Molecules 2022, 27, 4243. [Google Scholar] [CrossRef]
- Liang, G.; Li, X.; Wang, Y.; Yang, S.; Huang, Z.; Yang, Q.; Wang, D.; Dong, B.; Zhu, M.; Zhi, C. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, e9120002. [Google Scholar] [CrossRef]
- Guo, X.; Wang, C.; Wang, W.; Zhou, Q.; Xu, W.; Zhang, P.; Wei, S.; Cao, Y.; Zhu, K.; Liu, Z.; et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Q.; Huang, H.; Mao, L.; Liu, M.; Zhang, X.; Wei, Y. Recent progress and advances in the environmental applications of MXene related materials. Nanoscale 2020, 12, 3574–3592. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, P.; Tang, C.Y.; Yi, X.; Wang, X. Preparation of electrically enhanced forward osmosis (FO) membrane by two-dimensional MXenes for organic fouling mitigation. Chin. Chem. Lett. 2022, 33, 3818–3822. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Liu, F.; Zhang, Q.; Yao, S.; Liu, X.; Huang, F. Ti(3) C(2): An Ideal Co-catalyst? Angew. Chem. Int. Ed. 2020, 59, 1914–1918. [Google Scholar] [CrossRef]
- Tao, P.; Yao, S.; Liu, F.; Wang, B.; Huang, F.; Wang, M. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. J. Mater. Chem. A 2019, 7, 23512–23536. [Google Scholar] [CrossRef]
- Xue, Q.; Pei, Z.; Huang, Y.; Zhu, M.; Tang, Z.; Li, H.; Huang, Y.; Li, N.; Zhang, H.; Zhi, C. Mn3O4nanoparticles on layer-structured Ti3C2MXene towards the oxygen reduction reaction and zinc–air batteries. J. Mater. Chem. A 2017, 5, 20818–20823. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Xie, X.; Ren, C.E.; Makaryan, T.; Anasori, B.; Wang, G.; Gogotsi, Y. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Adv. Mater. 2017, 29, 1702410. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yu, H.; Deng, L.; Amin, R.S.; Yu, D.; Fetohi, A.E.; Maximov, M.Y.; Li, L.; El-Khatib, K.M.; Peng, S. Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting. Inorg. Chem. Front. 2022, 9, 662–669. [Google Scholar] [CrossRef]
- Luo, S.; Wang, R.; Yin, J.; Jiao, T.; Chen, K.; Zou, G.; Zhang, L.; Zhou, J.; Zhang, L.; Peng, Q. Preparation and Dye Degradation Performances of Self-Assembled MXene-Co3O4 Nanocomposites Synthesized via Solvothermal Approach. ACS Omega 2019, 4, 3946–3953. [Google Scholar] [CrossRef] [Green Version]
- Lian, W.; Wang, L.; Wang, X.; Shen, C.; Zhou, A.; Hu, Q. Facile preparation of BiOCl/Ti3C2 hybrid photocatalyst with enhanced visible-light photocatalytic activity. Funct. Mater. Lett. 2019, 12, 1850100. [Google Scholar] [CrossRef]
- Cheng, X.; Zu, L.; Jiang, Y.; Shi, D.; Cai, X.; Ni, Y.; Lin, S.; Qin, Y. A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem. Commun. 2018, 54, 11622–11625. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Z.; Zhi, C. Environmental Stability of MXenes as Energy Storage Materials. Front. Mater. 2019, 6, 312. [Google Scholar] [CrossRef]
- Abdillah, M.N.; Triyono, D. Structural properties of bismuth ferrite synthesized by sol-gel method with variation of calcination temperature. J. Phys. Conf. Ser. 2019, 1245, 012087. [Google Scholar] [CrossRef]
- Srinivasan, S.; Jothibas, M.; Nesakumar, N. Enhancing Electric Double Layer Capacitance of Two-Dimensional Titanium Carbide (MXene) with Facile Synthesis and Accentuated Properties. Energy Fuels 2022, 36, 2811–2820. [Google Scholar] [CrossRef]
- Remya, K.P.; Prabhu, D.; Joseyphus, R.J.; Bose, A.C.; Viswanathan, C.; Ponpandian, N. Tailoring the morphology and size of perovskite BiFeO3 nanostructures for enhanced magnetic and electrical properties. Mater. Des. 2020, 192, 108694. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, H.; Wang, L.; Zhang, F.; Zhu, L.; Fan, S. Phase transition and multiferroic properties of Zr-doped BiFeO3 thin films. J. Mater. Chem. C 2020, 8, 17307–17317. [Google Scholar] [CrossRef]
- Ma, Y.; Xing, W.; Chen, J.; Bai, Y.; Zhao, S.; Zhang, H. The influence of Er, Ti co-doping on the multiferroic properties of BiFeO3 thin films. Appl. Phys. A 2016, 122, 1–9. [Google Scholar] [CrossRef]
- Liao, X.; Li, T.-T.; Ren, H.-T.; Mao, Z.; Zhang, X.; Lin, J.-H.; Lou, C.-W. Enhanced photocatalytic performance through the ferroelectric synergistic effect of p-n heterojunction BiFeO3/TiO2 under visible-light irradiation. Ceram. Int. 2021, 47, 10786–10795. [Google Scholar] [CrossRef]
- Wang, Y.; Batmunkh, M.; Mao, H.; Li, H.; Jia, B.; Wu, S.; Liu, D.; Song, X.; Sun, Y.; Ma, T. Low-overpotential electrochemical ammonia synthesis using BiOCl-modified 2D titanium carbide MXene. Chin. Chem. Lett. 2022, 33, 394–398. [Google Scholar] [CrossRef]
- Bharathkumar, S.; Sakar, M.; Ponpandian, N.; Balakumar, S. Dual oxidation state induced oxygen vacancies in Pr substituted BiFeO3 compounds: An effective material activation strategy to enhance the magnetic and visible light-driven photocatalytic properties. Mater. Res. Bull. 2018, 101, 107–115. [Google Scholar] [CrossRef]
- Rethinasabapathy, M.; Bhaskaran, G.; Park, B.; Shin, J.Y.; Kim, W.S.; Ryu, J.; Huh, Y.S. Iron oxide (Fe3O4)-laden titanium carbide (Ti3C2Tx) MXene stacks for the efficient sequestration of cationic dyes from aqueous solution. Chemosphere 2022, 286, 131679. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shi, M.; Xu, Q.; Xu, J.; Duan, X.; Gao, Y.; Lu, L.; Gao, F.; Wang, X.; Yu, Y. Ti3C2TxMXene/nitrogen-doped reduced graphene oxide composite: A high-performance electrochemical sensing platform for adrenaline detection. Nanotechnology 2021, 32, 265501. [Google Scholar] [CrossRef]
- Yan, S.-x.; Luo, S.-h.; Wang, Q.; Zhang, Y.-h.; Liu, X. Rational design of hierarchically sulfide and MXene-reinforced porous carbon nanofibers as advanced electrode for high energy density flexible supercapacitors. Compos. Part B Eng. 2021, 224, 109246. [Google Scholar] [CrossRef]
- Ganya, E.S.; Soin, N.; Moloi, S.J.; McLaughlin, J.A.; Pong, W.F.; Ray, S.C. Polyacrylate grafted graphene oxide nanocomposites for biomedical applications. J. Appl. Phys. 2020, 127, 054302. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, L.; Zhang, L.; Zhang, S.; Chen, F.; Zhou, R.; Hua, D. Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption with Ultrahigh Capacity. ACS Appl. Mater. Interfaces 2022, 14, 9408–9417. [Google Scholar] [CrossRef]
- Huang, L.; Jin, Q.; Tandon, P.; Li, A.; Shan, A.; Du, J. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution. Chemosphere 2018, 197, 411–419. [Google Scholar] [CrossRef]
- Guan, X.; Yuan, X.; Zhao, Y.; Bai, J.; Li, Y.; Cao, Y.; Chen, Y.; Xiong, T. Adsorption behaviors and mechanisms of Fe/Mg layered double hydroxide loaded on bentonite on Cd (II) and Pb (II) removal. J. Colloid Interface Sci. 2022, 612, 572–583. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, X.; Grattieri, M.; Macazo, F.C.; Cai, R.; Minteer, S.D. A sustainable adsorbent for phosphate removal: Modifying multi-walled carbon nanotubes with chitosan. J. Mater. Sci. 2018, 53, 12641–12649. [Google Scholar] [CrossRef]
- Wan, K.; Xiao, Y.; Fan, J.; Miao, Z.; Wang, G.; Xue, S. Preparation of high-capacity macroporous adsorbent using lignite-derived humic acid and its multifunctional binding chemistry for heavy metals in wastewater. J. Clean. Prod. 2022, 363, 132498. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Ngo, H.H.; Guo, W.; Wen, H.; Zhang, D.; Li, C.; Qi, L. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar. Sci. Total Environ. 2020, 716, 137015. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Jin, S.; Lu, Q.; Ji, J. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions. Environ. Technol. 2017, 38, 2629–2638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Y.; Hong, M.; Liu, Z.; Yu, H.Y.; Qin, C.Y.; Liu, B.B.; Li, Y.X. Facile Room-Temperature Synthesis of Novel Porous Three-Component Hybrid Covalent Organic Polymers and Their Applications towards Sulfadiazine Adsorption. ChemistrySelect 2019, 4, 12719–12725. [Google Scholar] [CrossRef]
- Zhong, J.; Feng, Y.; Li, J.-L.; Yang, B.; Ying, G.-G. Removal of Sulfadiazine Using 3D Interconnected Petal-Like Magnetic Reduced Graphene Oxide (MrGO) Nanocomposites. Water 2020, 12, 1933. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, L.; Wu, L.; Zhang, C.; Zhu, S.; Xiao, X.; Li, M.; Zou, X. Adsorption of sulfonamides on biochars derived from waste residues and its mechanism. J. Hazard. Mater. 2021, 406, 124291. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Johir, M.A.H.; Belhaj, D. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour. Technol. 2017, 238, 306–312. [Google Scholar] [CrossRef]
- Sun, W.; Hu, X.; Xiang, Y.; Ye, N. Adsorption behavior and mechanism of sulfonamides on controllably synthesized covalent organic frameworks. Environ. Sci. Pollut. Res. 2022, 29, 18680–18688. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Guan, M.; Qiu, H. Preparation of Fe/Ni Bimetallic Oxide Porous Graphene Composite Materials for Efficient Adsorption and Removal of Sulfonamides. Langmuir 2021, 37, 12242–12253. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Dong, W.; Zhang, L.; Kong, Q.; Wang, W. Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon: A Plausible Adsorption Mechanism. Sci. Rep. 2017, 7, 12437. [Google Scholar] [CrossRef]
- Ahmed, I.; Bhadra, B.N.; Lee, H.J.; Jhung, S.H. Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water. Catal. Today 2018, 301, 90–97. [Google Scholar] [CrossRef]
- Zheng, L.; Peng, D.; Zhang, S.; Yang, Y.; Zhang, L.; Meng, P. Adsorption of sulfamethoxazole and sulfadiazine on phosphorus-containing stalk cellulose under different water pH studied by quantitative evaluation. Environ. Sci. Pollut. Res. 2020, 27, 43246–43261. [Google Scholar] [CrossRef]
- Wei, J.; Sun, W.; Pan, W.; Yu, X.; Sun, G.; Jiang, H. Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: Experiments and theoretical calculation. Chem. Eng. J. 2017, 312, 167–179. [Google Scholar] [CrossRef]
- Calisto, V.; Ferreira, C.I.; Oliveira, J.A.; Otero, M.; Esteves, V.I. Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. J. Environ. Manag. 2015, 152, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wei, C.; Zhao, L.; Tian, Y.; Wang, F.; Gong, B. Preparation and application of magnetic reversed-phase restricted access material. Chin. J. Chromatogr. 2018, 36, 608–614. [Google Scholar] [CrossRef] [PubMed]
Analyte | qe (cal) (mg g−1) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
k1 (min−1) | qe (exp) (mg g−1) | R2 | k2 (g mg−1 min−1) | qe (exp) (mg g−1) | R2 | ||
SDZ | 11.56 | −0.0065 | 9.5 | 0.966 | 0.116 | 10.29 | 0.999 |
STZ | 5.6 | −0.006 | 5.07 | 0.939 | 0.105 | 3.82 | 0.999 |
SMZ | 10.94 | −0.0073 | 15.2 | 0.91 | 0.074 | 10.01 | 0.999 |
SMTZ | 13.15 | −0.0074 | 17.41 | 0.865 | 0.077 | 11.01 | 0.999 |
SMXZ | 20.12 | −0.199 | 12.59 | 0.94 | 0.167 | 18.99 | 0.999 |
SXZ | 5.23 | −0.0052 | 3.95 | 0.864 | 0.084 | 4.84 | 0.999 |
Langmuir Model | Freundlich Model | |||||||
---|---|---|---|---|---|---|---|---|
Adsorbents | System | Analyte | qmax (mg g−1) | KL (L mg−1) | R2 | n | KF (mg g−1)/(mg L−1)n | R2 |
BiFeO3/MXene | single system | SDZ | 32.68 | 6.027 | 0.983 | 1.79 | 4.924 | 0.941 |
STZ | 54.45 | 1.651 | 0.999 | 1.24 | 1.856 | 0.989 | ||
SMZ | 41.27 | 1.247 | 0.997 | 1.30 | 1.476 | 0.981 | ||
SMTZ | 37.80 | 1.106 | 0.999 | 1.34 | 1.387 | 0.987 | ||
SMXZ | 29.87 | 6.903 | 0.997 | 2.03 | 5.715 | 0.925 | ||
SXZ | 24.81 | 10.00 | 0.999 | 2.43 | 6.440 | 0.875 | ||
mixed system | SDZ | 11.56 | 1.063 | 0.994 | 1.9 | 1.264 | 0.963 | |
STZ | 5.60 | 0.632 | 0.997 | 2.13 | 0.784 | 0.908 | ||
SMZ | 10.94 | 1.407 | 0.991 | 2 | 1.478 | 0.840 | ||
SMTZ | 13.15 | 0.816 | 0.993 | 1.66 | 0.990 | 0.969 | ||
SMXZ | 20.12 | 4.063 | 0.990 | 2.28 | 3.530 | 0.968 | ||
SXZ | 5.23 | 0.736 | 0.999 | 2.40 | 1.090 | 0.938 | ||
MXene | mixed system | SDZ | 4.94 | 0.948 | 0.995 | 3.33 | 1.318 | 0.960 |
STZ | 3.05 | 0.298 | 0.998 | 2.23 | 0.439 | 0.891 | ||
SMZ | 4.28 | 0.254 | 0.996 | 1.83 | 0.373 | 0.958 | ||
SMTZ | 6.90 | 0.542 | 0.995 | 1.98 | 0.756 | 0.970 | ||
SMXZ | 7.07 | 0.676 | 0.996 | 1.98 | 0.838 | 0.950 | ||
SXZ | 1.46 | 0.599 | 0.999 | 4.55 | 0.603 | 0.780 | ||
BiFeO3 | mixed system | SDZ | 4.89 | 0.822 | 0.996 | 2.94 | 1.122 | 0.968 |
STZ | 2.84 | 0.230 | 0.994 | 2.05 | 0.339 | 0.867 | ||
SMZ | 3.85 | 0.165 | 0.987 | 1.62 | 0.234 | 0.950 | ||
SMTZ | 5.23 | 0.399 | 0.982 | 2.15 | 0.643 | 0.965 | ||
SMXZ | 5.73 | 0.481 | 0.990 | 2.12 | 0.710 | 0.975 | ||
SXZ | 1.30 | 0.583 | 0.997 | 4.64 | 0.549 | 0.843 |
Sulfonamide | Adsorbent | System | qmax mg g−1 | References |
---|---|---|---|---|
SDZ | Hydrochar | Single system | 0.12 | [51] |
Expanded graphite | Single system | 16.58 | [52] | |
JLUE-COP-26 | Single system | 10.01 | [53] | |
MrGO | Single system | 6.27 | [54] | |
BiFeO3/MXene | Single system | 32.68 | This work | |
BiFeO3/MXene | Mixed with STZ, SMZ, SMTZ, SMZX, and SXZ | 11.56 | This work | |
STZ | Sewage sludge | Mixed with sulfadiazine | 8.52 | [55] |
EICP | Single system | 4.92 | [8] | |
Functionalized biochar | Mixed with sulfamethazine, sulfamethoxazole, and chloramphenicol | 45.19 | [56] | |
BiFeO3/MXene | Single system | 54.45 | This work | |
BiFeO3/MXene | Mixed with SDZ, SMZ, SMTZ, SMZX, and SXZ | 5.60 | This work | |
SMZ | TpPa-1 | Mixed with sulfamethazine, sulfamonomethoxine, sulfamethoxazole, and sulfadimethoxine | 2.2 | [57] |
Fe/Ni-PG | Single system | 27.3 | [58] | |
BiFeO3/MXene | Single system | 41.27 | This work | |
BiFeO3/MXene | Mixed with SDZ, STZ, SMTZ, SMZX, and SXZ | 10.94 | This work | |
SMTZ | Modified activated carbon | Single system | 17.24 | [59] |
TFBBD | Mixed with Sulfamerazine, sulfamonomethoxine, sulfamethoxazole, and sulfadimethoxine | 10.1 | [57] | |
BiFeO3/MXene | Single system | 37.8 | This work | |
BiFeO3/MXene | Mixed with SDZ, STZ, SMZ, SMZX, and SXZ | 13.15 | This work | |
SMXZ | ZIF-8 | Single system | 21.9 | [60] |
Phosphorus-containing stalk cellulose | Mixed with SDZ | 2.52 | [61] | |
Pristine capped CNTs | Mixed with sulfadimethoxine, sulfamethizole, and sulfamethazine | 7.88 | [62] | |
PS800-150 | Single system | 1.69 | [63] | |
BiFeO3/MXene | Single system | 29.87 | This work | |
BiFeO3/MXene | Mixed with SDZ, STZ, SMZ, SMTZ, and SXZ | 20.12 | This work | |
SXZ | Fe2O3@SiO2 | Mixed with sulfisoxazole, sulfadimethoxine, trimethoprim, and sulfamerazine | 2.76 | [64] |
BiFeO3/MXene | Single system | 24.81 | This work | |
BiFeO3/MXene | Mixed with SDZ, STZ, SMZ, SMTZ, and SMZX | 5.23 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanga, P.; Wang, J.; Li, X.; Chen, J.; Qiu, H. Effective Removal of Sulfonamides Using Recyclable MXene-Decorated Bismuth Ferrite Nanocomposites Prepared via Hydrothermal Method. Molecules 2023, 28, 1541. https://doi.org/10.3390/molecules28041541
Sanga P, Wang J, Li X, Chen J, Qiu H. Effective Removal of Sulfonamides Using Recyclable MXene-Decorated Bismuth Ferrite Nanocomposites Prepared via Hydrothermal Method. Molecules. 2023; 28(4):1541. https://doi.org/10.3390/molecules28041541
Chicago/Turabian StyleSanga, Pascaline, Juanjuan Wang, Xin Li, Jia Chen, and Hongdeng Qiu. 2023. "Effective Removal of Sulfonamides Using Recyclable MXene-Decorated Bismuth Ferrite Nanocomposites Prepared via Hydrothermal Method" Molecules 28, no. 4: 1541. https://doi.org/10.3390/molecules28041541
APA StyleSanga, P., Wang, J., Li, X., Chen, J., & Qiu, H. (2023). Effective Removal of Sulfonamides Using Recyclable MXene-Decorated Bismuth Ferrite Nanocomposites Prepared via Hydrothermal Method. Molecules, 28(4), 1541. https://doi.org/10.3390/molecules28041541