Study on Ultrasonic Far-Infrared Radiation Drying and Quality Characteristics of Wolfberry (Lycium barbarum L.) under Different Pretreatments
Abstract
:1. Introduction
2. Results and Analysis
2.1. Analysis of Drying Characteristics
2.2. Color Difference
2.3. Rewaterability
2.4. Polysaccharides
2.5. Total Phenols
2.6. Total Flavonoids
2.7. Antioxidant Activity
2.8. Vitamin C
2.9. Betaine
2.10. Microstructure
3. Materials and Methods
3.1. Test Materials
3.2. Test Equipment
3.3. Test Method
3.3.1. Pretreatment Conditions
3.3.2. Test Process
3.4. Measurement of Test Indicators
3.4.1. Determination of Moisture Content
3.4.2. Determination of Drying Rate
3.4.3. Determination of Moisture Ratio
3.5. Determination of Drying Quality
3.5.1. Determination of Rehydration Ratio
3.5.2. Determination of Color
3.5.3. Determination of Polysaccharide Content
3.5.4. Determination of Total Phenol Content
3.5.5. Determination of Total Flavonoids Content
3.5.6. Determination of Antioxidant Activity
3.5.7. Determination of Vc Content
3.5.8. Determination of Betaine Content
- (I).
- Chromatographic conditions
- (II).
- Preparation of reference solution
- (III).
- Preparation of test samples
3.6. Microstructure
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adiletta, G.; Alam, M.R.; Cinquanta, L.; Russo, P.; Di Matteo, M. Effect of abrasive pretreatment on hot dried goji berry. Chem. Eng. Trans. 2015, 44, 127–132. [Google Scholar]
- Fratianni, A.; Niro, S.; Alam MD, R.; Cinquanta, L.; Di Matteo, M.; Adiletta, G.; Panfili, G. Effect of a physical pre-treatment and drying on carotenoids of goji berries (Lycium barbarian L.). LWT-Food Sci. Technol. 2018, 92, 318–323. [Google Scholar] [CrossRef]
- Bwa, B.; Xg, A.; Yg, A.; Hma, B.; Cz, A. Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure. Food Chem. 2021, 358, 129845. [Google Scholar]
- Shi, X.W.; Yang, Y.; Li, Z.Y.; Wang, X.Y.; Liu, Y.H. Moisture transfer and microstructure change of banana slices during contact ultrasound strengthened far-infrared radiation drying. Innov. Food Sci. Emerg. Technol. 2020, 66, 102537. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, X.F.; Miao, S.; Y, Y.; Zhu, W.K. Ultrasonic-far-infrared radiation drying characteristics and microstructure of pumpkin slices. J. Agric. Eng. 2016, 32, 277–286. [Google Scholar]
- Liu, Y.H.; Zeng, Y.; Hu, X.Y.; Sun, X. Effect of Ultrasonic Power on Water Removal Kinetics and Moisture Migration of Kiwifruit Slices During Contact Ultrasound Intensified Heat Pump Drying. Food Bioprocess Technol. 2020, 13, 430–441. [Google Scholar] [CrossRef]
- Du, J. Study on Waxing and Drying Technology of Chinese Wolfberry Epidermis; Lanzhou University of Technology: Lanzhou, China, 2010. [Google Scholar]
- Wang, Z.K.; Ren, G.Y.; Duan, X.; Liu, L.L.; Zhu, K.Y.; Chu, Q.Q. Effect of alkaline ethyl oleate + ultrasonic pretreatment on the drying characteristics of Lycium barbarum heat pump. Food Ferment. Ind. 2022, 1–11. [Google Scholar] [CrossRef]
- Song, H.H.; Chen, Q.Q.; Bi, J.F.; Zhou, L.Y.; Yi, J.Y. Effect of drying method and lye treatment on drying characteristics and quality of fresh wolfberry. Food Sci. 2018, 39, 197–206. [Google Scholar]
- Dermesonlouoglou, E.; Chalkia, A.; Taoukis, P. Application of osmotic dehydration to improve the quality of dried goji berry. J. Food Eng. 2018, 232, 36–43. [Google Scholar] [CrossRef]
- Tang, L.L.; Yi, J.Y.; Bi, J.F.; Hou, X.J.; Wu, X.Y.; Zhou, F.O. Effect of pretreatment on the quality and microstructure of pressure differential flash-dried fengshui pear crisps. Food Sci. 2016, 37, 73–78. [Google Scholar]
- Frédéric, P.; Lília, M.A.; Tomas, F.; Siw, K.; Maud, L.; Ingegerd, S. Effects of combined osmotic and microwave dehydration of apple on texture, microstructure and rehydration characteristics. LWT Food Sci. Technol. 2001, 34, 95–101. [Google Scholar]
- Lenart, A.; Flink, M.J. Osmotic concentration of potato. ii. spatial distribution of the osmotic effect. Int. J. Food Sci. Technol. 2007, 19, 65–89. [Google Scholar] [CrossRef]
- Sereno, A.M.; Moreira, R.; Martinez, E. Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueous solutions of sugar and salt. J. Food Eng. 2001, 47, 43–49. [Google Scholar] [CrossRef]
- Mandala, I.G.; Anagnostaras, E.F.; Oikonomou, C.K. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J. Food Eng. 2005, 69, 307–316. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, T.; Liu, H.; Pan, Q.; Zhan, J.; Huang, W. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regul. 2009, 58, 251–260. [Google Scholar] [CrossRef]
- Yu, F.; Wan, N.; Li, Y.H.; Wang, X.C.; Wu, Z.F.; Liu, Z.F.; Yang, M. Analysis of the laws and mechanisms of physical and chemical property changes during drying of Chinese herbal medicines. Chin. Herb. Med. 2021, 52, 2144–2153. [Google Scholar]
- Piga, A.; Del Caro, A.; Corda, G. From plums to prunes: influence of drying parameters on polyphenols and antioxidant activity. J. Agric. Food Chem. 2003, 51, 3675–3681. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, F.X.; Zang, Z.P.; Jiang, C.H.; Xu, Y.R.; Huang, X.P. Effect of ultrasonic far-infrared synergistic drying on the characteristics and qualities of wolfberry (Lycium barbarum L.). Ultrason. Sonochemistry 2022, 89, 106134. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis; (no. 934.06); Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Wan, F.X.; Li, W.Q.; Luo, Y.; Wei, B.; Huang, X.P. Effect of ultrasonic pretreatment on the characteristics and quality of far-infrared vacuum drying of Lycium barbarum. Chin. Herb. Med. 2020, 51, 4654–4663. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Lay, M.; Karsani, S.; Mohajer, S.; Malek, S.A. Phytochemical constituents, nutritional values, phenolics, flavonols, flavonoids, antioxidant and cytotoxicity studies on Phaleria macrocarpa (Scheff.) boerl fruits. BMC Complement. Altern. Med. 2014, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Nencini, C.; Menchiari, A.; Franchi, G.G.; Micheli, L. In vitro antioxidant activity of aged extracts of some Italian Allium species. Plant Foods Hum. Nutr. 2011, 66, 11–16. [Google Scholar] [CrossRef] [PubMed]
Processing Mode | L* | a* | b* | ΔE |
---|---|---|---|---|
Fresh sample | 38.57 ± 0.87 a | 39.39 ± 0.59 ab | 26.02 ± 0.27 a | - |
Natural drying | 38.47 ± 2.21 a | 43.93 ± 2.67 a | 19.38 ± 0.74 by | 8.56 ± 1.41 b |
Hot blanching | 38.11 ± 0.99 a | 41.99 ± 2.36 ab | 19.80 ± 0.35 b | 7.19 ± 0.79 bc |
Candied pretreatment | 39.17 ± 0.09 a | 39.53 ± 2.34 ab | 20.00 ± 0.57 b | 6.47 ± 0.76 c |
0.5% NaOH | 38.88 ± 1.31 a | 39.88 ± 2.62 ab | 19.51 ± 0.85 bc | 7.19 ± 0.48 bc |
5% NaCl | 38.43 ± 1.30 a | 39.75 ± 2.45 ab | 19.11 ± 0.52 bc | 7.44 ± 0.79 bc |
0.4% Na2CO3 | 37.90 ± 0.07 a | 36.77 ± 0.65 b | 18.79 ± 0.61 b | 8.58 ± 0.43 a |
Processing Mode | Rewaterability g/g | Polysaccharide g/g | Total Phenols mg/g | Total Flavonoids mg/g | Antioxidant Activity % | Vc mg/100 g | Betaine % |
---|---|---|---|---|---|---|---|
Natural drying | 2.76 ± 0.14 a | 0.63 ± 0.01 c | 4.45 ± 0.04 f | 1.68 ± 0.05 b | 33.97 ± 0.13 d | 58.15 ± 0.68 e | 2.62 ± 0.05 d |
Hot blanching | 1.97 ± 0.01 b | 0.54 ± 0.02 d | 8.07 ± 0.04 b | 1.08 ± 0.03 e | 25.58 ± 0.69 e | 92.56 ± 0.39 a | 2.87 ± 0.11 c |
Candied pretreatment | 1.53 ± 0.03 d | 0.83 ± 0.02 a | 9.26 ± 0.03 a | 2.61 ± 0.04 a | 58.81 ± 1.22 c | 83.72 ± 0.43 b | 2.84 ± 0.06 c |
0.5% NaOH | 1.95 ± 0.01 b | 0.53 ± 0.01 d | 4.67 ± 0.05 e | 1.37 ± 0.06 c | 62.08 ± 0.06 b | 71.96 ± 0.89 c | 2.87 ± 0.05 c |
5% NaCl | 1.91 ± 0.02 b | 0.64 ± 0.03 c | 5.68 ± 0.07 d | 1.24 ± 0.04 d | 65.01 ± 0.73 a | 61.73 ± 0.88 d | 3.08 ± 0.05 b |
0.4% Na2CO3 | 1.64 ± 0.02 c | 0.74 ± 0.02 b | 7.16 ± 0.06 c | 1.42 ± 0.03 c | 61.11 ± 0.81 b | 57.22 ± 0.72 e | 3.24 ± 0.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wan, F.; Yue, Y.; Zang, Z.; Xu, Y.; Jiang, C.; Shang, J.; Wang, T.; Huang, X. Study on Ultrasonic Far-Infrared Radiation Drying and Quality Characteristics of Wolfberry (Lycium barbarum L.) under Different Pretreatments. Molecules 2023, 28, 1732. https://doi.org/10.3390/molecules28041732
Zhang Q, Wan F, Yue Y, Zang Z, Xu Y, Jiang C, Shang J, Wang T, Huang X. Study on Ultrasonic Far-Infrared Radiation Drying and Quality Characteristics of Wolfberry (Lycium barbarum L.) under Different Pretreatments. Molecules. 2023; 28(4):1732. https://doi.org/10.3390/molecules28041732
Chicago/Turabian StyleZhang, Qian, Fangxin Wan, Yuanman Yue, Zepeng Zang, Yanrui Xu, Chunhui Jiang, Jianwei Shang, Tongxun Wang, and Xiaopeng Huang. 2023. "Study on Ultrasonic Far-Infrared Radiation Drying and Quality Characteristics of Wolfberry (Lycium barbarum L.) under Different Pretreatments" Molecules 28, no. 4: 1732. https://doi.org/10.3390/molecules28041732
APA StyleZhang, Q., Wan, F., Yue, Y., Zang, Z., Xu, Y., Jiang, C., Shang, J., Wang, T., & Huang, X. (2023). Study on Ultrasonic Far-Infrared Radiation Drying and Quality Characteristics of Wolfberry (Lycium barbarum L.) under Different Pretreatments. Molecules, 28(4), 1732. https://doi.org/10.3390/molecules28041732