Determination of d- and l-Amino Acids in Garlic Foodstuffs by Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic Separation of d- and l-Amino Acids
2.2. Analyses of Commercial Garlic Foodstuffs
3. Materials and Methods
3.1. Chemicals
3.2. Derivatization Procedure
3.3. Preparation of Garlic Samples
3.4. LC–MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, T.; Wang, C.K. Black garlic and its bioactive compounds on human health diseases: A review. Molecules 2021, 26, 5028. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Zheng, Z.; Zhang, B.; Sun-Waterhouse, D.; Qiao, X. Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 801–834. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.C.-W.; Chen, Y.T.; Chen, H.J.; Hsieh, C.W.; Liao, P.C. Comparative UHPLC-Q-Orbitrap HRMS-based metabolomics unveils biochemical changes of black garlic during aging process. J. Agric. Food Chem. 2020, 68, 14049–14058. [Google Scholar] [CrossRef] [PubMed]
- Molina-Calle, M.; Sánchez de Medina, V.; Calderón-Santiago, M.; Priego-Capote, F.; Luque de Castro, M.D. Untargeted analysis to monitor metabolic changes of garlic along heat treatment by LC-QTOF MS/MS. Electrophoresis 2017, 38, 2349–2360. [Google Scholar] [CrossRef]
- Kobayashi, J. d-Amino acids and lactic acid bacteria. Microorganisms 2019, 7, 690. [Google Scholar] [CrossRef] [PubMed]
- Marcone, G.L.; Rosini, E.; Crespi, E.; Pollegioni, L. d-Amino acids in foods. Appl. Microbiol. Biotechnol. 2020, 104, 555–574. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, Y.; Nagano, M.; Ishigo, S.; Ito, Y.; Hashiguchi, K.; Hishida, N.; Mita, M.; Lindner, W.; Hamase, K. Chiral amino acid analysis of Japanese traditional Kurozu and the developmental changes during earthenware jar fermentation processes. J. Chromatogr. B 2014, 966, 187–192. [Google Scholar] [CrossRef]
- Eto, S.; Yamaguchi, M.; Bounoshita, M.; Mizukoshi, T.; Miyano, H. High-throughput comprehensive analysis of d- and l-amino acids using ultra-high performance liquid chromatography with a circular dichroism (CD) detector and its application to food samples. J. Chromatogr. B 2011, 879, 3317–3325. [Google Scholar] [CrossRef]
- Brückner, H.; Westhauser, T. Chromatographic determination of d-amino acids as native constituents of vegetables and fruits. Chromatographia 1994, 39, 419–426. [Google Scholar] [CrossRef]
- Kawai, M.; Sekine-Hayakawa, Y.; Okiyama, A.; Ninomiya, Y. Gustatory sensation of l- and d-amino acids in humans. Amino Acids 2012, 43, 2349–2358. [Google Scholar] [CrossRef]
- Shibata, K.; Ohno, T.; Sano, M.; Fukuwatari, T. The urinary ratio of 3-hydroxykynurenine/3-hydroxyanthranilic acid is index to predicting the adverse effects of d-tryptophan in rats. J. Nutr. Sci. Vitaminol. 2014, 60, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Langner, R.R.; Berg, C.P. Metabolism of d-tryptophan in the normal human subject. J. Biol. Chem. 1954, 214, 699–707. [Google Scholar] [CrossRef]
- Griselda, C.M. d-Arginine action against neurotoxicity induced by glucocorticoids in the brain. Neurosci. Biobehav. Rev. 2011, 35, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Guercio, G.D.; Panizzutti, R. Potential and challenges for the clinical use of d-serine as a cognitive enhancer. Front. Psychiatry 2018, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Wei, F.; Lu, Y.; Kodani, Y.; Nakada, M.; Miyakawa, T.; Tanokura, M. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015, 63, 683–691. [Google Scholar] [CrossRef]
- Pinu, F.R.; Carvalho-Silva, S.D.; Uetanabaro, A.P.T.; Villas-Boas, S.G. Vinegar metabolomics: An explorative study of commercial balsamic vinegars using gas chromatography-mass spectrometry. Metabolites 2016, 6, 22. [Google Scholar] [CrossRef]
- Shiga, K.; Yamamoto, S.; Nakajima, A.; Kodama, Y.; Imamura, M.; Sato, T.; Uchida, R.; Obata, A.; Bamba, T.; Fukusaki, E. Metabolic profiling approach to explore compounds related to the umami intensity of soy sauce. J. Agric. Food Chem. 2014, 62, 7317–7322. [Google Scholar] [CrossRef]
- Mutaguchi, Y.; Ohmori, T.; Akano, H.; Doi, K.; Ohshima, T. Distribution of d-amino acids in vinegars and involvement of lactic acid bacteria in the production of d-amino acids. SpringerPlus 2013, 2, 691. [Google Scholar] [CrossRef]
- Opstvedt, J.; Miller, R.; Hardy, R.W.; Spinelli, J. Heat-induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri). J. Agric. Food Chem. 1984, 32, 929–935. [Google Scholar] [CrossRef]
- Pawlowska, M.; Armstrong, D.W. Evaluation of Enantiomeric Purity of Selected Amino Acids in Honey. Chirality 1994, 4, 270–276. [Google Scholar] [CrossRef]
- Inoue, Y.; Okabe, Y.; Suzuki, R.; Onaka, T.; Kida, T. Effect of d-amino acids as taste modifiers in fermented foods. Trace Nutr. Res. 2014, 31, 59–65. [Google Scholar]
- Konya, Y.; Taniguchi, M.; Fukusaki, E. Novel high-throughput and widely-targeted liquid chromatography-time of flight mass spectrometry method for d-amino acids in foods. J. Biosci. Bioeng. 2017, 123, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Konya, Y.; Taniguchi, M.; Fukusaki, E. Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids. J. Biosci. Bioeng. 2017, 123, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Karakawa, S.; Yamada, N.; Miyano, H.; Shimbo, K. Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2019, 1593, 91–101. [Google Scholar] [CrossRef]
- Cortés-Herrera, C.; Artavia, G.; Leiva, A.; Granados-Chinchilla, F. Liquid chromatography analysis of common nutritional components, in feed and food. Foods 2018, 8, 1. [Google Scholar] [CrossRef]
- Puiggròs, F.; Solà, R.; Bladé, C.; Salvadó, M.J.; Arola, L. Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. J. Chromatogr. A 2011, 1218, 7399–7414. [Google Scholar] [CrossRef]
- Haginaka, J. Pharmaceutical and biomedical applications of enantioseparations using liquid chromatographic techniques. J. Pharm. Biomed. Anal. 2002, 27, 357–372. [Google Scholar] [CrossRef]
- Sakamoto, T.; Onozato, M.; Uekusa, S.; Ichiba, H.; Umino, M.; Shirao, M.; Fukushima, T. Development of derivatization reagents bearing chiral 4-imidazolidinone for distinguishing primary amines from other amino acids and application to the liquid chromatography-tandem mass spectrometric analysis of miso. J. Chromatogr. A 2021, 1652, 462341. [Google Scholar] [CrossRef]
- Onozato, M.; Uekusa, S.; Sakamoto, T.; Umino, M.; Ichiba, H.; Fukushima, T. Separation of vigabatrin enantiomers using mixed-mode chromatography and its application to determine the vigabatrin enantiomer levels in rat plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1179, 122866. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhang, G.W.; Cong, X.Q.; Wen, C.F. Black garlic improves heart function in patients with coronary heart disease by improving circulating antioxidant levels. Front. Physiol. 2018, 9, 1435. [Google Scholar] [CrossRef]
- Sasmaz, H.K.; Sevindik, O.; Kadiroglu, P.; Adal, E.; Erkin, Ö.C.; Selli, S.; Kelebek, H. Comparative assessment of quality parameters and bioactive compounds of white and black garlic. Eur. Food Res. Technol. 2022, 248, 2393–2407. [Google Scholar] [CrossRef]
- Sasabe, J.; Miyoshi, Y.; Rakoff-Nahoum, S.; Zhang, T.; Mita, M.; Davis, B.M.; Hamase, K.; Waldor, M.K. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 2016, 1, 16125. [Google Scholar] [CrossRef]
- Schell, M.J.; Molliver, M.E.; Snyder, S.H. d-Serine, an endogenous synaptic modulator—Localization to astrocytes and glutamate-stimulated release. Proc. Natl. Acad. Sci. USA 1995, 92, 3948–3952. [Google Scholar] [CrossRef] [PubMed]
- Tsai, G.C.; Yang, P.C.; Chung, L.C.; Lange, N.; Coyle, J.T. d-Serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 1998, 44, 1081–1089. [Google Scholar] [CrossRef]
- Heresco-Levy, U.; Javitt, D.C.; Ebstein, R.; Vass, A.; Lichtenberg, P.; Bar, G.; Catinari, S.; Ermilov, M. d-Serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol. Psychiatry 2005, 57, 577–585. [Google Scholar] [CrossRef]
- Fukushima, T.; Iizuka, H.; Yokota, A.; Suzuki, T.; Ohno, C.; Kono, Y.; Nishikiori, M.; Seki, A.; Ichiba, H.; Watanabe, Y.; et al. Quantitative analyses of schizophrenia-associated metabolites in serum: Serum d-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS ONE 2014, 9, e101652. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Fukushima, T.; Shimizu, E.; Komatsu, N.; Watanabe, H.; Shinoda, N.; Nakazato, M.; Kumakiri, C.; Okada, S.; Hasegawa, H.; et al. Decreased serum levels of d-serine in patients with schizophrenia—Evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch. Gen. Psychiatry 2003, 60, 572–576. [Google Scholar] [CrossRef]
- Onozato, M.; Nakazawa, H.; Ishimaru, K.; Nagashima, C.; Fukumoto, M.; Hakariya, H.; Sakamoto, T.; Ichiba, H.; Fukushima, T. Alteration in plasma and striatal levels of d-serine after d-serine administration with or without nicergoline: An In Vivo microdialysis study. Heliyon 2017, 3, e00399. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Onuma, R.; Furukawa, S.; Hayasaka, A.; Onozato, M.; Nakazawa, H.; Iizuka, H.; Ichiba, H.; Fukushima, T. Liquid chromatography-mass spectrometry with triazole-bonded stationary phase for N-methyl-d-aspartate receptor-related amino acids: Development and application in microdialysis studies. Anal. Bioanal. Chem. 2017, 409, 7201–7210. [Google Scholar] [CrossRef]
- Hashimoto, A.; Oka, T.; Nishikawa, T. Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat-brain and periphery. Eur. J. Neurosci. 1995, 7, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, H.; Yin, J.; Li, T.; Yin, Y. Role of d-aspartate on biosynthesis, racemization, and potential functions: A mini-review. Anim. Nutr. 2018, 4, 311–315. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, S.; Somorjai, I.; Garcia-Fernàndez, J.; Topo, E.; D’Aniello, A. d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J. 2011, 25, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- D’Aniello, A.; Di Cosmo, A.; Di Cristo, C.; Annunziato, L.; Petrucelli, L.; Fisher, G. Involvement of d-aspartic acid in the synthesis of testosterone in rat testes. Life Sci. 1996, 59, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, M.M.; Santillo, A.; Falvo, S.; Longobardi, S.; Chieffi Baccari, G.C. Molecular mechanisms elicited by d-aspartate in Leydig cells and spermatogonia. Int. J. Mol. Sci. 2016, 17, 1127. [Google Scholar] [CrossRef] [Green Version]
Amino Acid | Rs | Amino Acid | Rs | Amino Acid | Rs |
---|---|---|---|---|---|
Asn | 2.48 | Asp | 2.67 | Ile | 15.52 |
Ala | 9.23 | His | 4.14 | Leu | 16.05 |
Cit | 3.33 | Pro | 1.94 | Trp | 11.18 |
Gln | 2.55 | Val | 16.94 | Phe | 13.70 |
Ser | 4.42 | Met | 13.14 | Orn | 5.51 |
Thr | 7.98 | Arg | 2.99 | Lys | 5.00 |
Glu | 3.95 | KYN | 8.58 | Tyr | 4.55 |
Asn | Ala | Ser | Thr | Glu | Asp | Pro | Arg | Phe | Orn | Lys | Tyr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | - | 5.43 | - | - | - | - | - | - | - | - | - | - |
b | - | 5.88 | - | - | - | - | - | - | - | - | - | - |
c | - | 6.06 | - | - | - | - | - | - | - | - | - | - |
d | - | 3.44 | - | - | - | - | - | - | - | - | - | - |
e | 19.7 | 13.4 | 22.3 | - | 11.7 | 20.2 | 6.1 | 4.8 | 8.2 | 6.4 | 3.2 | 1.8 |
f | 11.2 | 14.3 | 20.8 | 17.0 | 8.7 | 15.1 | 7.4 | 4.8 | 10.1 | 6.8 | 2.7 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onozato, M.; Nakanoue, H.; Sakamoto, T.; Umino, M.; Fukushima, T. Determination of d- and l-Amino Acids in Garlic Foodstuffs by Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2023, 28, 1773. https://doi.org/10.3390/molecules28041773
Onozato M, Nakanoue H, Sakamoto T, Umino M, Fukushima T. Determination of d- and l-Amino Acids in Garlic Foodstuffs by Liquid Chromatography–Tandem Mass Spectrometry. Molecules. 2023; 28(4):1773. https://doi.org/10.3390/molecules28041773
Chicago/Turabian StyleOnozato, Mayu, Haruna Nakanoue, Tatsuya Sakamoto, Maho Umino, and Takeshi Fukushima. 2023. "Determination of d- and l-Amino Acids in Garlic Foodstuffs by Liquid Chromatography–Tandem Mass Spectrometry" Molecules 28, no. 4: 1773. https://doi.org/10.3390/molecules28041773
APA StyleOnozato, M., Nakanoue, H., Sakamoto, T., Umino, M., & Fukushima, T. (2023). Determination of d- and l-Amino Acids in Garlic Foodstuffs by Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 28(4), 1773. https://doi.org/10.3390/molecules28041773