In Vitro Gastrointestinal Digestion Affects the Bioaccessibility of Bioactive Compounds in Hibiscus sabdariffa Beverages
Abstract
:1. Introduction
2. Results
2.1. Initial Bioactive Compounds in Hibiscus Beverages
2.2. Bioactive Compounds Released during In Vitro Intestinal Digestion
2.3. Initial Content and Indigestible Fractions after Gastrointestinal Digestion by Groups: Multivariate Data Analysis
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Sample Preparation
4.3. Bioaccessibility of Phenolic Compounds after In-Vitro Gastrointestinal Digestion
4.4. Determination of Phenolic Compounds and Organic Acids Profile by HPLC-DAD-ESI-MS
4.5. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Standard | Equation | R2 | LOQ 1 (μM/mL) |
---|---|---|---|
kaempferol | y = 24766x + 230022 | 0.9939 | 3.26 |
p-coumaric acid | y = 90663x + 16308 | 0.9996 | 1.14 |
Naringenin | y = 210592x + 130168 | 0.9965 | 3.34 |
Garcinia acid | y = 7429.8x +24963 | 0.9979 | 1.00 |
Quercetin | y = 1324209x + 78664 | 0.9979 | 2.58 |
References
- Monteiro, M.J.P.; Costa, A.I.A.; Tomlins, K.I.; Pintado, M.E. Quality improvement and new product development in the hibiscus beverage industry. In Processing and Sustainability of Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 139–183. [Google Scholar]
- Cauich, I.; Rodríguez, J.; Fernández, V.; Ambrosio, V. Análisis de la rentabilidad de la producción de Flor de Jamaica (Hibiscus Sabdariffa). Panor. Económico 2020, 28, 94–101. [Google Scholar] [CrossRef]
- Sayago-Ayerdi, S.; Arranz, S.; Serrano, J.; Goñi, I. Dietary Fiber Content and Associated Antioxidant Compounds in Roselle Flower ( Hibiscus sabdariffa L.) Beverage. J. Agric. Food Chem. 2007, 55, 7886–7890. [Google Scholar] [CrossRef] [PubMed]
- Sáyago-Ayerdi, S.; Venema, K.; Tabernero, M.; Sarriá, B.; Bravo, L.; Mateos, R. Bioconversion of polyphenols and organic acids by gut microbiota of predigested Hibiscus sabdariffa L. calyces and Agave (A. tequilana Weber) fructans assessed in a dynamic in vitro model (TIM-2) of the human colon. Food Res. Int. 2021, 143, 110301. [Google Scholar] [CrossRef] [PubMed]
- Borrás-Linares, I.; Fernández-Arroyo, S.; Arráez-Roman, D.; Palmeros-Suárez, P.A.; Del Val-Díaz, R.; Andrade-Gonzáles, I.; Fernández-Gutiérrez, A.; Gómez-Leyva, J.F.; Segura-Carretero, A. Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind. Crop. Prod. 2015, 69, 385–394. [Google Scholar] [CrossRef]
- Ojulari, O.V.; Lee, S.G.; Nam, J.-O. Beneficial Effects of Natural Bioactive Compounds from Hibiscus sabdariffa L. on Obesity. Molecules 2019, 24, 210. [Google Scholar] [CrossRef] [Green Version]
- Sogo, T.; Terahara, N.; Hisanaga, A.; Kumamoto, T.; Yamashiro, T.; Wu, S.; Sakao, K.; Hou, D.X. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. BioFactors 2015, 41, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Kay, C.D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [Green Version]
- Awe, F.B.; Fagbemi, T.N.; Ifesan, B.O.T.; Badejo, A.A. Antioxidant properties of cold and hot water extracts of cocoa, Hibiscus flower extract, and ginger beverage blends. Food Res. Int. 2013, 52, 490–495. [Google Scholar] [CrossRef]
- Pérez-Ramírez, I.F.; Castaño-Tostado, E.; Ramírez-de León, J.A.; Rocha-Guzmán, N.E.; Reynoso-Camacho, R. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage. Food Chem. 2015, 172, 885–892. [Google Scholar] [CrossRef]
- Carvalho de Castro, J.M.; Nascimento Alves, C.A.; de LimaSantos, K.; de Oliveira Silva, E.; Maria da Silva Araújo, Í.; Barros deVasconcelos, L. Elaboration of a mixed beverage from hibiscus and coconut water: An evaluation of bioactive and sensory properties. Int. J. Gastron. Food Sci. 2021, 23, 100284. [Google Scholar] [CrossRef]
- Salinas-Moreno, Y.; Zúñiga-Hernández, A.; Torre, L.; Serrano-Altamirano, V.; Sánchez-Feria, C. Color en cálices de jamaica (Hibiscus sabdariffa L.) y su relación con características fisioquímicas de sus extractos acuosos. Rev. Chapingo Ser. Hortic. 2012, XVIII, 395–407. [Google Scholar] [CrossRef]
- Medina-Carrillo, R.E.; Sumaya-Martínez, M.T.; Machuca-Sánchez, M.L.; Sánchez-Herrera, L.M.; Balois-Morales, R.; Jiménez-Ruiz, E.I. Actividad antioxidante de extractos de cálices deshidratados de 64 variedades de jamaica (Hibiscus sabdariffa L.) en función de fenólicos y antocianinas totales. Rev. Cienc. Técnicas Agropecu. 2013, 22, 41–44. [Google Scholar]
- Ariza-Flores, R.; Serrano-Altamirano, V.; Navarro-Galindo, S.; Ovando-Cruz, M.E.; Vázquez-García, E.; Barrios-Ayala, A.; Michel-Aceves, A.C.; Guzmán-Maldonado, S.H.; Otero-Sánchez, M.A. Variedades mexicanas de jamaica (Hibiscus sabdariffa L.) ‘Alma Blanca’ y ‘Rosalíz’ de color claro, y ‘Cotzaltzin’ y ‘Tecoanapa’ de color rojo. Rev. Fitotec. Mex. 2014, 37, 181–185. [Google Scholar] [CrossRef]
- Duarte-Valenzuela, Z.; Gasga, V.M.; Montalvo-González, E.; Sayago-Ayerdi, S. Caracterización nutricional de 20 variedades mejoradas de jamaica (Hibiscus sabdariffa L.) cultivadas en méxico. Rev. Fitotec. Mex. 2016, 39, 199–206. [Google Scholar] [CrossRef]
- Kao, E.-S.; Hsu, J.-D.; Wang, C.-J.; Yang, S.-H.; Cheng, S.-Y.; Lee, H.-J. Polyphenols Extracted from Hibiscus sabdariffa L. Inhibited Lipopolysaccharide-Induced Inflammation by Improving Antioxidative Conditions and Regulating Cyclooxygenase-2 Expression. Biosci. Biotechnol. Biochem. 2009, 73, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Alegbe, E.O.; Teralı, K.; Olofinsan, K.A.; Surgun, S.; Ogbaga, C.C.; Ajiboye, T.O. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J. Food Biochem. 2019, 43, e12927. [Google Scholar] [CrossRef]
- Agunbiade, H.O.; Fagbemi, T.N.; Aderinola, T.A. Antioxidant properties of beverages from graded mixture of green/roasted coffee and hibiscus sabdariffa calyx flours. Appl. Food Res. 2022, 2, 100163. [Google Scholar] [CrossRef]
- Singh, M.; Thrimawithana, T.; Shukla, R.; Adhikari, B. Inhibition of enzymes associated with obesity by the polyphenol-rich extracts of Hibiscus sabdariffa. Food Biosci. 2022, 50, 101992. [Google Scholar] [CrossRef]
- Eftekhari, A.; Khusro, A.; Ahmadian, E.; Dizaj, S.M.; Hasanzadeh, A.; Cucchiarini, M. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab. J. Chem. 2021, 14, 103106. [Google Scholar] [CrossRef]
- Gülçin, İ.; Gören, A.C.; Taslimi, P.; Alwasel, S.H.; Kılıc, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-analysis of its polyphenol contents by LC-MS/MS. Biocatal. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods: Commercial trends, research, and health implications. Compr. Rev. Food Sci. F. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Rodriguez-Roque, M.J.; Rojas-Graue, M.A.; Elez-Martinez, P.; Martin-Belloso, O. In vitro bioaccessibility of health-related compounds as affected by the formulation of fruit juice-and milk-based beverages. Food Res. Int. 2014, 62, 771–778. [Google Scholar] [CrossRef]
- Mercado-Mercado, G.; Blancas-Benitez, F.J.; Velderrain-Rodríguez, G.R.; Montalvo-González, E.; González-Aguilar, G.A.; Alvarez-Parrilla, E.; Sáyago-Ayerdi, S.G. Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction residues of Roselle (Hibiscus sabdariffa L.). J. Funct. Foods 2015, 18, 171–181. [Google Scholar] [CrossRef]
- Nignpense, B.E.; Latif, S.; Francis, N.; Blanchard, C.; Santhakumar, B.A. The impact of simulated gastrointestinal digestion on the bioaccessibility and antioxidant activity of purple rice phenolic compounds. Food Biosci. 2022, 47, 101706. [Google Scholar] [CrossRef]
- Durán-Castañeda, A.C.; Cardenas-Castro, A.P.; Pérez-Jiménez, J.; Pérez-Carvajal, A.M.; Sánchez-Burgos, J.A.; Mateos, R.; Sáyago-Ayerdi, S.G. Bioaccessibility of phenolic compounds in Psidium guajava L. varieties and P. friedrichsthalianum Nied. after gastrointestinal digestion. Food Chem. 2023, 400, 134046. [Google Scholar] [CrossRef]
- García-Niño, W.R.; Ibarra-Lara, L.; Cuevas-Magaña, M.Y.; Sánchez-Mendoza, A.; Armada, E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. Environ. Toxicol. Pharmacol. 2022, 95, 103960. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Porzel, A.; Frolov, A.; El Seedi, H.R.; Wessjohann, L.A.; Farag, M.A. Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chem. 2018, 250, 236–244. [Google Scholar] [CrossRef]
- Umeoguaju, F.U.; Ephraim-Emmanuel, B.C.; Uba, J.O.; Bekibele, G.E.; Chigozie, N.; Orisakwe, O.E. Immunomodulatory and Mechanistic Considerations of Hibiscus sabdariffa (HS) in Dysfunctional Immune Responses: A Systematic Review. Front. Immunol. 2021, 12, 550670. [Google Scholar] [CrossRef] [PubMed]
- Verrelli, D.; Dallera, L.; Stendardo, M.; Monzani, S.; Pasqualato, S.; Giorgio, M.; Pallavi, R. Hydroxycitric Acid Inhibits Chronic Myelogenous Leukemia Growth through Activation of AMPK and mTOR Pathway. Nutrients 2022, 14, 2669. [Google Scholar] [CrossRef]
- Micucci, M.; Malaguti, M.; Gallina Toschi, T.; Di Lecce, G.; Aldini, R.; Angeletti, A.; Chiarini, A.; Budriesi, R.; Hrelia, S. Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts. Oxid. Med. Cell Longev. 2015, 2015, 318125. [Google Scholar] [CrossRef] [PubMed]
- Zheoat, A.M.; Gray, A.I.; Igoli, J.O.; Ferro, V.A.; Drummond, R.M. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia 2019, 134, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portillo-Torres, L.A.; Bernardino-Nicanor, A.; Gómez-Aldapa, C.A.; González-Montiel, S.; Rangel-Vargas, E.; Villagómez-Ibarra, J.R.; González-Cruz, L.; Cortés-López, H.; Castro-Rosas, J. Hibiscus Acid and Chromatographic Fractions from Hibiscus Sabdariffa Calyces: Antimicrobial Activity against Multidrug-Resistant Pathogenic Bacteria. Antibiotics 2019, 8, 218. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, L.; Liu, S.; Fei, D.; Zhang, M.; Zhang, Y. Effect of Quercetin-3-O-Sambubioside Isolated from Eucommia ulmoides Male Flowers on Spontaneous Activity and Convulsion Rate in Mice. Planta Med. 2014, 80, 974–977. [Google Scholar] [CrossRef] [Green Version]
- Popiolek-Kalisz, J.; Fornal, E. The Effects of Quercetin Supplementation on Blood Pressure—Meta-Analysis. Curr. Probl. Cardiol. 2022, 47, 101350. [Google Scholar] [CrossRef] [PubMed]
- Blancas-Benitez, F.J.; Pérez-Jiménez, J.; Montalvo-González, E.; González-Aguilar, G.A.; Sáyago-Ayerdi, S.G. In vitro evaluation of the kinetics of the release of phenolic compounds from guava (Psidium guajava L.) fruit. J. Funct. Foods 2018, 43, 139–145. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Arranz, S.; Tabernero, M.; Díaz- Rubio, M.E.; Serrano, J.; Goñi, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
ID | Tentative Compound | RT (min) | Molecular Formula | [M-H]− or [M]+ |
---|---|---|---|---|
Organic acids and related compounds | ||||
1 | Hibiscus acid hydroxyethyl ester | 3.07 | C8H12O8 | 235 |
2 | Trimethylhydroxycitric acid I | 3.12 | C9H14O8 | 249 |
3 | Hibiscus acid dimethylesther | 3.55 | C8H10O7 | 217 |
4 | Hydroxycitric acid | 3.83 | C6H8O8 | 207 |
5 | Hibiscus acid | 4.10 | C6H6O7 | 189 |
6 | Trimethylhydroxycitric acid II | 4.85 | C9H14O8 | 249 |
7 | 3-D-deoxy-D-lyxo-2-heptulosaric acid (DHA) | 4.86 | C7H10O8 | 221 |
Phenolic acids and related compounds | ||||
8 | Caffeoylquinic acid | 11.93 | C16H18O9 | 353 |
9 | Coumaroyl quinic acid I | 13.64 | C16H18O8 | 337 |
10 | Chlorogenic acid | 13.75 | C16H18O9 | 353 |
11 | Coumaroyl quinic acid II | 15.84 | C16H18O8 | 337 |
12 | 4-Hydroxybenzoic acid | 14.57 | C7H6O3 | 138 |
13 | Methylchlorogenate I | 15.00 | C17H20O9 | 367 |
14 | Caffeic acid | 15.89 | C9H8O4 | 179 |
15 | Methylchlorogenate II | 16.50 | C17H20O9 | 367 |
16 | Caffeoylshikimic acid III | 17.49 | C16H16O8 | 335 |
17 | Coumaroyl quinic acid III | 20.85 | C16H18O8 | 337 |
Flavonoids and related compounds | ||||
18 | Leoucoside | 13.49 | C26H28O15 | 579 |
19 | Myricetin-3-O-sambubioside | 15.51 | C26H28O17 | 612 |
20 | Myricetin hexoside | 16.53 | C21H20O13 | 480 |
21 | Quercetin-3-O-sambubioside | 16.97 | C26H28O16 | 596 |
22 | Kaempferol-3-O-rutinoside | 17.24 | C27H30O15 | 594 |
23 | Quercetin 3-O-galactoside | 17.49 | C21H20O12 | 464 |
24 | Isoquercetin | 17.74 | C21H20O12 | 463 |
25 | Ellagic acid | 17.83 | C14H6O8 | 301 |
26 | Quercetin 3-O-(6-acetil-glucoside) | 17.85 | C21H20O12 | 506 |
27 | Quercetin-galoilhexoside | 17.97 | C21H20O12 | 616 |
28 | Myricetin | 19.53 | C15H10O8 | 317 |
29 | Kaempferol-3-p-cumaroilglucoside | 19.93 | C30H26O13 | 594 |
30 | Luteolin | 20.34 | C15H10O6 | 286 |
31 | Quercetin | 20.80 | C15H10O7 | 301 |
32 | Naringenin | 21.38 | C15H12O5 | 272 |
Anthocyanins and anthocyanidins | ||||
33 | Delphinidin-3-sambubioside | 11.90 | C26H29O16+ | 598 |
34 | Cyanidin-3-Glucoside | 12.32 | C15H11O7- | 302 |
35 | Delphinidin | 13.63 | C21H21O11+ | 550 |
Beverages | ||||
---|---|---|---|---|
ID | Tentative Compound | RT (min) | Commercial | Hibiscus Beverage (HB) |
Organic acids and related compounds | ||||
1 | Hibiscus acid hydroxyethyl ester | 3.07 | n.d. | 1.85 ± 1.07 |
2 | Trimethylhydroxycitric acid I | 3.12 | 1.31 ± 0.71 a | 0.51 ± 0.53 a |
3 | Hibiscus acid dimethylesther | 3.55 | 18.33 ± 0.4 a | 18.31 ± 5.36 a |
4 | Hydroxycitric acid | 3.83 | 7.21 ± 2.11 a | 31.25 ± 5.68 b |
5 | Hibiscus acid | 4.10 | 70.20 ± 11.50 a | 231.52 ± 50.96 b |
6 | Trimethylhydroxycitric acid II | 4.85 | 28.69 ± 0.84 a | 0.74 ± 0.07 b |
7 | 3-D-deoxy-D-lyxo-2-heptulosaric acid (DHA) | 4.86 | n.d. | 1.06 ± 0.40 |
Total organic acids and related compounds mg/100 mL | 125.74 ± 22.0 a | 285.24 ± 54.15 b | ||
Phenolic acids and hydroxycinnamic acids derivatives | ||||
8 | Caffeoylquinic acid | 11.93 | 7.09 ± 0.66 a | 6.59 ± 1.43 a |
9 | Coumaroyl quinic acid I | 13.64 | n.d. | 0.52 ± 0.15 |
10 | Chlorogenic acid | 13.75 | 0.21 ± 0.41 a | 3.36 ± 2.24 a |
11 | Coumaroyl quinic acid II | 15.84 | 0.54 ± 0.15 a | 0.15 ± 0.13 a |
12 | 4-Hydroxybenzoic acid | 14.57 | n.d. | 0.18 ± 0.31 |
13 | Methylchlorogenate I | 15.00 | n.d. | 0.97 ± 1.69 |
14 | Caffeic acid | 15.89 | n.d. | 0.42 ± 0.38 |
15 | Methylchlorogenate II | 16.50 | n.d. | 38.55 ± 23.66n |
16 | Caffeoylshikimic acid III | 17.49 | n.d. | 0.44 ± 0.10 |
17 | Coumaroyl quinic acid III | 20.85 | n.d. | 0.19 ± 0.19 |
Total phenolic acids and related compounds mg/100 mL | 7.84 ± 1.72 a | 51.38 ± 26.10 b | ||
Flavonoids and related compounds | ||||
18 | Leoucoside | 13.49 | n.d. | 0.04 ± 0.03 |
19 | Myricetin-3-O-sambubioside | 15.51 | n.d. | 5.40 ± 7.40 |
20 | Myricetin hexoside | 16.53 | n.d. | 1.01 ± 0.00 |
21 | Quercetin-3-O-sambubioside | 16.97 | n.d. | 4.78 ± 0.00 |
22 | Kaempferol-3-O-rutinoside | 17.24 | n.d. | 0.79 ± 0.00 |
23 | Quercetin 3-O-galactoside | 17.49 | n.d. | 0.04 ± 0.00 |
24 | Isoquercetin | 17.74 | 0.23 ± 0.07 a | 0.10 ± 0.11 a |
25 | Ellagic acid | 17.83 | n.d. | 0.98 ± 0.30 |
26 | Quercetin 3-O-(6-acetil-glucoside) | 17.85 | n.d. | 0.01 ± 0.00 |
27 | Quercetin-galloylhexoside | 17.97 | 2.76 ± 2.07 a | 7.03 ± 0.01 b |
28 | Myricetin | 19.53 | n.d. | 0.30 ± 0.43 |
29 | Kaempferol-3-p-cumaroilglucoside | 19.93 | n.d. | 0.13 ± 0.00 |
30 | Luteolin | 20.34 | n.d. | 0.01 ± 0.00 |
31 | Quercetin | 20.80 | 1.48 ± 0.59 a | 0.10 ± 0.04 b |
32 | Naringenin | 21.38 | n.d. | 0.03 ± 0.00 |
Total flavonoids and related compounds mg/100 ml | 4.47 ± 0.90 a | 20.75 ± 0.54 b | ||
Anthocyanins and anthocyanidins | ||||
33 | Delphinidin-3-sambubioside | 11.90 | n.d. | 39.88 ± 37.29 a |
34 | Cyanidin-3-glucoside | 12.32 | n.d. | 14.05 ± 12.40 a |
35 | Delphinidin | 13.63 | n.d. | 6.48 ± 3.87 a |
Total anthocyanins and anthocyanidins mg/100 mL | n.d. | 60.41 ± 53.21 a | ||
TOTAL (mg/100 mL) | 138.05 ± 50.24 a | 417.78 ± 45.85 b |
Intestinal Fraction | Soluble Indigestible Fraction | Insoluble Indigestible Fraction | |||||
---|---|---|---|---|---|---|---|
ID | Tentative Compound | CB | HB | CB | HB | CB | HB |
Organic acids and related compounds | |||||||
1 | Hibiscus acid hydroxyethyl ester | n.d. | <LOQ | 1.29 ± 0.31 a | 1.08 ± 0.12 a | n.d. | n.d. |
2 | Trimethylhydroxycitric acid I | n.d. | 1.14 ± 0.49 | 1.93 ± 0.69 a | 2.07 ± 0.29 a | n.d. | 0.33 ± 0.18 |
3 | Hibiscus acid dimethylesther | 10.56 ± 5.06 a | 2.58 ± 0.55 b | 19.46 ± 2.64 a | 3.77 ± 0.71 b | n.d. | n.d. |
4 | Hydroxycitric acid | n.d. | n.d. | n.d. | 1.48 ± 1.06 | 10.61 ± 1.87 a | 1.20 ± 0.61 b |
5 | Hibiscus acid | 16.00 ± 3.56 a | 3.37 ± 2.79 b | 2.20 ± 0.59 a | 9.16 ± 2.29 b | 13.33 ± 6.94 | n.d. |
6 | Trimethylhydroxycitric acid II | n.d. | <LOQ | n.d. | <LOQ | n.d. | n.d. |
Total organic acids and related compounds | 26.56 ± 5.06 a | 7.50 ± 1.17 b | 24.88 ± 3.50 a | 17.67 ± 2.45 a | 23.94 ± 6.70 a | 1.53 ± 0.79 b | |
Hydroxycinnamic acids and related compounds | |||||||
8 | Caffeoylquinic acid | n.d. | 7.90 ± 1.28 | n.d. | 0.13 ± 0.02 | n.d. | 6.99 ± 4.04 |
9 | Coumaroyl quinic acid III | n.d. | <LOD | n.d. | <LOQ | n.d. | 0.22 ± 0.12 |
10 | Chlorogenic acid | n.d. | 3.40 ± 1.07 | n.d. | n.d. | n.d. | n.d. |
13 | Coumaroyl quinic acid II | n.d. | 0.23 ± 0.03 | n.d. | n.d. | n.d. | 0.23 ± 0.17 |
14 | Caffeic acid | n.d. | 4.22 ± 0.85 | n.d. | n.d. | n.d. | 3.49 ± 2.02 |
Total hydroxycinnamic acids and related compounds | - | 15.83 ± 3.34 b | - | 0.13 ± 0.02 | - | 10.93 ± 6.31 | |
Flavonoids and related compounds | |||||||
18 | Leoucoside | n.d. | 0.74 ± 0.06 | n.d. | <LOQ | n.d. | n.d. |
28 | Quercetin-galloylhexoside | n.d. | 2.83 ± 0.06 | n.d. | <LOQ | n.d. | n.d. |
26 | Ellagic acid | n.d. | 2.45 ± 0.20 | n.d. | 1.29 ± 0.28 | n.d. | 1.07 ± 0.13 |
23 | Kaempferol-3-rutinoside | n.d. | 0.12 ± 0.03 | n.d. | <LOQ | n.d. | n.d. |
27 | Quercetin 3-O-(6-acetil-glucoside) | <LOQ | Nd | <LOQ | n.d. | <LOQ | <LOQ |
32 | Naringenin | n.d. | <LOQ | n.d. | n.d. | n.d. | n.d. |
Total flavonoids and related compounds | - | 6.26 ± 0.16 | - | 1.29 ± 0.28 | - | ||
TOTAL (mg/100 mL) | 26.56 ± 1.06 a | 29.59 ± 1.81 a | 24.88 ± 1.05 a | 19.40 ± 2.2 a | 23.94 ± 6.70 a | 13.65 ± 8.32 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Romero, J.d.J.; Arce-Reynoso, A.; Parra-Torres, C.G.; Zamora-Gasga, V.M.; Mendivil, E.J.; Sáyago-Ayerdi, S.G. In Vitro Gastrointestinal Digestion Affects the Bioaccessibility of Bioactive Compounds in Hibiscus sabdariffa Beverages. Molecules 2023, 28, 1824. https://doi.org/10.3390/molecules28041824
Rodríguez-Romero JdJ, Arce-Reynoso A, Parra-Torres CG, Zamora-Gasga VM, Mendivil EJ, Sáyago-Ayerdi SG. In Vitro Gastrointestinal Digestion Affects the Bioaccessibility of Bioactive Compounds in Hibiscus sabdariffa Beverages. Molecules. 2023; 28(4):1824. https://doi.org/10.3390/molecules28041824
Chicago/Turabian StyleRodríguez-Romero, José de Jesús, Alejandro Arce-Reynoso, Claudia G. Parra-Torres, Victor M. Zamora-Gasga, Edgar J. Mendivil, and Sonia G. Sáyago-Ayerdi. 2023. "In Vitro Gastrointestinal Digestion Affects the Bioaccessibility of Bioactive Compounds in Hibiscus sabdariffa Beverages" Molecules 28, no. 4: 1824. https://doi.org/10.3390/molecules28041824
APA StyleRodríguez-Romero, J. d. J., Arce-Reynoso, A., Parra-Torres, C. G., Zamora-Gasga, V. M., Mendivil, E. J., & Sáyago-Ayerdi, S. G. (2023). In Vitro Gastrointestinal Digestion Affects the Bioaccessibility of Bioactive Compounds in Hibiscus sabdariffa Beverages. Molecules, 28(4), 1824. https://doi.org/10.3390/molecules28041824