Tracking of Thermal, Physicochemical, and Biological Parameters of a Long-Term Stored Honey Artificially Adulterated with Sugar Syrups
Abstract
:1. Introduction
2. Results and Discussion
2.1. Long-Term Stored Honey Behavior and Appearance
2.2. Physicochemical Parameters
2.3. Bioactivity Indicators
2.4. Thermal Analysis
3. Materials and Methods
3.1. Material and Reagents
3.2. Preparation of Model Honey Adulterated with Syrups
3.3. Physicochemical Parameters
3.4. Bioactivity Assays
3.5. DSC Analysis
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zábrodská, B.; Vorlová, L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno 2014, 83, S85–S102. [Google Scholar] [CrossRef]
- Sandakova, S.; Motina, N. Diagnostics of counterfeit food products. IOP Conf. Ser. Earth Environ. Sci. 2021, 937, 022105. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Selamat, J.; Khatib, A.; Razi, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The toxic impact of honey adulteration: A review. Foods 2020, 9, 1538. [Google Scholar] [CrossRef] [PubMed]
- Sivakesava, S.; Irudayaraj, J. Detection of inverted beet sugar adulteration of honey by FTIR spectroscopy. J. Sci. Food Agric. 2001, 81, 683–690. [Google Scholar] [CrossRef]
- Megherbi, M.; Herbreteau, B.; Faure, R.; Salvador, A. Polysaccharides as a Marker for Detection of Corn Sugar Syrup Addition in Honey. J. Sci. Food Agric. 2009, 57, 2105–2111. [Google Scholar] [CrossRef]
- Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Sugar Profiling of Honeys for Authentication and Detection of Adulterants Using High-Performance Thin Layer Chromatography. Molecules 2020, 25, 5289. [Google Scholar] [CrossRef]
- Truong, A.T.; Kim, S.; Yoon, B. Determination of honey adulterated with corn syrup by quantitative amplification of maize residual DNA using ultra-rapid real-time PCR. J. Sci. Food Agric. 2022, 102, 774–781. [Google Scholar] [CrossRef]
- Yan, S.; Sun, M.; Wang, X.; Shan, J.; Xue, X. A Novel, Rapid Screening Technique for Sugar Syrup Adulteration in Honey Using Fluorescence Spectroscopy. Foods 2022, 11, 2316. [Google Scholar] [CrossRef]
- Cengiz, M.F.; Durak, M.Z. Rapid detection of sucrose adulteration in honey using Fourier transform infrared spectroscopy. Spectrosc. Lett. 2019, 52, 267–273. [Google Scholar] [CrossRef]
- Downey, G.; Fouratier, V.; Kelly, J.D. Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy. J. Infrared Spectrosc. 2003, 11, 447–456. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S.; Todosi, E. Rheological analysis of honeydew honey adulterated with glucose, fructose, inverted sugar, hydrolysed inulin syrup and malt wort. LWT Food Sci. Technol. 2018, 95, 1–8. [Google Scholar] [CrossRef]
- Bodor, Z.; Kovacs, Z.; Rashed, M.S.; Kókai, Z.; Dalmadi, I.; Benedek, C. Sensory and physicochemical evaluation of acacia and linden honey adulterated with sugar syrup. Sensors 2020, 20, 4845. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Matute, A.I.; Soria, A.C.; Martínez-Castro, I.; Sanz, M.L. A new methodology based on GC-MS to detect honey adulteration with commercial syrups. J. Agric. Food Chem. 2007, 55, 7264–7269. [Google Scholar] [CrossRef]
- Du, B.; Wu, L.; Xue, X.; Chen, L.; Li, Y.; Zhao, J.; Cao, W. Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 6614–6623. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, Q.; Wang, L.; Lin, L.; Shi, H.; Cao, H.; Cao, B. Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem. 2015, 172, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Rios-Corripio, M.A.; Rojas-López, M.; Delgado-Macuil, R. Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods. CYTA J. Food 2012, 10, 119–122. [Google Scholar] [CrossRef]
- Tosun, M. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chem. 2013, 138, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Cordella, C.; Faucon, J.P.; Cabrol-Bass, D.; Sbirrazzuoli, N. Application of DSC as a tool for honey floral species characterization and adulteration detection. J. Therm. Anal. Calorim. 2003, 71, 279–290. [Google Scholar] [CrossRef]
- Tomaszewska-Gras, J.; Bakier, S.; Goderska, K.; Mansfeld, K. Differential scanning calorimetry for determining the thermodynamic properties of selected honeys. J. Apic. Sci. 2015, 59, 109–118. [Google Scholar] [CrossRef]
- Dranca, F.; Ropciuc, S.; Pauliuc, D.; Oroian, M. Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters. LWT Food Sci. Technol. 2022, 168, 113910. [Google Scholar] [CrossRef]
- Dżugan, M.; Grabek-Lejko, D.; Sidor, E.; Tomczyk, M. The impact of ultrasound decrystallization on enzymatic, antioxidant and antibacterial properties of honey. Innov. Food Sci. Emerg. Technol. 2021, 71, 102709. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Matwijczuk, A.; Florek, M.; Barłowska, J.; Wolanciuk, A.; Matwijczuk, A.; Chruściel, E.; Walkowiak, R.; Karcz, D.; Gładyszewska, B. Application of FTIR spectroscopy for analysis of the quality of honey. BIO Web Conf. 2018, 10, 02008. [Google Scholar] [CrossRef]
- Gebremariam, T.; Brhane, G. Determination of Quality and Adulteration Effects of Honey from Adigrat and Its Surrounding Areas. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2010, 2, 71–76. [Google Scholar]
- Gemeda, M.; Negera, T. Assessing the Effect of Adulteration on Honey and Beeswax Quality and Designing Way of Identification in Oromia. Int. J. Res. Stud. Biosci. 2017, 5, 34–39. [Google Scholar] [CrossRef]
- Amiry, S.; Esmaiili, M.; Alizadeh, M. Classification of adulterated honeys by multivariate analysis. Food Chem. 2017, 224, 390–397. [Google Scholar] [CrossRef]
- Damto, T. A Review on Status of Honey Adulteration and Their Detection Techniques in Ethiopia. J. Nutr. Food Sci. 2021, 11, 180. [Google Scholar]
- Ambaw, M.; Teklehaimanot, T. Study on the quality parameters and the knowledge of producers on honey adulteration in selected districts of Arsi Zone. Int. J. Agric. Vet. Sci. 2018, 4, 1–6. [Google Scholar]
- International Honey Commission. Harmonised Methods of the International Honey Commission; International Honey Commission: Cluj-Napoca, Romania, 2009. [Google Scholar]
- Yilmaz, M.T.; Tatlisu, N.B.; Toker, O.S.; Karaman, S.; Dertli, E.; Sagdic, O.; Arici, M. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Res. Int. 2014, 64, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Honey Composition. Book of Honey; Chapter 5; Bee Product Science: Muehlethurnen, Switzerland, 2010; Available online: https://www.bee-hexagon.net (accessed on 24 October 2022).
- Terrab, A.; Escudero, M.L.; González-Miret, M.L.; Heredia, F.J. Colour characteristics of honeys as influenced by pollen grain content: A multivariate study. J. Sci. Food Agric. 2004, 84, 380–386. [Google Scholar] [CrossRef]
- Yakubu, A.; Sahabi, S.; Sani, G.D.; Faruku, S. Determination of Sugar Adulteration in Honey Using Conductivity Meter. J. Res. Environ. Earth Sci. 2021, 7, 2348–2532. [Google Scholar]
- Acquarone, C.; Buera, P.; Elizalde, B. Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chem. 2007, 101, 695–703. [Google Scholar] [CrossRef]
- Bakier, S. Influence of temperature and water content on the rheological properties of polish honeys. Polish J. Food Nutr. Sci. 2007, 57, 17–23. [Google Scholar]
- Gómez-Díaz, D.; Navaza, J.M.; Quintáns-Riveiro, L.C. Effect of temperature on the viscosity of honey. Int. J. Food Prop. 2009, 12, 396–404. [Google Scholar] [CrossRef]
- Ciursa, P.; Oroian, M. Rheological behavior of honey adulterated with agave, maple, corn, rice and inverted sugar syrups. Sci. Rep. 2021, 11, 23408. [Google Scholar] [CrossRef] [PubMed]
- Escuredo, O.; Dobre, I.; Fernández-González, M.; Seijo, M.C. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem. 2014, 149, 84–90. [Google Scholar] [CrossRef]
- Scripcă, L.A.; Amariei, S. The use of ultrasound for preventing honey crystallization. Foods 2021, 10, 773. [Google Scholar] [CrossRef]
- Tura, A.G.; Seboka, D.B. Review on Honey Adulteration and Detection of Adulterants in Honey. Int. J. Gastroenterol. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Bogdanov, S.; Ruoff, K.; Oddo, L. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 2004, 35, S4–S17. [Google Scholar] [CrossRef]
- Zayapor, M.N.; Abdullah, A.; Aida, W.; Mustapha, W. Influence of sugar concentration and sugar type on the polyphenol content and antioxidant activity in spiced syrup preparation. Ital. J. Food Sci. 2021, 33, 96–105. [Google Scholar] [CrossRef]
- Nisbet, C.; Kazak, F.; Ardalı, Y. Determination of Quality Criteria that Allow Differentiation Between Honey Adulterated with Sugar and Pure Honey. Biol. Trace Elem. Res. 2018, 186, 288–293. [Google Scholar] [CrossRef]
- Benković, M.; Jurina, T.; Longin, L.; Grbeš, F.; Valinger, D.; Jurinjak Tušek, A.; Gajdoš Kljusurić, J. Qualitative and Quantitative Detection of Acacia Honey Adulteration with Glucose Syrup Using Near-Infrared Spectroscopy. Separations 2022, 9, 312. [Google Scholar] [CrossRef]
- Sidor, E.; Tomczyk, M.; Dzugan, M. Application of Ultrasonic or Microwave Radiation to Delay Crystallization and Liquefy Solid Honey. J. Apic. Sci. 2021, 65, 243–253. [Google Scholar] [CrossRef]
- Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer Verlag: Berlin, Germany, 2005. [Google Scholar]
- Magoń, A.; Pyda, M. Apparent heat capacity measurements and thermodynamic functions of D(-)-fructose by standard and temperature-modulated calorimetry. J. Chem. Thermodyn. 2013, 56, 67–82. [Google Scholar] [CrossRef]
- Fan, J.; Angell, C.A. Relaxational transitions and ergodicity breaking within the fluid state: The sugars fructose and galactose. Thermochim. Acta 1995, 266, 9–30. [Google Scholar] [CrossRef]
- Tombari, E.; Cardelli, C.; Salvetti, G.; Johari, G.P. Dielectric relaxation and the conformer equilibrium in the liquid and glassy states of β-D-fructose. J. Mol. Struct. 2001, 559, 245–254. [Google Scholar] [CrossRef]
- Correia, N.T.; Diogo, H.P.; Moura Ramos, J.J. Slow molecular mobility in the amorphous solid state of fructose: Fragility and aging. J. Food Sci. 2009, 74, E526–E533. [Google Scholar] [CrossRef]
- Wlodarczyk, P.; Kaminski, K.; Paluch, M.; Ziolo, J. Mutarotation in D-fructose melt monitored by dielectric spectroscopy. J. Phys. Chem. B 2009, 113, 4379–4383. [Google Scholar] [CrossRef]
- Slade, L.; Levine, H. Non-equilibrium behavior of small carbohydrate-water systems. Pure Appl. Chem. 1988, 60, 1841–1864. [Google Scholar] [CrossRef]
- Finegold, L.; Franks, F.; Hatley, R.H.M. Lass/rubber transitions and heat capacities of binary sugar blends. J. Chem. Soc. Faraday Trans. 1989, 85, 2945–2951. [Google Scholar] [CrossRef]
- Wungtanagorn, R.; Schmidt, S.J. Thermodynamic properties and kinetics of the physical ageing of amorphous glucose, fructose, and their mixture. J. Therm. Anal. Calorim. 2001, 65, 9–35. [Google Scholar] [CrossRef]
- Truong, V.; Bhandari, B.R.; Howes, T.; Adhikari, B. Glass transition behaviour of fructose. Int. J. Food Sci. Technol. 2004, 39, 569–578. [Google Scholar] [CrossRef]
- Orford, P.D.; Parker, R.; Ring, S.G. Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydr. Res. 1990, 196, 11–18. [Google Scholar] [CrossRef]
- Magoń, A.; Wurm, A.; Schick, C.; Pangloli, P.; Zivanovic, S.; Skotnicki, M.; Pyda, M. Heat capacity and transition behavior of sucrose by standard, fast scanning and temperature-modulated calorimetry. Thermochim. Acta 2014, 589, 183–196. [Google Scholar] [CrossRef]
- Vanhal, I.; Blond, G. Impact of melting conditions of sucrose on its glass transition temperature. J. Agric. Food Chem. 1999, 47, 4285–4290. [Google Scholar] [CrossRef]
- Urbani, R.; Sussich, F.; Prejac, S.; Cesaro, A. Enthalpy relaxation and glass transition behaviour of sucrose by static and dynamic DSC. Thermochim. Acta 2007, 304–305, 359–367. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Howes, T. Implication of Glass Transition for the Drying and Stability of Foods. J. Food Eng. 1999, 40, 71–79. [Google Scholar] [CrossRef]
- Lee, J.W.; Thomas, L.C.; Schmidt, S.J. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (Part I). J. Agric. Food Chem. 2011, 59, 684–701. [Google Scholar] [CrossRef]
- Tomczyk, M.; Bocian, A.; Sidor, E.; Miłek, M.; Zaguła, G.; Dżugan, M. The Use of HPTLC and SDS-PAGE Methods for Coniferous Honeydew Honey Fingerprinting Compiled with Mineral Content and Antioxidant Activity. Molecules 2022, 27, 720. [Google Scholar] [CrossRef]
- Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
Sample/Adulterant | Sample Code | L/S Layer Ratio [w/w] | Color [Pfund] | Water Content [%] | Water Activity [aw] | pH | Conductivity [mS/cm] | Viscosity [mPa*s] | F/G Ratio | HMF [mg/kg] | |
---|---|---|---|---|---|---|---|---|---|---|---|
Control honey | H | - | 102 ± 1.4 A | 17.90 ± 0.1 A | 0.569 ± 0.00 A | 4.45 ± 0.01 A | 0.764 ± 0.014 A | 10910 ± 14 A | 0.62 | 5.03 ± 0.29 A | |
Invert syrup | I | - | 42 ± 1.4 * | 28.9 ± 0.1 * | 0.713 ± 0.00 * | 5.61 ± 0.03 * | 0.171 ± 0.001 * | 365 ± 7 * | 0.60 | 10.57 ± 0.36 * | |
Sugar syrup | S | - | 6 ± 0.7 * | 29.9 ± 0.0 * | 0.731 ± 0.00 * | 4.78 ± 0.01 * | 0.056 ± 0.000 * | 355 ± 7 * | 0.66 | 0.00 ± 0.06 * | |
Invert addition | Invert adulterated honey | ||||||||||
5% | Mix | HI 5 | 1 | 98 ± 0.7 B | 19.5 ± 0.1 CDa | 0.591 ± 0.00 B | 4.64 ± 0.01 CE | 0.751 ± 0.001 ABa | n.t. | 0.63 | 14.19 ± 0.52 BCa |
Liquid | HIL 5 | 99 ± 0.7 | 19.8 ± 0.1 b | 0.589 ± 0.00 b | 4.60 ± 0.03 | 0.774 ± 0.003 a | 10215 ± 7 B | 0.70 | 16.72 ± 0.41 b | ||
Solid | HIS 5 | 96 ± 0.0 | 18.2 ± 0.3 a | 0.591 ± 0.00 ab | 4.66 ± 0.04 | 0.703 ± 0.003 b | n.t. | 0.61 | 12.23 ± 0.56 a | ||
10% | Mix | HI 10 | 1.70 | 95 ± 0.7 BC | 19.8 ± 0.1 BCa | 0.596 ± 0.00 C | 4.74 ± 0.02 BD | 0.716 ± 0.002 Ca | n.t. | 0.66 | 15.83 ± 0.31 BEa |
Liquid | HIL 10 | 96 ± 0.7 | 20.9 ± 0.2 b | 0.596 ± 0.00 | 4.69 ± 0.02 | 0.744 ± 0.003 b | 9955 ± 7 C | 0.75 | 18.30 ± 0.54 b | ||
Solid | HIS 10 | 94 ± 0.7 | 18.9 ± 0.4 c | 0.597 ± 0.00 | 4.77 ± 0.03 | 0.649 ± 0.003 c | n.t. | 0.55 | 11.78 ± 0.42 c | ||
20% | Mix | HI 20 | 2.22 | 93 ± 0.0 Cab | 20.1 ± 0.2 BEa | 0.606 ± 0.00 D | 4.82 ± 0.05 B | 0.676 ± 0.002 Da | n.t. | 0.67 | 17.92 ± 0.47 FGa |
Liquid | HIL 20 | 94 ± 0.0 a | 21.9 ± 0.1 b | 0.606 ± 0.00 | 4.79 ± 0.01 | 0.702 ± 0.003 b | 6030 ± 14 D | 0.73 | 20.24 ± 0.74 b | ||
Solid | HIS 20 | 91 ± 0.7 b | 19.9 ± 0.1 a | 0.607 ± 0.00 | 4.87 ± 0.02 | 0.586 ± 0.001 c | n.t. | 0.49 | 16.22 ± 0.34 a | ||
30% | Mix | HI 30 | 2.70 | 89 ± 0.7 Dab | 21.7 ± 0.1 Fa | 0.632 ± 0.00 E | 5.07 ± 0.02 F | 0.622 ± 0.005 Ea | n.t. | 0.81 | 22.11 ± 0.66 H |
Liquid | HIL 30 | 91 ± 0.0 a | 23.2 ± 0.2 b | 0.625 ± 0.00 | 4.97 ± 0.02 | 0.687 ± 0.001 b | 3445 ± 7 E | 1.00 | 22.98 ± 0.51 | ||
Solid | HIS 30 | 87 ± 0.7 b | 21.4 ± 0.1 a | 0.639 ± 0.00 | 5.14 ± 0.02 | 0.500 ± 0.001 c | n.t. | 0.52 | 20.99 ± 0.71 | ||
Syrup addition | Syrup adulterated honey | ||||||||||
5% | Mix | HS 5 | 1.17 | 96 ± 0.0 BC | 19.1 ± 0.2 D | 0.587 ± 0.00 F | 4.55 ± 0.01 C | 0.746 ± 0.00 ABa | n.t. | 0.81 | 12.18 ± 0.41 Dab |
Liquid | HSL 5 | 97 ± 0.7 | 20.1 ± 0.7 | 0.586 ± 0.00 | 4.53 ± 0.01 | 0.785 ± 0.002 b | 9165 ± 7 F | 0.92 | 13.74 ± 0.88 a | ||
Solid | HSS 5 | 94 ± 1.4 | 18.9 ± 0.2 | 0.588 ± 0.00 | 4.57 ± 0.01 | 0.699 ± 0.000 c | n.t. | 0.65 | 11.18 ± 0.59 b | ||
10% | Mix | HS 10 | 1.94 | 87 ± 0.7 DEa | 19.5 ± 0.1 CD | 0.605 ± 0.00 Da | 4.59 ± 0.01 C | 0.701 ± 0.001 Ca | n.t. | 0.75 | 13.83 ± 0.56 CDa |
Liquid | HSL 10 | 89 ± 0.0 a | 20.7 ± 0.2 | 0.601 ± 0.00 b | 4.56 ± 0.01 | 0.725 ± 0.002 b | 7230 ± 14 G | 0.85 | 15.23 ± 0.33 b | ||
Solid | HSS 10 | 83 ± 0.7 b | 19.3 ± 0.2 | 0.609 ± 0.00 c | 4.61 ± 0.01 | 0.631 ± 0.001 c | n.t. | 0.59 | 10.01 ± 0.47 a | ||
20% | Mix | HS 20 | 2.84 | 84 ± 0.7 Ea | 20.8 ± 0.2 EGab | 0.613 ± 0.00 Ga | 4.64 ± 0.02 CEab | 0.656 ± 0.002 Da | n.t. | 0.74 | 16.20 ± 0.54 EFa |
Liquid | HSL 20 | 85 ± 0.0 a | 21.5 ± 0.3 a | 0.611 ± 0.00 a | 4.57 ± 0.00 a | 0.688 ± 0.001 b | 5805 ± 7 D | 0.87 | 18.97 ± 0.78 b | ||
Solid | HSS 20 | 79 ± 0.0 b | 19.9 ± 0.1 b | 0.615 ± 0.00 b | 4.66 ± 0.01 b | 0.564 ± 0.001 c | n.t. | 0.57 | 11.28 ± 0.69 c | ||
30% | Mix | HS 30 | 3.54 | 78 ± 0.7 Fa | 21.3 ± 0.2 FG | 0.631 ± 0.00 E | 4.70 ± 0.02 DEab | 0.563 ± 0.003 Fa | n.t. | 0.74 | 19.01 ± 0.34 Ga |
Liquid | HSL 30 | 80 ± 0.0 a | 22.7 ± 0.5 | 0.629 ± 0.0 | 4.67 ± 0.00 a | 0.599 ± 0.002 b | 3675 ± 7 | 0.77 | 21.20 ± 0.50 b | ||
Solid | HSS 30 | 75 ± 0.7 b | 20.8 ± 0.1 | 0.631 ± 0.0 | 4.74 ± 0.02 b | 0.473 ± 0.001 c | n.t. | 0.51 | 13.48 ± 0.40 c |
Sample | DPPH [µmol TE/100 g] | FRAP [µmol TE/100 g] | TPC [mg GAE/100 g] | Protein Content [mg/100 g] | Diastase [DN] |
---|---|---|---|---|---|
Control honey | 56.82 ± 1.22 A | 570.39 ± 6.51 A | 229.91 ± 1.05 A | 117.95 ± 0.45 A | 23.41 ± 0.22 A |
Invert syrup | 1.81 ± 0.68 * | 50.99 ± 0.47 * | 55.80 ± 2.31 * | 0.94 ± 0.14 * | <0.9 ** |
Sugar syrup | 14.51 ± 2.06 * | 112.83 ± 6.05 * | 38.99 ± 1.26 * | 0.05 ± 0.13 * | <0.9 ** |
Invert addition | |||||
HI 5 | 47.87 ± 0.67 Ba | 508.55 ± 14.89 B | 205.36 ± 2.10 B | 106.53 ± 1.22 B | 22.90 ± 0.06 AB |
HIL 5 | 54.42 ± 0.72 b | 518.42 ± 6.51 | 203.87 ± 1.68 | 107.16 ± 0.56 | 20.04 ± 3.91 |
HIS 5 | 45.82 ± 0.88 a | 493.75 ± 18.14 | 208.63 ± 4.63 | 105.43 ± 1.00 | 21.42 ± 0.48 |
HI 10 | 41.85 ± 0.42 C | 452.96 ± 2.33 CE | 198.21 ± 1.26 BC | 104.64 ± 0.78 BC | 21.66 ± 0.70 C |
HIL 10 | 43.36 ± 0.86 | 441.45 ± 5.58 | 193.15 ± 0.84 | 102.04 ± 0.22 | 19.19 ± 0.24 |
HIS 10 | 41.85 ± 0.42 | 442.11 ± 1.86 | 188.99 ± 2.53 | 102.04 ± 0.89 | 19.79 ± 0.28 |
HI 20 | 38.61 ± 1.64 CD | 426.32 ± 0.93 DE | 179.46 ± 2.53 D | 101.41 ± 1.11 Ca | 15.74 ± 0.22 D |
HIL 20 | 39.19 ± 0.83 | 415.13 ± 5.58 | 185.12 ± 1.26 | 101.80 ± 1.00 a | 16.29 ± 0.12 |
HIS 20 | 43.23 ± 3.22 | 421.05 ± 0.93 | 172.92 ± 2.95 | 95.82 ± 0.56 b | 14.95 ± 0.18 |
HI 30 | 34.35 ± 0.39 DE | 394.74 ± 6.51 DFa | 152.98 ± 2.10 Ea | 95.03 ± 1.45 D | 10.63 ± 0.22 E |
HIL 30 | 32.56 ± 1.35 | 453.62 ± 0.47 b | 151.79 ± 5.05 a | 98.66 ± 1.22 | 9.58 ± 0.44 |
HIS 30 | 36.03 ± 1.20 | 366.45 ± 1.86 a | 165.33 ± 5.26 b | 98.26 ± 1.34 | 9.31 ± 0.18 |
Syrup addition | |||||
HS 5 | 43.84 ± 3.24 C | 511.84 ± 14.89 B | 201.64 ± 1.47 BCa | 111.65 ± 0.67 Eb | 22.86 ± 0.08 ABa |
HSL 5 | 39.78 ± 0.83 | 525.33 ± 3.26 | 196.88 ± 1.89 b | 106.76 ± 0.89 a | 22.79 ± 0.06 ab |
HSS 5 | 47.11 ± 3.57 | 495.39 ± 3.72 | 183.48 ± 1.89 a | 107.32 ± 1.22 a | 22.13 ± 0.24 b |
HS 10 | 38.90 ± 0.41 CD | 481.25 ± 6.98 BCa | 197.02 ± 3.79 Ca | 102.75 ± 0.78 BC | 21.51 ± 0.36 Ca |
HSL 10 | 41.70 ± 0.21 | 496.38 ± 5.12 a | 194.05 ± 0.42 b | 105.98 ± 0.89 | 21.17 ± 0.32 a |
HSS 10 | 37.47 ± 2.43 | 424.01 ± 10.70 b | 180.80 ± 2.31 a | 102.12 ± 0.11 | 19.66 ± 0.14 b |
HS 20 | 36.17 ± 1.00 D | 444.41 ± 3.26 Ea | 186.76 ± 1.47 D | 87.63 ± 0.11 Fab | 18.90 ± 0.22 Fa |
HSL 20 | 35.47 ± 1.19 | 474.67 ± 1.40 a | 181.55 ± 1.26 | 89.36 ± 0.56 a | 17.29 ± 0.10 a |
HSS 20 | 36.89 ± 1.61 | 408.88 ± 1.40 b | 179.17 ± 2.10 | 83.93 ± 1.11 b | 15.82 ± 0.06 b |
HS 30 | 29.60 ± 0.94 E | 373.03 ± 13.03 Fa | 168.01 ± 1.89 Fa | 78.26 ± 2.67 G | 15.98 ± 0.12 Da |
HSL 30 | 32.69 ± 0.39 | 417.11 ± 8.37 b | 161.01 ± 0.42 b | 81.96 ± 1.00 | 15.58 ± 0.12 a |
HSS 30 | 28.94 ± 0.37 | 356.25 ± 17.21 a | 142.11 ± 2.74 a | 82.51 ± 1.11 | 14.79 ± 0.16 b |
Sample | Tg1 [°C] | ΔCp1 [J/(g·°C)] | Tg2 [°C] | ΔCp2 [J/(g·°C)] | Tg3 [°C] | ΔCp3 [J/(g·°C)] | Tg4 [°C] | ΔCp4 [J/(g·°C)] | Tg5 [°C] | ΔCp5 [J/(g·°C)] |
---|---|---|---|---|---|---|---|---|---|---|
Control Honey | - | - | −39.50 ± 0.05 | 0.7207 ± 0.0073 | - | - | - | - | 55.20 ± 0.05 | 0.1834 ± 0.0018 |
Invert Syrup | −64.00 ± 0.05 | 0.2687 ± 0.0027 | −20.30 ± 0.05 | 0.1198 ± 0.0012 | −2.55 ± 0.05 | 0.0443 ± 0.0044 | - | - | - | - |
Sugar Syrup | −65.30 ± 0.05 | 0.5087 ± 0.0051 | −40.80 ± 0.05 | 0.2428 ± 0.0024 | - | - | - | - | 64.50 ± 0.05 | 1.4600 ± 0.0150 |
HI 5 | - | - | −34.60 ± 0.05 | 0.5781 ± 0.0058 | - | - | 38.05 ± 0.05 | 0.0706 ± 0.0071 | 50.40 ± 0.05 | 0.0064 ± 0.0006 |
HI 10 | - | - | −35.40 ± 0.05 | 0.7229 ± 0.0072 | - | - | 35.20 ± 0.05 | 0.0018 ± 0.0001 | 57.60 ± 0.05 | 0.1315 ± 0.0013 |
HI 20 | - | - | −33.80 ± 0.05 | 0.5854 ± 0.0059 | - | - | 36.90 ± 0.05 | 0.0931 ± 0.0009 | 57.50 ± 0.05 | 0.1234 ± 0.0013 |
HI 30 | - | - | −40.80 ± 0.05 | 0.5725 ± 0.0057 | - | - | 34.50 ± 0.05 | 0.0765 ± 0.0008 | 56.40 ± 0.05 | 0.1347 ± 0.0013 |
HS 5 | - | - | −45.60 ± 0.05 | 0.3189 ± 0.0032 | 4.10 ± 0.05 | 0.1947 ± 0.0019 | 34.00 ± 0.05 | 0.0185 ± 0.0019 | - | - |
HS 10 | - | - | −42.40 ± 0.05 | 0.4509 ± 0.0045 | −6.40 ± 0.05 | 0.2028 ± 0.0020 | 36.50 ± 0.05 | 0.0576 ± 0.0006 | - | - |
HS 20 | - | - | −42.20 ± 0.05 | 0.3744 ± 0.0037 | −19.50 ± 0.05 | 0.1367 ± 0.0014 | 36.00 ± 0.05 | 0.0534 ± 0.0006 | - | - |
HS 30 | - | - | −49.90 ± 0.05 | 0.4294 ± 0.0043 | −9.80 ± 0.05 | 0.1357 ± 0.0014 | 36.70 ± 0.5 | 0.0773 ± 0.0077 | - | - |
Adulterant | Sugar Syrup | Invert |
Apikand Premium sugar syrup (Arctos Creme, Bydgoszcz, Poland) | Thymo Invert (BKV Group, Bileća, Bosnia and Herzegovina) | |
Composition according to the manufacturer information on the label | Glucose: 37% Fructose: 33.5% Sucrose: 29.5% Water | Sugar (sucrose, glucose, fructose): 70% Plant extracts and essential oils: 0.33% Water: 29.67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, M.; Czerniecka-Kubicka, A.; Miłek, M.; Sidor, E.; Dżugan, M. Tracking of Thermal, Physicochemical, and Biological Parameters of a Long-Term Stored Honey Artificially Adulterated with Sugar Syrups. Molecules 2023, 28, 1736. https://doi.org/10.3390/molecules28041736
Tomczyk M, Czerniecka-Kubicka A, Miłek M, Sidor E, Dżugan M. Tracking of Thermal, Physicochemical, and Biological Parameters of a Long-Term Stored Honey Artificially Adulterated with Sugar Syrups. Molecules. 2023; 28(4):1736. https://doi.org/10.3390/molecules28041736
Chicago/Turabian StyleTomczyk, Monika, Anna Czerniecka-Kubicka, Michał Miłek, Ewelina Sidor, and Małgorzata Dżugan. 2023. "Tracking of Thermal, Physicochemical, and Biological Parameters of a Long-Term Stored Honey Artificially Adulterated with Sugar Syrups" Molecules 28, no. 4: 1736. https://doi.org/10.3390/molecules28041736
APA StyleTomczyk, M., Czerniecka-Kubicka, A., Miłek, M., Sidor, E., & Dżugan, M. (2023). Tracking of Thermal, Physicochemical, and Biological Parameters of a Long-Term Stored Honey Artificially Adulterated with Sugar Syrups. Molecules, 28(4), 1736. https://doi.org/10.3390/molecules28041736