The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutrient Composition of Sorghum Grain
2.2. Polyphenol, Flavonoid and Free Phenolic Acid Content in Sorghum Grain
2.3. Effect of In Vitro Digestion on the Content of Polyphenolic Compounds, Flavonoids, and Free Phenolic Acids and Antiradical Properties of Sorghum
2.4. Effect of In Vitro Digestion on the Content of Polyphenolic Compounds, Flavonoids, and Free Phenolic Acids and Antiradical Properties of Pasta Enriched with Sorghum
3. Materials and Methods
3.1. Chemicals
3.2. Pasta Production
3.3. Extraction Procedure
3.4. Determination of Phenolic Acids
3.5. Determination of the Total Polyphenolic Compound Content (TPC)
3.6. Ability to Scavenge DPPH
3.7. In Vitro Two-Stage Digestion Model
3.8. Moisture
3.9. Ash
3.10. Protein Content
3.11. Lipid Content
3.12. Carbohydrates
3.13. Fiber
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ducksbury, C.; Stefoska-Needham, A. A Cross-Sectional Audit of Sorghum in Selected Cereal Food Products in Australian Supermarkets. Nutrients 2022, 14, 1821. [Google Scholar] [CrossRef]
- Proietti, I.; Frazzoli, C.; Mantovani, A. Exploiting Nutritional Value of Staple Foods in the World’s Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum. Healthcare 2015, 3, 172–193. [Google Scholar] [CrossRef] [PubMed]
- Stefoska-Needham, A.; Beck, E.J.; Johnson, S.K.; Tapsell, L.C. Sorghum: An Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease. Food Rev. Int. 2015, 31, 401–437. [Google Scholar] [CrossRef]
- Pontieri, P.; Troisi, J.; Calcagnile, M.; Bean, S.R.; Tilley, M.; Aramouni, F.; Boffa, A.; Pepe, G.; Campiglia, P.; Del Giudice, F.; et al. Chemical Composition, Fatty Acid and Mineral Content of Food-Grade White, Red and Black Sorghum Varieties Grown in the Mediterranean Environment. Foods 2022, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Smolensky, D.; Rhodes, D.; McVey, D.S.; Fawver, Z.; Perumal, R.; Herald, T.; Noronha, L. High-polyphenol sorghum bran extract inhibits cancer cell growth through ROS induction, cell cycle arrest, and apoptosis. J. Med. Food 2018, 21, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Yousif, A.M.; Johnson, S.K.; Gamlath, S. Acute effect of sorghum flour containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial. Clin. Nutr. 2015, 34, 415–421. [Google Scholar] [CrossRef]
- Khoddami, A.; Truong, H.H.; Liu, S.Y.; Roberts, T.H.; Selle, P.H. Concentrations of specific phenolic compounds in six red sorghums influence nutrient utilisation in broiler chickens. Anim. Feed Sci. Technol. 2015, 210, 190–199. [Google Scholar] [CrossRef]
- Kil, H.Y.; Seong, E.S.; Ghimire, B.K.; Chung, I.M.; Kwon, S.S.; Goh, E.J.; Heo, K.; Kim, M.J.; Lim, J.D.; Lee, D.; et al. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem. 2009, 115, 1234–1239. [Google Scholar] [CrossRef]
- Burdette, A.; Garner, P.L.; Mayer, E.P.; Hargrove, J.L.; Hartle, D.K.; Greenspan, P. Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. J. Med. Food 2010, 13, 879–887. [Google Scholar] [CrossRef]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2018, 84, 103–111. [Google Scholar] [CrossRef]
- De Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Nehring, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Effect of in Vitro Gastrointestinal Digestion on the Bioaccessibility of Phenolic Compounds, Minerals, and Antioxidant Capacity of Mimosa Scabrella Bentham Honeydew Honeys. Food Res. Int. 2017, 99, 670–678. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Kowalska, I.; Mołdoch, J.; Combrzyński, M.; Gancarz, M.; Dobrzański, B., Jr.; Kondracka, A.; Oniszczuk, A. Effect of the Production Parameters and In Vitro Digestion on the Content of Polyphenolic Compounds, Phenolic Acids, and Antiradical Properties of Innovative Snacks Enriched with Wild Garlic (Allium ursinum L.) Leaves. Int. J. Mol. Sci. 2022, 23, 14458. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 “on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004”. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex%3A32011R1169 (accessed on 25 January 2021).
- Nyoni, N.; Dube, M.; Bhebhe, S.; Sibanda, B.; Maphosa, M.; Bombom, A. Understanding biodiversity in sorghums to support the development of high value bio-based products in sub-Saharan Africa. J. Cereals Oilseeds 2020, 11, 37–43. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Zhao, Y. Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits. Foods 2021, 10, 1921. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.S.; Kumar, M.S.; Das, S.M. DNA damage protecting activity and free radical scavenging activity of anthocyanins from red sorghum (Sorghum bicolor) bran. Biotech. Res. Int. 2012, 2012, 258787. [Google Scholar] [CrossRef]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y.; Zhang, D.; Cai, M.; Chen, G. Ultrasound Assisted Extraction of Polyphenolic Compounds from Red Sorghum (Sorghum bicolor L.) Bran and Their Biological Activities and Polyphenolic Compositions. Ind. Crops Prod. 2018, 112, 296–304. [Google Scholar] [CrossRef]
- Herrman, D.A.; Brantsen, J.F.; Ravisankar, S.; Lee, K.M.; Awika, J.M. Stability of 3-deoxyanthocynin pigement structure relative to anthocyanins from grains under microwave assisted extraction. Food Chem. 2020, 333, 127494. [Google Scholar] [CrossRef]
- Barros, F.; Dykes, L.; Awika, J.M.; Rooney, L.W. Accelerated Solvent Extraction of Phenolic Compounds from Sorghum Brans. J. Cereal Sci. 2013, 58, 305–312. [Google Scholar] [CrossRef]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y. Subcritical Water Extraction of Polyphenolic Compounds from Sorghum (Sorghum bicolor L.) Bran and Their Biological Activities. Food Chem. 2018, 262, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Huang, R.; Li, C.; Wu, W.; Chen, H.; Shi, J.; Chen, S.; Ye, X. Phenolic compositions and antioxidant activities differ significantly among sorghum grains with different applications. Molecules 2018, 23, 1023. [Google Scholar] [CrossRef] [PubMed]
- Ghinea, I.O.; Ionica Mihaila, M.D.; Blaga, G.-V.; Avramescu, S.M.; Cudalbeanu, M.; Isticioaia, S.-F.; Dinica, R.M.; Furdui, B. HPLC-DAD Polyphenolic Profiling and Antioxidant Activities of Sorghum bicolor during Germination. Agronomy 2021, 11, 417. [Google Scholar] [CrossRef]
- Dicko, M.H.; Gruppen, H.; Traoré, A.S.; Voragen, A.G.; van Berkel, W.J. Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnol. Mol. Biol. Rev. 2006, 1, 21–38. [Google Scholar]
- Przybylska-Balcerek, A.; Frankowski, J.; Stuper-Szablewska, K. Bioactive compounds in sorghum. Eur. Food Res. Technol. 2019, 245, 1075–1080. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.; Sangwan, S. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res. Commun. 2021, 49, 343–353. [Google Scholar] [CrossRef]
- Doniec, J.; Florkiewicz, A.; Dziadek, K.; Filipiak-Florkiewicz, A. Hydrothermal Treatment Effect on Antioxidant Activity and Polyphenols Concentration and Profile of Brussels Sprouts (Brassica Oleracea Var. Gemmifera) in an In Vitro Simulated Gastrointestinal Digestion Model. Antioxidants 2022, 11, 446. [Google Scholar] [CrossRef]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can Dynamic In Vitro Digestion Systems Mimic the Physiological Reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef]
- Siracusa, L.; Kulisic-Bilusic, T.; Politeo, O.; Krause, I.; Dejanovic, B.; Ruberto, G. Phenolic Composition and Antioxidant Activity of Aqueous Infusions from Capparis spinosa L. and Crithmum maritimum L. before and after Submission to a Two-Step In Vitro Digestion Model. J. Agric. Food Chem. 2011, 59, 12453–12459. [Google Scholar] [CrossRef]
- Baeza, G.; Sarriá, B.; Bravo, L.; Mateos, R. Polyphenol Content, in Vitro Bioaccessibility and Antioxidant Capacity of Widely Consumed Beverages. J. Sci. Food Agric. 2018, 98, 1397–1406. [Google Scholar] [CrossRef]
- Dacrema, M.; Sommella, E.; Santarcangelo, C.; Bruno, B.; Marano, M.G.; Insolia, V.; Saviano, A.; Campiglia, P.; Stornaiuolo, M.; Daglia, M. Metabolic Profiling, In Vitro Bioaccessibility and in Vivo Bioavailability of a Commercial Bioactive Epilobium angustifolium L. Extract. Biomed. Pharm. 2020, 131, 110670. [Google Scholar] [CrossRef] [PubMed]
- Gayoso, L.; Claerbout, A.-S.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D. Bioaccessibility of rutin, caffeic acid and rosmarinic acid: Influence of the in vitro gastrointestinal digestion models. J. Funct. Foods 2016, 26, 428–438. [Google Scholar] [CrossRef]
- Cristea, E.; Sturza, R.; Jauregi, P.; Niculaua, M.; Ghendov-Moșanu, A.; Patras, A. Influence of PH and Ionic Strength on the Color Parameters and Antioxidant Properties of an Ethanolic Red Grape Marc Extract. J. Food Biochem. 2019, 43, 12788. [Google Scholar] [CrossRef] [PubMed]
- Materska, M.; Olszówka, K.; Chilczuk, B.; Stochmal, A.; Pecio, Ł.; Pacholczyk-Sienicka, B.; Piacente, S.; Pizza, C.; Masullo, M. Polyphenolic Profiles in Lettuce (Lactuca sativa L.) after CaCl2 Treatment and Cold Storage. Eur. Food Res. Technol. 2019, 245, 733–744. [Google Scholar] [CrossRef]
- Altunkaya, A.; Gökmen, V.; Skibsted, L.H. PH Dependent Antioxidant Activity of Lettuce (L. Sativa) and Synergism with Added Phenolic Antioxidants. Food Chem. 2016, 190, 25–32. [Google Scholar] [CrossRef]
- Sun, H.-N.; Mu, T.-H.; Xi, L.-S. Effect of PH, Heat, and Light Treatments on the Antioxidant Activity of Sweet Potato Leaf Polyphenols. Int. J. Food Prop. 2017, 20, 318–332. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 2013, 136, 206–212. [Google Scholar] [CrossRef]
- Nayik, G.A.; Nanda, V. Effect of thermal treatment and pH on antioxidant activity of sa_ron honey using response surface methodology. J. Food Meas. Charact. 2016, 10, 64–70. [Google Scholar] [CrossRef]
- Majdoub, Y.O.E.; Ginestra, G.; Mandalari, G.; Dugo, P.; Mondello, L.; Cacciola, F. The Digestibility of Hibiscus sabdariffa L. Polyphenols Using an In Vitro Human Digestion Model and Evaluation of Their Antimicrobial Activity. Nutrients 2021, 13, 2360. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E.; Bilen, F.D.; Gonzales, G.B.; Grootaert, C.; Van de Wiele, T.; Van Camp, J. Bioaccessibility of Polyphenols from Plant-Processing Byproducts of Black Carrot (Daucus carota L.). J. Agric. Food Chem. 2016, 64, 2450–2458. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In Vitro Bio-Accessibility and Antioxidant Activity of Grape Polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Lemlioglu-Austin, D.; Turner, N.D.; McDonough, C.M.; Rooney, L.W. Effects of Sorghum [Sorghum bicolor (L.) Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) Contents of Porridges. Molecules 2012, 17, 11124–11138. [Google Scholar] [CrossRef] [PubMed]
- Magaletta, R.L.; DiCataldo, S.N.; Dong, L.; Hong, L.L.; Borwankar, R.P.; Martini, M.C. In Vitro Method for Predicting Glycemic Index of Foods Using Simulated Digestion and an Artificial Neural Network. Cereal Chem. 2010, 87, 363–369. [Google Scholar] [CrossRef]
- Beta, T.; Rooney, L.W.; Marovatsanga, L.T.; Taylor, J.R.N. Effect of chemical treatment on polyphenols malt quality in sorghum. J. Cereal Sci. 2000, 31, 295–302. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M.G.C. Non-covalent interaction between procyanidins and cell wall material. Part II: Quantification and impact of the cell wall drying. Biochim. Biophys. Acta Gen. Subj. 2005, 1725, 1–9. [Google Scholar] [CrossRef]
- Duodu, K.G.; Taylor, J.R.N.; Belton, P.S.; Hamaker, B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2002, 38, 117–131. [Google Scholar] [CrossRef]
- Dlamini, N.R. Effect of Sorghum Type and Processing on the Antioxidant Properties of Sorghum [Sorghum bicolor (L.) Moench] Based foods. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2007. [Google Scholar]
- Multari, S.; Marsol-Vall, A.; Keskitalo, M.; Yang, B.; Suomela, J.P. Effects of Different Drying Temperatures on the Content of Phenolic Compounds and Carotenoids in Quinoa Seeds (Chenopodium Quinoa) from Finland. J. Food Compos. Anal. 2018, 72, 75–82. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and Antiradical Activities of Flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Association of Analytical Chemists Official Method, 923.03. Ash of flour, direct method. J. AOAC Inter. 1923, 7, 132.
- Association of Analytical Chemists Official Method, 920.87. Protein (Total) in Flour. 1920. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=2282 (accessed on 25 January 2021).
- Arienzo, M.; De Martino, A.; Capasso, R.; Di Maro, A.; Parente, A. Analysis of carbohydrates and amino acids in vegetable waste waters by ion chromatography. Phytochem. Anal. 2003, 14, 74–82. [Google Scholar] [CrossRef]
- Cunniff, P. (Ed.) Association of Analytical Chemists Official Method, 962.09. Fiber (Crude) in Animal Feed and Food. In Official Methods of Analysis AOC International, 16th ed.; AOAC: Rockville, MD, USA, 1995. [Google Scholar]
Parameter | Results (%) | Recommended Daily Intake (RDI) (g/Day) [4] |
---|---|---|
Moisture | 8.96 ± 0.07 | - |
Ash | 2.96 ± 0.03 | - |
Total proteins | 8.15 ± 0.12 | 50 |
Fats | 3.17 ± 0.03 | 70 |
Total carbohydrates | 48.49 ± 0.76 | 260 |
Fiber | 28.27 ± 0.23 | 14 g per 1000 calories of food |
Parameters | Before Digestion | Gastric Digestion | Duodenal Digestion |
---|---|---|---|
Polyphenol content | 3.620 a ± 0.012 | 2.991 b ± 0.056 | 3.176 c ± 0.112 |
Flavonoid content | 0.536 a ± 0.003 | 0.055 b ± 0.001 | 0.061 c ± 0.000 |
Radical scavenging activity | 63.240 a ± 1.020 | 70.117 b ± 1.321 | 67.925 c ± 0.023 |
Phenolic Acid | Before Digestion | Gastric Digestion | Duodenal Digestion |
---|---|---|---|
Protocatechuic | 3.663 a ± 0.032 | 4.314 b ± 0.024 | 3.717 a ± 0.056 |
p-OH-benzoic | 6.947 a ± 0.124 | 7.790 b ± 0.211 | 7.851 b ± 0.003 |
Vanillic | 1.612 a ± 0.009 | 2.661 b ± 0.014 | 2.675 b ± 0.021 |
Caffeic | 0.568 a ± 0.005 | 0.813 b ± 0.000 | 1.244 c ± 0.047 |
Syringic | 0.107 a ± 0.003 | 0.355 b ± 0.001 | 0.376 c ± 0.005 |
p-coumaric | 1.461 a ± 0.045 | 3.966 b ± 0.075 | 3.973 b ± 0.103 |
Sum | 14.358 | 19.899 | 19.837 |
Parameters | Before Digestion | Gastric Digestion | Duodenal Digestion | |
---|---|---|---|---|
Pasta without sorghum | Polyphenol content | 0.659 a ± 0.007 | 0.623 b ± 0.005 | 0.542 c ± 0.003 |
Flavonoid content | 0.064 a ± 0.001 | 0.011 b ± 0.000 | - | |
Radical scavenging | 30.251 a ± 0.265 | 5.126 b ± 0.109 | 4.041 c ± 0.075 | |
Pasta enriched with sorghum | Polyphenol content | 0.748 d ± 0.032 | 0.728 e ± 0.003 | 0.613 f ± 0.004 |
Flavonoid content | 0.080 d ± 0.000 | 0.017 e ± 0.001 | 0.001 f ± 0.000 | |
Radical scavenging | 41.999 d ± 0.897 | 5.323 e ± 0.070 | 5.284 f ± 0.236 |
Phenolic Acid | Before Digestion | Gastric Digestion | Duodenal Digestion | |
---|---|---|---|---|
Pasta without sorghum | Protocatechuic | 0.051 a ± 0.000 | - | - |
p-OH-benzoic | 0.112 a ± 0.002 | 0.121 b ± 0.004 | 0.158 c ± 0.003 | |
Vanillic | 0.132 a ± 0.004 | - | - | |
Sum | 0.295 | 0.121 | 0.158 | |
Pasta enriched with sorghum | Protocatechuic | 0.060 d ± 0.001 | - | - |
p-OH-benzoic | 0.136 d ± 0.009 | 0.149 e ± 0.006 | 0.193 f ± 0.001 | |
Vanillic | 0.160 d ± 0.003 | - | - | |
Sum | 0.359 | 0.149 | 0.193 |
Sample | Compound | Total Polyphenols | Free Phenolic Acid | Radical Scavenging Capacity |
---|---|---|---|---|
Sorghum | Total flavonoids | 0.962 | −0.999 | −0.953 |
Total polyphenols | −0.966 | −0.999 | ||
Free phenolic acids | 0.953 | |||
Pasta without sorghum | Total flavonoids | 0.836 | 0.934 | 0.992 |
Total polyphenols | 0.585 | 0.761 | ||
Free phenolic acids | 0.971 | |||
Pasta enriched with sorghum | Total flavonoids | 0.754 | 0.923 | 0.982 |
Total polyphenols | 0.442 | 0.615 | ||
Free phenolic acids | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziółkiewicz, A.; Kasprzak-Drozd, K.; Wójtowicz, A.; Oniszczuk, T.; Gancarz, M.; Kowalska, I.; Mołdoch, J.; Kondracka, A.; Oniszczuk, A. The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta. Molecules 2023, 28, 1706. https://doi.org/10.3390/molecules28041706
Ziółkiewicz A, Kasprzak-Drozd K, Wójtowicz A, Oniszczuk T, Gancarz M, Kowalska I, Mołdoch J, Kondracka A, Oniszczuk A. The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta. Molecules. 2023; 28(4):1706. https://doi.org/10.3390/molecules28041706
Chicago/Turabian StyleZiółkiewicz, Agnieszka, Kamila Kasprzak-Drozd, Agnieszka Wójtowicz, Tomasz Oniszczuk, Marek Gancarz, Iwona Kowalska, Jarosław Mołdoch, Adrianna Kondracka, and Anna Oniszczuk. 2023. "The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta" Molecules 28, no. 4: 1706. https://doi.org/10.3390/molecules28041706
APA StyleZiółkiewicz, A., Kasprzak-Drozd, K., Wójtowicz, A., Oniszczuk, T., Gancarz, M., Kowalska, I., Mołdoch, J., Kondracka, A., & Oniszczuk, A. (2023). The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta. Molecules, 28(4), 1706. https://doi.org/10.3390/molecules28041706