Pyrene-Fused Poly-Aromatic Regioisomers: Synthesis, Columnar Mesomorphism, and Optical Properties
Abstract
:1. Introduction
2. Results
2.1. Molecular Designing, Synthesis, and Characterization
2.2. Liquid Crystalline Properties
2.2.1. Thermal Stability and Mesomorphic Properties by TGA, DSC, and POM
2.2.2. Mesophase Characterization with SWAXS
2.3. Photophysical Properties
2.4. Molecular Aggregation in Solution
2.5. DFT Calculations
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueira-Duarte, T.M.; Müllen, K. Pyrene-based materials for organic electronics. Chem. Rev. 2011, 111, 7260–7314. [Google Scholar] [CrossRef]
- Voskuhl, J.; Giese, M. Mesogens with aggregation-induced emission properties: Materials with a bright future. Aggregate 2022, 3, e124. [Google Scholar] [CrossRef]
- Feng, X.; Hu, J.Y.; Redshaw, C.; Yamato, Y. Functionalization of pyrene to prepare luminescent materials-typical examples of synthetic methodology. Chem. Eur. J. 2016, 22, 11898–11916. [Google Scholar] [CrossRef] [PubMed]
- Zych, D. Non-K Region Disubstituted Pyrenes (1,3-, 1,6- and 1,8-) by (hetero)aryl groups—Review. Molecules 2019, 24, 2551. [Google Scholar] [CrossRef] [PubMed]
- Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. Material design for piezochromic luminescence: Hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc. 2007, 129, 1520–1521. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Wang, D.; Cui, Q.; Li, Z.; Wang, L.; Yang, H. Unique fluorescence properties of a self-assembling bis-pyrene molecule. Chin. Chem. Lett. 2018, 29, 1645–1647. [Google Scholar] [CrossRef]
- De Silva, T.P.D.; Youm, S.G.; Fronczek, F.R.; Sahasrabudhe, G.; Nesterov, E.E.; Warner, I.M. Pyrene-benzimidazole derivatives as novel blue emitters for OLEDs. Molecules 2021, 26, 6523. [Google Scholar] [CrossRef]
- Diring, S.; Camerel, F.; Donnio, B.; Dintzer, T.; Toffanin, S.; Capelli, R.; Muccini, M.; Ziessel, R. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices. J. Am. Chem. Soc. 2009, 131, 18177–18185. [Google Scholar] [CrossRef]
- Thiebaut, O.; Bock, H.; Grelet, E. Face-on oriented bilayer of two discotic columnar liquid crystals for organic donor–acceptor heterojunction. J. Am. Chem. Soc. 2010, 132, 6886–6887. [Google Scholar] [CrossRef]
- Meijer, E.W.; Schenning, A.P.H.J. Material marriage in electronics. Nature 2002, 419, 353–354. [Google Scholar] [CrossRef]
- Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hägele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; et al. Discotic liquid crystals: From tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 2007, 46, 4832–4887. [Google Scholar] [CrossRef]
- Wöhrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.; Kapernaum, N.; Litterscheidt, J.; Haenle, J.C.; Staffeld, P.; Baro, A.; Giesselmann, F.; et al. Discotic liquid crystals. Chem. Rev. 2016, 116, 1139–1241. [Google Scholar] [CrossRef]
- Kumar, S. Chemistry of Discotic Liquid Crystals: From Monomer to Polymers; CRC Press: Cleveland, OH, USA, 2011. [Google Scholar]
- Bushby, R.J.; Kelly, S.M.; O’Neill, M. (Eds.) Liquid Crystalline Semiconductors: Materials, Properties and Applications; Springer Series in Materials Science, 169; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Sergeyev, S.; Pisula, W.; Geerts, Y.H. Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 2007, 36, 1902–1929. [Google Scholar] [CrossRef]
- O’Neill, M.; Kelly, S.M. Ordered materials for organic electronics and photonics. Adv. Mater. 2011, 23, 566–584. [Google Scholar] [CrossRef]
- Eichhorn, S.H.; El-Ballouli, A.O.; Cassar, A.; Kaafarani, B.R. Columnar mesomorphism of board-shaped perylene, diketopyrrolopyrrole, isoindigo, indigo, and quinoxalinophenanthrophenazine dyes. ChemPlusChem 2021, 86, 319–339. [Google Scholar] [CrossRef]
- Adam, D.; Schuhmacher, P.; Simmerer, J.; Häussling, L.; Siemensmeyer, K.; Etzbachi, K.H.; Ringsdorf, H.; Haarer, D. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 1994, 371, 141–143. [Google Scholar] [CrossRef]
- Termine, R.; Golemme, A. Charge mobility in discotic liquid crystals. Int. J. Mol. Sci. 2021, 22, 877. [Google Scholar] [CrossRef]
- Herod, J.D.; Bruce, D.W. Liquid crystals based on the N-phenylpyridinium cation-mesomorphism and the effect of the anion. Molecules 2021, 26, 2653. [Google Scholar] [CrossRef]
- Jochem, M.; Detert, H. 2-{3,5-Bis-[5-(3,4-didodecyloxyphenyl)thien-2-yl]phenyl}-5-(3,4-didodecyloxy-phenyl)thiophene. Molbank 2021, 2021, M1225. [Google Scholar] [CrossRef]
- Attard, G.S.; Imrie, C.T. Liquid-crystalline and glass-forming dimers derived from 1-aminopyrene. Liq. Cryst. 1991, 11, 785–789. [Google Scholar] [CrossRef]
- Attard, G.S.; Imrie, C.T.; Karasz, F.E. Low molar mass liquid crystalline glasses: Preparation and properties of the a-(4-cyanobiphenyl-4′-oxy)-w-(1-pyreniminebenzylidene-4′-oxy)alkanes. Chem. Mater. 1992, 4, 1246–1253. [Google Scholar] [CrossRef]
- Walker, R.; Majewska, M.; Pociecha, D.; Makal, A.; Storey, J.M.D.; Gorecka, E.; Imrie, C.T. Twist-bend nematic glasses: The synthesis and characterisation of pyrene-based nonsymmetric dimers. ChemPhysChem 2021, 22, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Perju, E.; Marin, L. Mesomorphic behavior of symmetric azomethine dimers containing different chromophore groups. Molecules 2021, 26, 2183. [Google Scholar] [CrossRef] [PubMed]
- Sagara, Y.; Tamoaki, N. Mechanoresponsive luminescence and liquid-crystalline behaviour of a cyclophane featuring two 1,6-bis(phenylethynyl)pyrene groups. RSC Adv. 2017, 7, 47056–47062. [Google Scholar] [CrossRef]
- Sagara, Y.; Weder, C.; Tamaoki, N. Asymmetric cyclophanes permit access to supercooled nematic liquid crystals with stimulus-responsive luminescence. Chem. Mater. 2017, 29, 6145–6152. [Google Scholar] [CrossRef]
- Sagara, Y.; Muramatsu, T.; Tamaoki, N. A 1,6-Diphenylpyrene-based, photoluminescent cyclophane showing a nematic liquid-crystalline phase at room temperature. Crystals 2019, 9, 92. [Google Scholar] [CrossRef]
- Hirose, T.; Takai, H.; Watabe, M.; Minamikawa, H.; Tachikawa, T.; Kodama, K.; Yasutake, M. Effect of alkoxy terminal chain length on mesomorphism of 1,6-disubstituted pyrene-based hexacatenar liquid crystals: Columnar phase control. Tetrahedron 2014, 70, 5100–5108. [Google Scholar] [CrossRef]
- Martinez-Abadia, M.; Varghese, S.; Gierschner, J.; Giménez, R.; Ros, M.B. Luminescent assemblies of pyrene-containing bent-core mesogens: Liquid crystals, π-gels and nanotubes. J. Mater. Chem. C 2022, 10, 12012–12021. [Google Scholar] [CrossRef]
- Sagara, Y.; Kato, T. Stimuli-responsive luminescent liquid crystals: Change of photoluminescent colors triggered by a shear-induced phase transition. Angew. Chem. Int. Ed. 2008, 47, 5175–5178. [Google Scholar] [CrossRef]
- Percec, V.; Glodde, M.; Bera, T.K.; Miura, Y.; Shiyanovskaya, I.; Singer, K.D.; Balagurusamy, V.S.K.; Heiney, P.A.; Schnell, I.; Rapp, A.; et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 2002, 419, 384–387. [Google Scholar] [CrossRef]
- Percec, V.; Glodde, M.; Peterca, M.; Rapp, A.; Schnell, I.; Spiess, H.W.; Bera, T.K.; Miura, Y.; Balagurusamy, V.S.K.; Aqad, E.; et al. Self-assembly of semifluorinated dendrons attached to electron-donor groups mediates their π-stacking via a helical pyramidal column. Chem. Eur. J. 2006, 12, 6298–6314. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.K.; Lee, E.H.; Ko, Y.K.; Jung, H.T. Photoluminescence properties of a perfluorinated supramolecular columnar liquid crystal with a pyrene core: Effects of the ordering and orientation of the columns. J. Phys. Chem. B 2006, 110, 20836–20842. [Google Scholar] [CrossRef]
- Shibuya, Y.; Itoh, Y.; Aida, T. Columnar liquid crystalline assembly of a U-shaped molecular scaffold stabilized by covalent or noncovalent incorporation of aromatic molecules. J. Polym. Sci. A Polym. Chem. 2019, 57, 342–351. [Google Scholar] [CrossRef]
- Pitto-Barry, A.; Barry, N.P.E.; Russo, V.; Heinrich, B.; Donnio, B.; Therrien, B.; Deschenaux, R. Designing supramolecular liquid-crystalline hybrids from pyrenyl containing dendrimers and arene ruthenium metallacycles. J. Am. Chem. Soc. 2014, 136, 17616–17625. [Google Scholar] [CrossRef]
- Kamikawa, Y.; Kato, T. One-dimensional chiral self-assembly of pyrene derivatives based on dendritic oligopeptides. Org. Lett. 2006, 8, 2463–2466. [Google Scholar] [CrossRef]
- Kamikawa, Y.; Kato, T. Color-tunable fluorescent organogels: Columnar self-assembly of pyrene-containing oligo(glutamic acid)s. Langmuir 2007, 23, 274–278. [Google Scholar] [CrossRef]
- Park, M.; Kang, D.; Choi, Y.; Yoon, W.; Koo, J.; Park, S.H.; Ahn, S.; Jeong, K. Kinetically controlled polymorphic superstructures of pyrene based asymmetric liquid crystal dendron: Relationship between hierarchical superstructures and photophysical properties. Chem. Eur. J. 2018, 24, 9015–9021. [Google Scholar] [CrossRef]
- Hirose, T.; Shibano, Y.; Miyazaki, Y.; Sogoshi, N.; Nakabayashi, S.; Yasutake, M. Synthesis and hole transport properties of highly soluble pyrene-based discotic liquid crystals with trialkylsilylethynyl groups. Mol. Cryst. Liq. Cryst. 2011, 534, 81–92. [Google Scholar] [CrossRef]
- Yasutake, M.; Fujihara, T.; Nagasawa, A.; Moriya, K.; Hirose, T. Synthesis and phase structures of novel π-acceptor discotic liquid crystalline compounds having a pyrenedione core. Eur. J. Org. Chem. 2008, 2008, 4120–4125. [Google Scholar] [CrossRef]
- Hirose, T.; Kawakami, O.; Yasutake, M. Induction and control of columnar mesophase by charge transfer interaction and side chain structures of tetrasubstituted pyrenes. Mol. Cryst. Liq. Cryst. 2006, 451, 65–74. [Google Scholar] [CrossRef]
- Hassheider, T.; Benning, S.A.; Kitzerow, H.S.; Achard, M.F.; Bock, H. Color-tuned electroluminescence from columnar liquid crystalline alkyl arenecarboxylates. Angew. Chem. Int. Ed. 2001, 40, 2060–2063. [Google Scholar] [CrossRef]
- Gan, K.P.; Yoshio, M.; Kato, T. Columnar liquid-crystalline assemblies of X-shaped pyrene-oligothiophene conjugates: Photoconductivities and mechanochromic functions. J. Mater. Chem. C 2016, 4, 5073–5080. [Google Scholar] [CrossRef]
- Hayer, A.; de Halleux, V.; Köhler, A.; El-Garoughy, A.; Meijer, E.W.; Barberá, J.; Tant, J.; Levin, J.; Lehmann, M.; Gierschner, J.; et al. Highly fluorescent crystalline and liquid crystalline columnar phases of pyrene-based structures. J. Phys. Chem. B 2006, 110, 7653–7659. [Google Scholar] [CrossRef] [PubMed]
- Sienkowska, M.J.; Monobe, H.; Kaszynski, P.; Shimizu, Y. Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J. Mater. Chem. 2007, 17, 1392–1398. [Google Scholar] [CrossRef]
- Sienkowska, M.J.; Farrar, J.M.; Zhang, F.; Kusuma, S.; Heiney, P.A.; Kaszynski, P. Liquid crystalline behavior of tetraaryl derivatives of benzo[c]cinnoline, tetraazapyrene, phenanthrene, and pyrene: The effect of heteroatom and substitution pattern on phase stability. J. Mater. Chem. 2007, 17, 1399–1411. [Google Scholar] [CrossRef]
- Kapf, A.; Eslahi, H.; Blanke, M.; Saccone, M.; Giese, M.; Albrecht, M. Alkyloxy modified pyrene fluorophores with tunable photophysical and crystalline properties. New J. Chem. 2019, 43, 6361–6371. [Google Scholar] [CrossRef]
- Kato, S.I.; Kano, H.; Irisawa, K.I.; Yoshikawa, N.; Yamamoto, R.; Kitamura, C.; Nara, D.; Yamanobe, T.; Uehara, H.; Nakamura, Y. 2,4,5,7,9,10-Hexaethynylpyrenes: Synthesis, properties, and self-assembly. Org. Lett. 2018, 20, 7530–7534. [Google Scholar] [CrossRef]
- Tchebotareva, N.; Yin, X.; Watson, M.D.; Samori, P.; Rabe, J.P.; Müllen, K. Ordered Architectures of a soluble hexa-peri-hexabenzocoronene-pyrene dyad: Thermotropic bulk properties and nanoscale phase segregation at surfaces. J. Am. Chem. Soc. 2003, 125, 9734–9739. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Wang, S.; Shen, Y.; Yang, Y.; Deng, K.; Zhao, K.; Zeng, Q.; Wang, C. Triphenylene substituted pyrene derivative: Synthesis and single molecule investigation. J. Phys. Chem. C 2013, 117, 307–312. [Google Scholar] [CrossRef]
- Geng, Y.; Chang, S.; Zhao, K.; Zeng, Q.; Wang, C. Self-Assembly of Four-Claw Discotic mesogenic molecules: Influence of core on chirality. J. Phys. Chem. C 2015, 119, 18216–18220. [Google Scholar] [CrossRef]
- Tuncel, S.; Kaya, E.N.; Durmuş, M.; Basova, T.; Gürek, A.G.; Ahsen, V.; Banimuslem, H.; Hassan, A. Distribution of single-walled carbon nanotubes in pyrene containing liquid crystalline asymmetric zinc phthalocyanine matrix. Dalton Trans. 2014, 43, 4689–4699. [Google Scholar] [CrossRef]
- Kaya, E.N.; Polyakov, M.S.; Basova, T.V.; Durmus, M.; Hassan, A. Pyrene containing liquid crystalline asymmetric phthalocyanines and their composite materials with single-walled carbon nanotubes. J. Porphyr. Phthalocyanines 2018, 22, 56–63. [Google Scholar] [CrossRef]
- Anetai, H.; Wada, Y.; Takeda, T.; Hoshino, N.; Yamamoto, S.; Mitsuishi, M.; Takenobu, T.; Akutagawa, T. Fluorescent ferroelectrics of hydrogen-bonded pyrene derivatives. J. Phys. Chem. Lett. 2015, 6, 1813–1818. [Google Scholar]
- Anetai, H.; Sambe, K.; Takeda, T.; Hoshino, N.; Akutagawa, T. Nanoscale effects in one-dimensional columnar supramolecular ferroelectrics. Chem. Eur. J. 2019, 25, 11233–11239. [Google Scholar] [CrossRef]
- Irla, S.; Pruthvi, M.; Raghunathan, V.A.; Kumar, S. Design and synthesis of extended pyrene based discotic liquid crystalline dyes. Dyes Pigm. 2021, 194, 109574. [Google Scholar] [CrossRef]
- Chen, S.; Raad, F.S.; Ahmida, M.; Kaafarani, B.R.; Eichhorn, S.H. Columnar mesomorphism of fluorescent board-shaped quinoxalinophenanthrophenazine derivatives with donor-acceptor structure. Org. Lett. 2013, 15, 558–561. [Google Scholar] [CrossRef]
- El-Ballouli, A.O.; Kayal, H.; Shuai, C.; Zeidan, T.A.; Raad, F.S.; Leng, S.; Wex, B.; Cheng, S.Z.D.; Eichhorn, S.H.; Kaafarani, B.R. Lateral extension induces columnar mesomorphism in crucifix shaped quinoxalinophenanthrophenazines. Tetrahedron 2015, 71, 308–314. [Google Scholar] [CrossRef]
- Girotto, E.; Ferreira, M.; Sarkar, P.; Bentaleb, A.; Hillard, E.A.; Gallardo, H.; Durola, F.; Bock, H. Plank-Shaped Column-Forming Mesogens with Substituents on One Side Only. Chem. Eur. J. 2015, 21, 7603–7610. [Google Scholar] [CrossRef]
- Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef]
- Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D.T. Comparison of oxidative aromatic coupling and the Scholl reaction. Angew. Chem. Int. Ed. 2013, 52, 9900–9930. [Google Scholar] [CrossRef]
- Zhao, K.Q.; Du, J.Q.; Long, X.H.; Jing, M.; Wang, B.Q.; Hu, P.; Monobe, H.; Henrich, B.; Donnio, B. Design of Janus triphenylene mesogens: Facile synthesis, mesomorphism, photoluminescence, and semiconductivity. Dyes Pigm. 2017, 143, 252–260. [Google Scholar] [CrossRef]
- Zhao, K.Q.; Jing, M.; An, L.L.; Du, J.Q.; Wang, Y.H.; Hu, P.; Wang, B.Q.; Monobe, H.; Heinrich, B.; Donnio, B. Facile transformation of 1-aryltriphenylenes into dibenzo[fg,op]tetracenes by intramolecular Scholl cyclodehydrogenation: Synthesis, self-assembly, and charge carrier mobility of large pi-extended discogens. J. Mater. Chem. C 2017, 5, 669–682. [Google Scholar] [CrossRef]
- Ma, T.; Zhong, Y.J.; Wang, H.F.; Zhao, K.Q.; Wang, B.Q.; Hu, P.; Monobe, H.; Donnio, B. Butterfly-like shape liquid crystals based fused-thiophene as unidimensional ambipolar organic semiconductors with high mobility. Chem. Asian J. 2021, 16, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Wang, H.F.; Zhao, K.Q.; Wang, B.Q.; Hu, P.; Monobe, H.; Heinrich, B.; Donnio, B. Nonlinear nonacenes with a dithienothiophene substructure: Multifunctional compounds that act as columnar mesogens, luminophores, pi gelators, and p-type semiconductors. ChemPlusChem 2019, 84, 1439–1448. [Google Scholar] [CrossRef]
- Zhao, K.C.; Du, J.Q.; Wang, H.F.; Zhao, K.Q.; Hu, P.; Wang, B.Q.; Monobe, H.; Heinrich, B.; Donnio, B. Board-like fused-thiophene liquid crystals and their benzene analogs: Facile synthesis, self-assembly, p-type semiconductivity, and photoluminescence. Chem. Asian J. 2019, 14, 462–470. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, K.X.; Jing, M.; Long, X.H.; Zhao, K.Q.; Hu, P.; Wang, B.Q.; Lei, P.; Zeng, Q.D.; Donnio, B. Synthesis, self-assembly and optical properties of some rigid π-bridged triphenylene dimers. J. Mater. Chem. C 2022, 10, 14453–14470. [Google Scholar] [CrossRef]
- Liu, C.X.; Wang, H.; Du, J.Q.; Zhao, K.Q.; Hu, P.; Wang, B.Q.; Monobe, H.; Heinrich, B.; Donnio, B. Molecular design of benzothienobenzothiophene-cored columnar mesogens: Facile synthesis, mesomorphism, and charge carrier mobility. J. Mater. Chem. C 2018, 6, 4471–4478. [Google Scholar] [CrossRef]
- Hang, J.F.; Lin, H.; Zhao, K.Q.; Hu, P.; Wang, B.Q.; Monobe, H.; Zhu, C.; Donnio, B. Butterfly mesogens based on carbazole, fluorene or fluorenone: Mesomorphous, gelling, photophysical, and photoconductive properties. Eur. J. Org. Chem. 2021, 2021, 1989–2002. [Google Scholar] [CrossRef]
- Deng, W.J.; Liu, S.; Lin, H.; Zhao, K.X.; Bai, X.Y.; Zhao, K.Q.; Hu, P.; Wang, B.Q.; Monobe, H.; Donnio, B. Ditriphenylenothiophene butterfly-shape liquid crystals. The influence of polyarene core topology on self-organization, fluorescence and photoconductivity. New J. Chem. 2022, 46, 7936–7949. [Google Scholar] [CrossRef]
- Zhu, X.M.; Bai, X.Y.; Wang, H.F.; Hu, P.; Wang, B.Q.; Zhao, K.Q. Benzo[g]chrysene discotic liquid crystals: Synthesis, columnar mesophase and photophysical properties. Acta Chim. Sinica 2021, 79, 1486–1493. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, K.Q.; Wang, B.Q.; Hu, P.; Heinrich, B.; Donnio, B. Liquid crystal ionic self-assembly and anion-selective photoluminescence in discotic azatriphenylenes. J. Mater. Chem. C 2020, 8, 4215–4225. [Google Scholar] [CrossRef]
- Shoji, Y.; Kobayashi, M.; Kosaka, A.; Haruki, R.; Kumai, R.; Adachi, S.; Kajitani, T.; Fukushima, T. Design of discotic liquid crystal enabling complete switching along with memory of homeotropic and homogeneous alignment over a large area. Chem. Sci. 2022, 13, 9891–9901. [Google Scholar] [CrossRef]
- Donnio, B.; Heinrich, B.; Allouchi, H.; Kain, J.; Dele, S.; Guillon, D.; Bruce, D.W. A generalized model for the molecular arrangement in the columnar mesophases of polycatenar mesogens. crystal and molecular structure of two hexacatenar mesogens. J. Am. Chem. Soc. 2004, 126, 15258–15268. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Diaz, M.S.; Freile, M.L.; Gutierrez, M.I. Solvent effect on the UV/Vis absorption and fluorescence spectroscopic properties of berberine. Photochem. Photobiol. Sci. 2009, 8, 970–974. [Google Scholar] [CrossRef]
- Martin, R.B. Comparisons of Indefinite Self-Association Models. Chem. Rev. 1996, 96, 3043–3064. [Google Scholar] [CrossRef]
- Kastler, M.; Pisula, W.; Wasserfallen, D.; Pakula, T.; Müllen, K. Influence of Alkyl Substituents on the Solution- and Surface-Organization of Hexa-peri-hexabenzocoronenes. J. Am. Chem. Soc. 2005, 127, 4286–4296. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Cpds | T a | Vmol b | ρb | a/b c | A c | hmol d | hch | hπ (ξ) d | ψ e | χcore f | Dcyl g | sch h | q i | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BBP8 | Colrec | 87 | 2505 | 1.013 | 53.80/ 24.05 | 646.95 | 3.87 | 4.29 | 3.71 | 17 | 0.265 | 14.77 | 22.45 | 1.00 |
Colhex | 120 | 2570 | 0.987 | 27.03 | 632.82 | 4.06 | 4.32 | 3.74 | 23 | 0.259 | 14.44 | 23.04 | 1.01 | |
Colhex | 240 | 2867 | 0.885 | 27.23 | 641.98 | 4.46 | 4.34 | 3.84 | 30 | 0.232 | 13.77 | 24.15 | 0.98 | |
BBP10 | Colhex | 80 | 2943 | 0.989 | 28.20 | 688.60 | 4.27 | 4.32 | 3.70 | 30 | 0.226 | 14.08 | 23.62 | 1.06 |
Colhex | 160 | 3135 | 0.928 | 28.39 | 698.22 | 4.49 | 4.39 | 3.77 | 33 | 0.212 | 13.73 | 24.21 | 1.03 | |
Colhex | 230 | 3338 | 0.872 | 28.43 | 700.17 | 4.77 | 4.51 | 3.87 | 36 | 0.199 | 13.32 | 24.95 | 1.01 | |
BBP12 | Colhex | 75 | 3382 | 0.971 | 30.56 | 809.04 | 4.18 | 4.41 | 3.71 | 27 | 0.197 | 14.23 | 23.36 | 1.05 |
Colhex | 160 | 3612 | 0.909 | 30.67 | 814.56 | 4.43 | 4.37 | 3.78 | 29 | 0.184 | 13.81 | 24.03 | 1.02 | |
Colhex | 200 | 3737 | 0.878 | 30.79 | 821.32 | 4.55 | 4.53 | 3.88 | 31 | 0.178 | 13.64 | 24.37 | 1.01 | |
DPB8 | Colhex | 120 | 2570 | 0.987 | 26.43 | 604.93 | 4.25 | 4.28 | 3.71 | 29 | 0.259 | 14.12 | 23.55 | 1.03 |
Colhex | 165 | 2670 | 0.950 | 26.47 | 606.81 | 4.40 | 4.27 | 3.76 | 31 | 0.249 | 13.87 | 23.97 | 1.02 | |
DPB10 | Colhex | 110 | 3010 | 0.967 | 28.28 | 692.81 | 4.34 | 4.36 | 3.70 | 32 | 0.221 | 13.96 | 23.79 | 1.05 |
Colhex | 150 | 3109 | 0.936 | 28.55 | 706.06 | 4.40 | 4.39 | 3.72 | 32 | 0.214 | 13.87 | 23.96 | 1.03 | |
DPB12 | Colhex | 125 | 3511 | 0.935 | 30.38 | 799.30 | 4.39 | 4.32 | 3.72 | 32 | 0.189 | 13.88 | 23.93 | 1.04 |
Colhex | 140 | 3553 | 0.924 | 30.67 | 814.56 | 4.36 | 4.30 | 3.76 | 30 | 0.187 | 13.93 | 23.85 | 1.03 |
Solution | Film | |||||
---|---|---|---|---|---|---|
Compounds | Solvent | λabs | ε | λem | QY | λem |
BBP8 | C6H12 | 280 344 420 446 | 7.40 × 104 8.90 × 104 4.36 × 104 5.25 × 104 | 466 495 | 17.0 | 539 |
CH2Cl2 | 282 348 422 448 | 7.83 × 104 9.58 × 104 4.66 × 104 5.95 × 104 | 474 500 | 25.2 | ||
THF | 280 346 422 448 | 8.00 × 104 9.83 × 104 4.78 × 104 6.13 × 104 | 470 498 | 26.3 | ||
DMF | 282 348 424 450 | 6.82 × 104 8.32 × 104 4.04 × 104 5.23 × 104 | 474 498 | 31.8 | ||
DBP8 | C6H12 | 252 280 330 352 370 428 452 | 4.74 × 104 4.06 × 104 4.87 × 104 4.89 × 104 6.48 × 104 2.66 × 104 3.16 × 104 | 473 503 | 22.0 | 574 |
CH2Cl2 | 254 282 324 354 372 434 456 | 8.40 × 104 7.31 × 104 7.86 × 104 8.05 × 104 11.63 × 104 4.26 × 104 5.78 × 104 | 483 508 | 26.9 | ||
THF | 254 282 326 354 372 432 456 | 7.90 × 104 6.91 × 104 7.41 × 104 7.72 × 104 11.29 × 104 4.10 × 104 5.61 × 104 | 479 506 | 27.8 | ||
DMF | 240 282 326 356 372 434 458 | 2.94 × 104 3.15 × 104 3.50 × 104 3.64 × 104 4.78 × 104 2.31 × 104 2.68 × 104 | 483 509 | 36.7 |
Compd. | Top Views | Side Views |
---|---|---|
BBP1 | ||
DBP1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Liu, S.; Lin, H.; Zhao, K.-X.; Bai, X.-Y.; Zhao, K.-Q.; Hu, P.; Wang, B.-Q.; Donnio, B. Pyrene-Fused Poly-Aromatic Regioisomers: Synthesis, Columnar Mesomorphism, and Optical Properties. Molecules 2023, 28, 1721. https://doi.org/10.3390/molecules28041721
Zeng Q, Liu S, Lin H, Zhao K-X, Bai X-Y, Zhao K-Q, Hu P, Wang B-Q, Donnio B. Pyrene-Fused Poly-Aromatic Regioisomers: Synthesis, Columnar Mesomorphism, and Optical Properties. Molecules. 2023; 28(4):1721. https://doi.org/10.3390/molecules28041721
Chicago/Turabian StyleZeng, Qing, Shuai Liu, Hang Lin, Ke-Xiao Zhao, Xiao-Yan Bai, Ke-Qing Zhao, Ping Hu, Bi-Qin Wang, and Bertrand Donnio. 2023. "Pyrene-Fused Poly-Aromatic Regioisomers: Synthesis, Columnar Mesomorphism, and Optical Properties" Molecules 28, no. 4: 1721. https://doi.org/10.3390/molecules28041721
APA StyleZeng, Q., Liu, S., Lin, H., Zhao, K. -X., Bai, X. -Y., Zhao, K. -Q., Hu, P., Wang, B. -Q., & Donnio, B. (2023). Pyrene-Fused Poly-Aromatic Regioisomers: Synthesis, Columnar Mesomorphism, and Optical Properties. Molecules, 28(4), 1721. https://doi.org/10.3390/molecules28041721