Effects of Long-Term Intervention with Losartan, Aspirin and Atorvastatin on Vascular Remodeling in Juvenile Spontaneously Hypertensive Rats
Abstract
:1. Introduction
2. Results
2.1. Effects of Losartan, Aspirin, and Atorvastatin on the Arterial Vessel Structure
2.1.1. Histological Observation of the Thoracic Aorta
2.1.2. Histological Observation of the Carotid Artery
2.2. Effects of Losartan, Aspirin, and Atorvastatin on the Distribution of Elastin
2.3. Distribution of Collagen Fibers
2.3.1. Thoracic Aorta
2.3.2. Carotid Artery
2.4. Effects of Losartan, Aspirin, and Atorvastatin on the Plasma Levels of Renin, Angiotensin II (Ang II), and Aldosterone (ALD)
2.5. Effects of Losartan, Aspirin, and Atorvastatin on the Plasma Levels of Endothelin-1 (ET-1), Neutrophil Elastase (NE), and Interleukin-6 (IL-6)
3. Discussion
4. Materials and Methods
4.1. Drugs and Reagents
4.2. Animal Experiments and Design
4.3. Histological Morphology of Arterial Vessels
4.4. Vascular Collagen and Elastin
4.5. Assay of Renin, Ang II, ALD, ET-1, NE, and IL-6 Levels in Plasma
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Anyaegbu, E.I.; Dharnidharka, V.R. Hypertension in the teenager. Pediatr. Clin. North. Am. 2014, 61, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Khoury, M.; Urbina, E.M. Cardiac and vascular target organ damage in pediatric hypertension. Front. Pediatr. 2018, 6, 148. [Google Scholar] [CrossRef]
- Humphrey, J.D. Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens. 2021, 34, 432–441. [Google Scholar] [CrossRef]
- Zhou, T.L.; Henry, R.M.A.; Stehouwer, C.D.A.; van Sloten, T.T.; Reesink, K.D.; Kroon, A.A. Blood pressure variability, arterial stiffness, and arterial remodeling. Hypertension 2018, 72, 1002–1010. [Google Scholar] [CrossRef]
- Mitchell, G.F. Arterial Stiffness and Hypertension. Hypertension 2014, 64, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Zieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arter. Thromb. Vasc. Biol. 2005, 25, 932–943. [Google Scholar] [CrossRef] [Green Version]
- Ott, C.E.; Grunhagen, J.; Jager, M.; Horbelt, D.; Schwill, S.; Kallenbach, K.; Guo, G.; Manke, T.; Knaus, P.; Mundlos, S.; et al. MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 3’ UTR and coding-sequence binding sites. PLoS ONE. 2011, 6, e16250. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; De Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.C.; Mao, C.P.; Hu, Y.L.; Rui, C.; Xu, Z.; Zhang, L.B. Cardiovascular effects of losartan and its relevant clinical application. Curr. Med. Chem. 2009, 16, 3841–3857. [Google Scholar] [CrossRef]
- Khoury, M.; Urbina, E.M. Hypertension in adolescents: Diagnosis, treatment, and implications. Lancet Child Adolesc. Health 2021, 5, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.M.; Wang, B.X.; Ou, W.S.; Lv, Y.H.; Li, M.M.; Miao, Z.; Wang, S.X.; Fei, J.C.; Guo, T. Administration of losartan improves aortic arterial stiffness and reduces the occurrence of acute coronary syndrome in aged patients with essential hypertension. J. Cell Biochem. 2019, 120, 5713–5721. [Google Scholar] [CrossRef] [PubMed]
- British Cardiac Society; British Hypertension Society; Diabetes UK; HEART UK; Primary Care Cardiovascular Society; Stroke Association. JBS 2: Joint British Societies’ guidelines on prevention of cardiovascular disease in clinical practice. Heart 2005, 91, 51–52. [Google Scholar] [CrossRef] [Green Version]
- Graham, I.; Atar, D.; Borch-Johnsen, K.; Boysen, G.; Burell, G.; Cifkova, R.; Dallongeville, J.; Backer, G.D.; Ebrahim, S.; Gjelsvik, B.; et al. Fourth joint taskforce of the european society of cardiology and other societies on cardiovascular disease prevention in clinical practice. European guidelines on cardiovascular disease prevention in clinical practice: Full text. Eur. J. Cardio. Prev. Rehab. 2007, 14, S1–S113. [Google Scholar] [CrossRef] [PubMed]
- Dehmer, S.P.; Maciosek, M.V.; Flottemesch, T.J.; LaFrance, A.B.; Whitlock, E.P. Aspirin for the primary prevention of cardiovascular disease and colorectal cancer: A decision analysis for the U.S. preventive services task force. Ann Intern. Med. 2016, 164, 777–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memic Sancar, K.; Celik, O.; Cil, C.; Karaarslan, O.; Dogan, T.; Yetim, M.; Asoglu, R.; Celik, Y.; Kalkan, S.; Demirci, E.; et al. An evaluation of aspirin treatment preferences original investigation of physicians in hypertensive patients in terms of current guidelines: A subgroup analysis of the ASSOS Trial in Turkey. Anatol. J. Cardiol. 2022, 26, 260–268. [Google Scholar] [CrossRef]
- Dzeshka, M.S.; Shantsila, A.; Lip, G.Y. Effects of aspirin on endothelial function and hypertension. Curr. Hypertens. Rep. 2016, 18, 83. [Google Scholar] [CrossRef] [Green Version]
- Patrono, C.; Baigent, C. Role of aspirin in primary prevention of cardiovascular disease. Nat. Rev. Cardiol. 2019, 16, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Pietri, P.; Vlachopoulos, C.; Terentes-Printzios, D.; Xaplanteris, P.; Aznaouridis, K.; Petrocheilou, K.; Stefanadis, C. Beneficial effects of low-dose aspirin on aortic stiffness in hypertensive patients. Vasc. Med. 2014, 19, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Takeuchi, S.; Yoneda, M.; Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Uchinaka, A.; Murohara, T.; Nagata, K. Atorvastatin reduces cardiac and adipose tissue inflammation in rats with metabolic syndrome. Int. J. Cardiol. 2017, 240, 332–338. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, P.Y.; Liao, J.K. Pleiotropic effects of statin therapy: Molecular mechanisms and clinical results. Trends. Mol. Med. 2008, 14, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Upala, S.; Wirunsawanya, K.; Jaruvongvanich, V.; Sanguankeo, A. Effects of statin therapy on arterial stiffness: A systematic review and meta-analysis of randomized controlled trial. Int. J. Cardiol. 2017, 227, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Kanaki, A.I.; Sarafidis, P.A.; Georgianos, P.I.; Kanavos, K.; Tziolas, I.M.; Zebekakis, P.E.; Lasaridis, A.N. Effects of low-dose atorvastatin on arterial stiffness and central aortic pressure augmentation in patients with hypertension and hypercholesterolemia. Am. J. Hypertens. 2013, 26, 608–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fassett, R.; Robertson, I.; Ball, M.; Geraghty, D.; Sharman, J.; Coombes, J. Effects of atorvastatin on arterial stiffness in chronic kidney disease: A randomized controlled trial. J. Atheroscler. Thromb. 2010, 17, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, C.; Ashley, D.T.; O’Sullivan, E.P.; McHenry, C.M.; Agha, A.; Thompson, C.J.; O’Gorman, D.J.; Smith, D. The effects of atorvastatin on arterial stiffness in male patients with type 2 diabetes. J. Diabetes Res. 2015, 2015, 846807. [Google Scholar] [CrossRef] [Green Version]
- de Cavanagh, E.M.; Ferder, L.F.; Ferder, M.D.; Stella, I.Y.; Toblli, J.E.; Inserra, F. Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: Effects of losartan and atenolol. Am. J. Hypertens. 2010, 23, 1318–1325. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, K.; Ferreira, A.A.M.; Barbosa, N.C.; Alves, J.V.; Costa, R.M.D. Atorvastatin attenuates vascular remodeling in mice with metabolic syndrome. Arq. Bras. Cardiol. 2021, 117, 737–747. [Google Scholar] [CrossRef]
- Sung, J.Y.; Choi, H.C. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 2011, 408, 312–317. [Google Scholar] [CrossRef]
- Heagerty, A.M.; Heerkens, E.H.; Izzard, A.S. Small artery structure and function in hypertension. J. Cell. Mol. Med. 2010, 14, 1037–1043. [Google Scholar] [CrossRef]
- Okamoto, K.; Aoki, K. Development of a strain of spontaneously hypertension rats. Jpn. Circ. J. 1963, 27, 282–293. [Google Scholar] [CrossRef]
- Bakker, E.N.; Groma, G.; Spijkers, L.J.; de Vos, J.; van Weert, A.; van Veen, H.; Everts, V.; Arribas, S.M.; VanBavel, E. Heterogeneity in arterial remodeling among sublines of spontaneously hypertensive rats. PLoS ONE 2014, 9, e107998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romier, B.; Dray, C.; Vanalderwiert, L.; Wahart, A.; Hocine, T.; Dortignac, A.; Garbar, C.; Garbar, C.; Boulagnon, C.; Bouland, N. Apelin expression deficiency in mice contributes to vascular stiffening by extracellular matrix remodeling of the aortic wall. Sci. Rep. 2021, 11, 22278. [Google Scholar] [CrossRef]
- Dong, S.; Liu, Q.; Zhou, X.; Zhao, Y.B.; Dong, B.; Shen, J.; Yang, K.; Li, L.S.; Zhu, D. Effects of Losartan, Atorvastatin, and Aspirin on Blood Pressure and Gut Microbiota in Spontaneously Hypertensive Rats. Molecules 2023, 28, 612. [Google Scholar] [CrossRef]
- Hall, J.E.; Granger, J.P.; do Carmo, J.M.; da Silva, A.A.; Dubinion, J.; George, E.; Hamza, S.; Speed, J.; Hall, M.E. Hypertension: Physiology and pathophysiology. Compr. Physiol. 2012, 2, 2393–2442. [Google Scholar] [CrossRef]
- Arribas, S.M.; Hinek, A.; Gonzalez, M.C. Elastic fibres and vascular structure in hypertension. Pharmacol. Ther. 2006, 111, 771–791. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Adeva-Contreras, L.; Fernandez-Fernandez, C.; Gonzalez-Lucan, M.; Funcasta-Calderon, R. Elastic tissue disruption is a major pathogenic factor to human vascular disease. Mol. Biol. Rep. 2021, 48, 4865–4878. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Monticone, R.E.; McGraw, K.R. Proinflammation, profibrosis, and arterial aging. Aging Med. 2020, 3, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horinouchi, T.; Terada, K.; Higashi, T.; Miwa, S. Endothelin receptor signaling: New insight into its regulatory mechanisms. J. Pharmacol. Sci. 2013, 123, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Ramírez, R.; Hernanz, R.; Martín, A.; Pérez-Girón, J.V.; Barrús, M.T.; González-Carnicero, Z.; Aguado, A.; Jaisser, F.; Briones, A.M.; Salaices, M. Pioglitazone modulates the vascular contractility in hypertension by interference with ET-1 pathway. Sci. Rep. 2019, 9, 16461. [Google Scholar] [CrossRef] [Green Version]
- Te Riet, L.; van Esch, J.H.; Roks, A.J.; van den Meiracker, A.H.; Danser, A.H. Hypertension: Renin-angiotensin-aldosterone system alterations. Circ. Res. 2015, 116, 960–975. [Google Scholar] [CrossRef]
- Pacurari, M.; Kafoury, R.; Tchounwou, P.B.; Ndebele, K. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int. J. Inflam. 2014, 2014, 689360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uijl, E.; Ren, L.; Mirabito Colafella, K.M.; van Veghel, R.; Garrelds, I.M.; Domenig, O.; Poglitsch, M.; Zlatev, I.; Kim, J.B.; Huang, S. No evidence for brain renin-angiotensin system activation during DOCA-salt hypertension. Clin. Sci. (Lond) 2021, 135, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep. 2014, 16, 435. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.M. Interleukin-6 and cardiac operations. Eur. Cytokine Netw. 2018, 29, 1–15. [Google Scholar] [CrossRef]
- Tyrrell, D.J.; Goldstein, D.R. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat. Rev. Cardiol. 2021, 18, 58–68. [Google Scholar] [CrossRef]
- Steiner, M.K.; Syrkina, O.L.; Kolliputi, N.; Mark, E.J.; Hales, C.A.; Waxman, A.B. Interleukin-6 overexpression induces pulmonary hypertension. Circ. Res. 2009, 104, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.O.; Nicolaysen, A.; Kvernebo, K.; Benestad, H.B.; Nicolaysen, G. Human cytokines modulate arterial vascular tone via endothelial receptors. Pflug. Arch. 1999, 439, 93–100. [Google Scholar] [CrossRef]
- Empana, J.P.; Jouven, X.; Canoui-Poitrine, F.; Luc, G.; Tafflet, M.; Haas, B.; Arveiler, D.; Ferrieres, J.; Ruidavets, J.B.; Montaye, M. C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: The PRIME study. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2047–2052. [Google Scholar] [CrossRef] [Green Version]
- Döring, G. The Role of neutrophil elastase in chronic inflammation. Am. J. Respir. Crit. Care Med. 1994, 150, S114–S117. [Google Scholar] [CrossRef]
- McCarthy, C.G.; Saha, P.; Golonka, R.M.; Wenceslau, C.F.; Joe, B.; Vijay-Kumar, M. Innate immune cells and hypertension: Neutrophils and neutrophil extracellular traps (NETs). Compr. Physiol. 2021, 11, 1575–1589. [Google Scholar] [CrossRef]
- Gismondi, R.A.; Oigman, W.; Bedirian, R.; Pozzobon, C.R.; Ladeira, M.C.; Neves, M.F. Comparison of benazepril and losartan on endothelial function and vascular stiffness in patients with Type 2 diabetes mellitus and hypertension: A randomized controlled trial. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 967–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichihara, A.; Hayashi, M.; Kaneshiro, Y.; Takemitsu, T.; Homma, K.; Kanno, Y.; Yoshizawa, M.; Furukawa, T.; Takenaka, T.; Saruta, T. Low doses of losartan and trandolapril improve arterial stiffness in hemodialysis patients. Am. J. Kidney Dis. 2005, 45, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Intengan, H.D.; Schiffrin, E.L. Reduction of resistance artery stiffness by treatment with the AT(1)-receptor antagonist losartan in essential hypertension. J. Renin Angiotensin Aldosterone Syst. 2000, 1, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Ismail, S.B.; Naing, L.; Roshan, T.M.; Rahman, A.R. Reduction in arterial stiffness with angiotensin II antagonism and converting enzyme inhibition. A comparative study among malay hypertensive subjects with a known genetic profile. Am. J. Hypertens. 2007, 20, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Jatic, Z.; Skopljak, A.; Hebibovic, S.; Sukalo, A.; Rustempasic, E.; Valjevac, A. Effects of different antihypertensive drug combinations on blood pressure and arterial stiffness. Med. Arch. 2019, 73, 157–162. [Google Scholar] [CrossRef]
- Habashi, J.P.; Judge, D.P.; Holm, T.M.; Cohn, R.D.; Loeys, B.L.; Cooper, T.K.; Myers, L.; Klein, E.C.; Liu, G.; Calvi, C.; et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006, 7, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.; Ong, V.H.; Anderson, M.E.; Hall, F.; Moinzadeh, P.; Griffiths, B.; Baildam, E.; Denton, C.P.; Herrick, A.L. Consensus best practice pathway of the UK Scleroderma Study Group: Digital vasculopathy in systemic sclerosis. Rheumatology 2015, 54, 2015–2024. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, P.; Mithbaokar, P.; Sabatino, V.; Tolmie, J.; Melis, D.; Schiaffino, M.C.; Filocamo, M.; Andria, G.; Brunetti-Pierri, N. SMAD4 mutations causing Myhre syndrome result in disorganization of extracellular matrix improved by losartan. Eur. J. Hum. Genet. 2014, 22, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Hybiak, J.; Broniarek, I.; Kiryczyński, G.; Los, L.D.; Rosik, J.; Machaj, F.; Sławiński, H.; Jankowska, K.; Urasińska, E. Aspirin and its pleiotropic application. Eur. J. Pharmacol. 2020, 866, 172762. [Google Scholar] [CrossRef]
- Richman, I.B.; Owens, D.K. Aspirin for Primary Prevention. Med. Clin. North. Am. 2017, 101, 713–724. [Google Scholar] [CrossRef]
- Vernstrøm, L.; Laugesen, E.; Grove, E.L.; Baier, J.M.; Gullaksen, S.; Hvas, A.M.; Poulsen, P.L.; Funck, K.L. Differential vascular effects of aspirin in people with Type 2 diabetes without cardiovascular disease and matched controls without diabetes. Diabet. Med. 2019, 36, 1141–1148. [Google Scholar] [CrossRef]
- Pistrosch, F.; Matschke, J.B.; Schipp, D.; Schipp, B.; Henkel, E.; Weigmann, I.; Sradnick, J.; Bornstein, S.R.; Birkenfeld, A.L.; Hanefeld, M. Rivaroxaban compared with low-dose aspirin in individuals with type 2 diabetes and high cardiovascular risk: A randomised trial to assess effects on endothelial function, platelet activation and vascular biomarkers. Diabetologia. 2021, 64, 2701–2712. [Google Scholar] [CrossRef]
- Cooper, J.N.; Evans, R.W.; Mori Brooks, M.; Fried, L.; Holmes, C.; Barinas-Mitchell, E.; Sutton-Tyrrell, K. Associations between arterial stiffness and platelet activation in normotensive overweight and obese young adults. Clin. Exp. Hypertens. 2014, 36, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.T.; Chen, H.Y.; Wu, I.H.; Su, F.L.; Li, W.H.; Hsu, H.L.; Tai, J.T.; Chao, T.H. Higher platelet count, even within normal range, is associated with increased arterial stiffness in young and middle-aged adults. Aging 2022, 14, 8061–8076. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, M.; Urbano, F.; Filippello, A.; Di Mauro, S.; Scamporrino, A.; Miano, N.; Coppolino, G.; L’Episcopo, G.; Leggio, S.; Scicali, R.; et al. Increased platelet reactivity and proinflammatory profile are associated with intima-media thickness and arterial stiffness in prediabetes. J. Clin. Med. 2022, 11, 2870. [Google Scholar] [CrossRef]
- Huang, N.; Zhu, T.T.; Liu, T.; Ge, X.Y.; Wang, D.; Liu, H.; Zhu, G.X.; Zhang, Z.; Hu, C.P. Aspirin ameliorates pulmonary vascular remodeling in pulmonary hypertension by dampening endothelial-to-mesenchymal transition. Eur. J. Pharmacol. 2021, 908, 174307. [Google Scholar] [CrossRef]
- Roth, L.; Rombouts, M.; Schrijvers, D.M.; Emini Veseli, B.; Martinet, W.; De Meyer, G.R.Y. Acetylsalicylic Acid Reduces Passive Aortic Wall Stiffness and Cardiovascular Remodelling in a Mouse Model of Advanced Atherosclerosis. Int. J. Mol. Sci. 2021, 23, 404. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Bratsas, A.; Ioakeimidis, N.; Dima, I.; Xaplanteris, P.; Stefanadis, C.; Tousoulis, D. Arterial stiffening and systemic endothelial activation induced by smoking: The role of COX-1 and COX-2. Int. J. Cardiol. 2015, 189, 293–298. [Google Scholar] [CrossRef]
- Dieffenbach, P.B.; Haeger, C.M.; Coronata, A.M.F.; Choi, K.M.; Varelas, X.; Tschumperlin, D.J.; Fredenburgh, L.E. Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L628–L647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Redondo, A.B.; Esteban, V.; Briones, A.M.; Díaz Del Campo, L.S.; González-Amor, M.; Méndez-Barbero, N.; Campanero, M.R.; Redondo, J.M.; Salaices, M. Regulator of calcineurin 1 modulates vascular contractility and stiffness through the upregulation of COX-2-derived prostanoids. Pharmacol. Res. 2018, 133, 236–249. [Google Scholar] [CrossRef]
- Avendaño, M.S.; Martínez-Revelles, S.; Aguado, A.; Simões, M.R.; González-Amor, M.; Palacios, R.; Guillem-Llobat, P.; Vassallo, D.V.; Vila, L.; García-Puig, J.; et al. Role of COX-2-derived PGE2 on vascular stiffness and function in hypertension. Br. J. Pharmacol. 2016, 173, 1541–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoropoulou, P.; Tentolouris, A.; Eleftheriadou, I.; Tsilingiris, D.; Vlachopoulos, C.; Sykara, M.; Tentolouris, N. Effect of 12-month intervention with low-dose atorvastatin on pulse wave velocity in subjects with type 2 diabetes and dyslipidaemia. Diab. Vasc. Dis. Res. 2019, 16, 38–46. [Google Scholar] [CrossRef]
- Ratchford, E.V.; Gutierrez, J.; Lorenzo, D.; McClendon, M.S.; Della-Morte, D.; DeRosa, J.T.; Elkind, M.S.; Sacco, R.L.; Rundek, T. Short-term effect of atorvastatin on carotid artery elasticity: A pilot study. Stroke. 2011, 42, 3460–3464. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.G.; Chen, B.W.; Lü, N.Q.; Cheng, Y.M.; Dang, A.M. Relationships between use of statins and arterial stiffness in normotensive and hypertensive patients with coronary artery disease. Chin. Med. J. (Engl). 2013, 126, 3087–3092. [Google Scholar] [PubMed]
- Castejon, R.; Castañeda, A.; Sollet, A.; Mellor-Pita, S.; Tutor-Ureta, P.; Jimenez-Ortiz, C.; Yebra-Bango, M. Short-term atorvastatin therapy improves arterial stiffness of middle-aged systemic lupus erythematosus patients with pathological pulse wave velocity. Lupus 2017, 26, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.M.; Ayman, E.M. Atorvastatin can delay arterial stiffness progression in hemodialysis patients. Int. Urol. Nephrol. 2022, 54, 2969–2976. [Google Scholar] [CrossRef]
- Briones, A.M.; Rodríguez-Criado, N.; Hernanz, R.; García-Redondo, A.B.; Rodrigues-Díez, R.R.; Alonso, M.J.; Egido, J.; Ruiz-Ortega, M.; Salaices, M. Atorvastatin prevents angiotensin II-induced vascular remodeling and oxidative stress. Hypertension. 2009, 54, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Kamio, K.; Liu, X.D.; Sugiura, H.; Togo, S.; Kawasaki, S.; Wang, X.; Ahn, Y.; Hogaboam, C.; Rennard, S.I. Statins inhibit matrix metalloproteinase release from human lung fibroblasts. Eur. Respir J. 2010, 35, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Romier, B.; Dray, C.; Vanalderwiert, L.; Wahart, A.; Hocine, T.; Dortignac, A.; Garbar, C.; Garbar, C.; Boulagnon, C.; Bouland, N. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. Br. J. Pharmacol. 2020, 177, 2006–2023. [Google Scholar] [CrossRef]
- Konosic, S.; Petricevic, M.; Ivancan, V.; Konosic, L.; Goluza, E.; Krtalic, B.; Drmic, D.; Stupnisek, M.; Seiwerth, S.; Sikiric, P. Intragastric application of aspirin, clopidogrel, cilostazol, and bpc 157 in rats: Platelet aggregation and blood clot. Oxid. Med. Cell Longev. 2019, 2019, 9084643. [Google Scholar] [CrossRef]
- Virdis, A.; Colucci, R.; Versari, D.; Ghisu, N.; Fornai, M.; Antonioli, L.; Duranti, E.; Daghini, E.; Giannarelli, C.; Blandizzi, C.; et al. Atorvastatin prevents endothelial dysfunction in mesenteric arteries from spontaneously hypertensive rats: Role of cyclooxygenase 2-derived contracting prostanoids. Hypertension 2009, 53, 1008–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briones, A.M.; Gonzalez, J.M.; Somoza, B.; Giraldo, J.; Daly, C.J.; Vila, E.; Gonzalez, M.C.; McGrath, J.C.; Arribas, S.M. Role of elastin in spontaneously hypertensive rat small mesenteric artery remodeling. J. Physiol. 2003, 552, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, F.; Hadas, E.; Harnik, M.; Solomon, B. Enzyme-linked immunosorbent assays for determination of plasma aldosterone using highly specific polyclonal antibodies. J. Immunoass. 1990, 11, 215–234. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Dong, S.; Zhou, X.; Zhao, Y.; Dong, B.; Shen, J.; Yang, K.; Li, L.; Zhu, D. Effects of Long-Term Intervention with Losartan, Aspirin and Atorvastatin on Vascular Remodeling in Juvenile Spontaneously Hypertensive Rats. Molecules 2023, 28, 1844. https://doi.org/10.3390/molecules28041844
Liu Q, Dong S, Zhou X, Zhao Y, Dong B, Shen J, Yang K, Li L, Zhu D. Effects of Long-Term Intervention with Losartan, Aspirin and Atorvastatin on Vascular Remodeling in Juvenile Spontaneously Hypertensive Rats. Molecules. 2023; 28(4):1844. https://doi.org/10.3390/molecules28041844
Chicago/Turabian StyleLiu, Qi, Shuai Dong, Xue Zhou, Yubo Zhao, Bin Dong, Jing Shen, Kang Yang, Linsen Li, and Dan Zhu. 2023. "Effects of Long-Term Intervention with Losartan, Aspirin and Atorvastatin on Vascular Remodeling in Juvenile Spontaneously Hypertensive Rats" Molecules 28, no. 4: 1844. https://doi.org/10.3390/molecules28041844
APA StyleLiu, Q., Dong, S., Zhou, X., Zhao, Y., Dong, B., Shen, J., Yang, K., Li, L., & Zhu, D. (2023). Effects of Long-Term Intervention with Losartan, Aspirin and Atorvastatin on Vascular Remodeling in Juvenile Spontaneously Hypertensive Rats. Molecules, 28(4), 1844. https://doi.org/10.3390/molecules28041844