R97 at “Handlebar” Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performance of Dioxygenase Candidates
2.2. Structural Analysis of cis-P3H
2.3. Site-Directed Saturation Mutagenesis of cis-P3H
2.4. Molecular Function of R97 and Its Mutation in Active Pocket
3. Materials and Methods
3.1. Cloning, Expression, and Purification of Dioxygenases
3.2. Structural Analysis and Virtual Saturation Mutagenesis
3.3. Enzyme Activity Assay
3.4. Determination of Kinetic Parameters
3.5. Analysis of the Catalytic Product
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Rooqi, M.M.; Mughal, E.U.; Raja, Q.A.; Obaid, R.J.; Sadiq, A.; Naeem, N.; Qurban, J.; Asghar, B.H.; Moussa, Z.; Ahmed, S.A. Recent advancements on the synthesis and biological significance of pipecolic acid and its derivatives. J. Mol. Struct. 2022, 1268, 133719–133742. [Google Scholar] [CrossRef]
- Hibi, M.; Mori, R.; Miyake, R.; Kawabata, H.; Kozono, S.; Takahashi, S.; Ogawa, J. Novel Enzyme Family Found in Filamentous Fungi Catalyzing trans-4-Hydroxylation of L-Pipecolic Acid. Appl. Environ. Microbiol. 2016, 82, 2070–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.P.; Zhong, Y.L.; Liu, Z.; Simeone, M.; Yasuda, N.; Limanto, J.; Chen, Z.; Lynch, J.; Capodanno, V. Practical and cost-effective manufacturing route for the synthesis of a beta-lactamase inhibitor. Org. Lett. 2014, 16, 174–177. [Google Scholar] [CrossRef]
- Son, S.; Ko, S.K.; Jang, M.; Lee, J.K.; Ryoo, I.J.; Lee, J.S.; Lee, K.H.; Soung, N.K.; Oh, H.; Hong, Y.S.; et al. Ulleungamides A and B, Modified α,β-Dehydropipecolic Acid Containing Cyclic Depsipeptides from Streptomyces sp. KCB13F003. Org. Lett. 2015, 17, 4046–4049. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Fattorusso, E.; Giordano, A.; Menna, M.; Muller, W.E.; Perovic-Ottstadt, S.; Schroder, H.C. Damipipecolin and damituricin, novel bioactive bromopyrrole alkaloids from the Mediterranean sponge Axinella damicornis. Bioorg. Med. Chem. 2007, 15, 5877–5887. [Google Scholar] [CrossRef]
- Williams, R.M.; Flanagan, M.E.; Tippie, T.N. O2-dependent cleavage of DNA by tetrazomine. Biochemistry 1994, 33, 4086–4092. [Google Scholar] [CrossRef] [PubMed]
- Neis, N.; Xie, F.; Krug, D.; Zhao, H.; Siebert, A.; Binz, T.M.; Fu, C.; Müller, R.; Kazmaier, U. Stereoselective Syntheses of Deuterated Pipecolic Acids as Tools to Investigate the Stereoselectivity of the Hydroxylase GetF. Eur. J. Org. Chem. 2022, 2022, e202200162–e202200168. [Google Scholar] [CrossRef]
- Cochi, A.; Pardo, D.G.; Cossy, J. Synthesis of 3-Hydroxypipecolic Acids. Eur. J. Org. Chem. 2013, 2013, 809–829. [Google Scholar] [CrossRef]
- Kalamkar, N.B.; Kasture, V.M.; Dhavale, D.D. Chiron approach to the synthesis of (2S,3R)-3-hydroxypipecolic acid and (2R,3R)-3-hydroxy-2-hydroxymethylpiperidine from D-glucose. J. Org. Chem. 2008, 73, 3619–3622. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Ohara, C.; Imahori, T.; Saito, Y.; Kato, A.; Miyauchi, S.; Adachi, I.; Takahata, H. Synthesis of both enantiomers of hydroxypipecolic acid derivatives equivalent to 5-azapyranuronic acids and evaluation of their inhibitory activities against glycosidases. Bioorg. Med. Chem. 2008, 16, 8273–8286. [Google Scholar] [CrossRef]
- Islam, M.S.; Leissing, T.M.; Chowdhury, R.; Hopkinson, R.J.; Schofield, C.J. 2-Oxoglutarate-Dependent Oxygenases. Annu. Rev. Biochem. 2018, 87, 585–620. [Google Scholar] [CrossRef]
- Price, J.C.; Barr, E.W.; Tirupati, B.; Bollinger, J.M.; Krebs, C. The First Direct Characterization of a High-Valent Iron Intermediate in the Reaction of an α-Ketoglutarate-Dependent Dioxygenase: A High-Spin Fe(IV) Complex in Taurine/α-Ketoglutarate Dioxygenase (TauD) from Escherichia coli. Biochemistry 2003, 42, 7497–7508. [Google Scholar] [CrossRef] [PubMed]
- Hausinger, R.P. Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 21–68. [Google Scholar] [CrossRef] [PubMed]
- de Visser, S.P. Mechanistic Insight on the Activity and Substrate Selectivity of Nonheme Iron Dioxygenases. Chem. Rec. 2018, 18, 1501–1516. [Google Scholar] [CrossRef] [Green Version]
- Smart, T.J.; Hamed, R.B.; Claridge, T.D.W.; Schofield, C.J. Studies on the selectivity of proline hydroxylases reveal new substrates including bicycles. Bioorg. Chem. 2020, 94, 103386–103394. [Google Scholar] [CrossRef]
- Shibasaki, T.; Mori, H.; Ozaki, A. Cloning of an isozyme of proline 3-hydroxylase and its purification from recombinant Escherichia coli. Biotechnol. Lett. 2000, 22, 1967–1973. [Google Scholar] [CrossRef]
- Hu, S.; Yang, P.; Li, Y.; Zhang, A.; Chen, K.; Ouyang, P. Biosynthesis of cis-3-hydroxypipecolic acid from L-lysine using an in vivo dual-enzyme cascade. Enzym. Microb. Technol. 2022, 154, 109958. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Xu, M.; Ma, Z.; Pan, X.; You, J.; Hu, M.; Shao, Y.; Yang, T.; Zhang, X.; Rao, Z. Significantly enhancing production of trans-4-hydroxy-l-proline by integrated system engineering in Escherichia coli. Sci. Adv. 2020, 6, eaba2383–eaba2392. [Google Scholar] [CrossRef]
- Jing, X.; Wang, X.; Zhang, W.; An, J.; Luo, P.; Nie, Y.; Xu, Y. Highly Regioselective and Stereoselective Hydroxylation of Free Amino Acids by a 2-Oxoglutarate-Dependent Dioxygenase from Kutzneria albida. ACS Omega 2019, 4, 8350–8358. [Google Scholar] [CrossRef] [Green Version]
- Hara, R.; Kino, K. Characterization of novel 2-oxoglutarate dependent dioxygenases converting L-proline to cis-4-hydroxy-l-proline. Biochem. Biophys. Res. Commun. 2009, 379, 882–886. [Google Scholar] [CrossRef]
- Mori, H.; Shibasaki, T.; Yano, K.; Ozaki, A. Purification and cloning of a proline 3-hydroxylase, a novel enzyme which hydroxylates free L-proline to cis-3-hydroxy-L-proline. J. Bacteriol. 1997, 179, 5677–5683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmetag, V.; Samel, S.A.; Thomas, M.G.; Marahiel, M.A.; Essen, L.O. Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J. 2009, 276, 3669–3682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strieker, M.; Kopp, F.; Mahlert, C.; Essen, L.O.; Marahiel, M.A. Mechanistic and structural basis of stereospecific Cβ-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem. Biol. 2007, 2, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Strieker, M.; Essen, L.O.; Walsh, C.T.; Marahiel, M.A. Non-heme hydroxylase engineering for simple enzymatic synthesis of L-threo-hydroxyaspartic acid. Chembiochem 2008, 9, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Hibi, M.; Kawashima, T.; Sokolov, P.M.; Smirnov, S.V.; Kodera, T.; Sugiyama, M.; Shimizu, S.; Yokozeki, K.; Ogawa, J. L-leucine 5-hydroxylase of Nostoc punctiforme is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase that is useful as a biocatalyst. Appl. Microbiol. Biotechnol. 2013, 97, 2467–2472. [Google Scholar] [CrossRef]
- Hibi, M.; Kawashima, T.; Kodera, T.; Smirnov, S.V.; Sokolov, P.M.; Sugiyama, M.; Shimizu, S.; Yokozeki, K.; Ogawa, J. Characterization of Bacillus thuringiensis L-isoleucine dioxygenase for production of useful amino acids. Appl. Environ. Microbiol. 2011, 77, 6926–6930. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhu, M.; Song, Z.; Li, C.; Wang, Y.; Zhu, Z.; Sun, D.; Lu, F.; Qin, H.-M. Reshaping the Binding Pocket of Lysine Hydroxylase for Enhanced Activity. ACS Catal. 2020, 10, 13946–13956. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Clifton, I.J.; Hsueh, L.C.; Baldwin, J.E.; Harlos, K.; Schofield, C.J. Structure of proline 3-hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur. J. Biochem. 2001, 268, 6625–6636. [Google Scholar] [CrossRef]
- Koketsu, K.; Shomura, Y.; Moriwaki, K.; Hayashi, M.; Mitsuhashi, S.; Hara, R.; Kino, K.; Higuchi, Y. Refined regio- and stereoselective hydroxylation of L-pipecolic acid by protein engineering of L-proline cis-4-hydroxylase based on the X-ray crystal structure. ACS Synth. Biol. 2015, 4, 383–392. [Google Scholar] [CrossRef]
- McCracken, J.; Casey, T.M.; Hausinger, R.P. (1)H-HYSCORE Reveals Structural Details at the Fe(II) Active Site of Taurine: 2-Oxoglutarate Dioxygenase. Appl. Magn. Reson. 2021, 52, 971–994. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Buller, R. Industrial Application of 2-Oxoglutarate-Dependent Oxygenases. Catalysts 2019, 9, 221. [Google Scholar] [CrossRef] [Green Version]
- Zong, Z.; Gao, L.; Cai, W.; Yu, L.; Cui, C.; Chen, S.; Zhang, D. Computer-Assisted Rational Modifications to Improve the Thermostability of β-Glucosidase from Penicillium piceum H16. BioEnergy Res. 2015, 8, 1384–1390. [Google Scholar] [CrossRef]
- Lukat, P.; Katsuyama, Y.; Wenzel, S.; Binz, T.; Konig, C.; Blankenfeldt, W.; Bronstrup, M.; Muller, R. Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity. Chem. Sci. 2017, 8, 7521–7527. [Google Scholar] [CrossRef] [Green Version]
- Mattay, J.; Huttel, W. Pipecolic Acid Hydroxylases: A Monophyletic Clade among cis-Selective Bacterial Proline Hydroxylases that Discriminates l-Proline. Chembiochem 2017, 18, 1523–1528. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Sheiner, L.B.; Beal, S.L. Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: Routine clinical pharmacokinetic data. J. Pharmacokinet. Biopharm. 1980, 8, 553–571. [Google Scholar] [CrossRef]
- Herbert, P.; Santos, L.; Alves, A. Simultaneous Quantification of Primary, Secondary Amino Acids, and Biogenic Amines in Musts and Wines Using OPA/3-MPA/FMOC-CI Fluorescent Derivatives. J. Food Sci. 2001, 66, 1319–1325. [Google Scholar] [CrossRef]
Enzyme | Substrate | Product | GenBank | Source | Reference | |
---|---|---|---|---|---|---|
1 | trans-P4H | L-proline | (2S,4R)-4-hydroxyproline | BAA20094.1 | Dactylosporangium sp. | Long et al. [18] |
2 | KaPH1 | WP_025358137.1 | Kutzneria albida DSM 43870 | Xiaoran Jing et al. [19] | ||
3 | KaPH2 | WP_030110684.1 | ||||
4 | KaPH3 | WP_025355730.1 | ||||
5 | cis-P4H | (2S,4S)-4-hydroxyproline | WP_046067273 | Sinorhizobium meliloti L5-30 | Ryotaro Hara et al. [20] | |
6 | cis-P3H | (2S,3R)-3-hydroxyproline | BAA22406.1 | Streptomyces sp. TH1 | Mori, H. et al. [21] | |
7 | VioC | L-arginine | (2S,3S)-hydroxyarginine (hArg) | WP_051702361.1 | Streptomyces vinaceus NRRL ISP-5257 | Helmetag, V. et al. [22] |
8 | AsnO | L-asparagine | (2S,3S)-3-hydroxyasparagine | NP_627448.1 | Streptomyces coelicolor A3(2) | Strieker, M. et al. [23] |
9 | AsnO D241N | L-aspartic acid | L-threo-hydroxyaspartic acid (L-THA) | GM869561.1 | Streptomyces coelicolor | Strieker, M. et al. [24] |
10 | LdoA | L-leucine | (2S,4S)-5-hydroxyleucine | ACC80786.1 | Nostoc punctiforme PCC 73102 | Hibi, M. et al. [25] |
11 | IDO | L-isoleucine | 4-hydroxyisoleucine | ADJ94127.1 | Bacillus thuringiensis 2-e-2 | Hibi, M. et al. [26] |
12 | L-lysine 4-hydroxylase (NkLH4) | L-lysine | (2S,4R)-4-hydroxylysine | AEV99100.1 | Niastella koreensis GR20-10 | Wang, Fenghua et al. [27] |
Enzyme | Substrate | Km (mM) | Vm (μM/min) | kcat (min−1) | kcat/Km (min−1 mM−1) |
---|---|---|---|---|---|
cis-P3H (WT) | L-Pip | 10.27 ± 0.40 | 201.30 ± 2.00 | 12.23 ± 0.12 | 1.14 ± 0.03 |
2-OG | 0.76 ± 0.02 | 101.10 ± 1.50 | 6.14 ± 0.15 | 8.01 ± 0.38 | |
R97M | L-Pip | 6.83 ± 0.32 | 212.30 ± 3.50 | 13.82 ± 0.22 | 2.09 ± 0.06 |
2-OG | 1.46 ± 0.01 | 139.10 ± 1.23 | 9.05 ± 0.17 | 6.23 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Lu, Y.; Dai, Z.; Zhao, S.; Xu, Y.; Nie, Y. R97 at “Handlebar” Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid. Molecules 2023, 28, 1854. https://doi.org/10.3390/molecules28041854
Guan J, Lu Y, Dai Z, Zhao S, Xu Y, Nie Y. R97 at “Handlebar” Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid. Molecules. 2023; 28(4):1854. https://doi.org/10.3390/molecules28041854
Chicago/Turabian StyleGuan, Jiaojiao, Yilei Lu, Zixuan Dai, Songyin Zhao, Yan Xu, and Yao Nie. 2023. "R97 at “Handlebar” Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid" Molecules 28, no. 4: 1854. https://doi.org/10.3390/molecules28041854
APA StyleGuan, J., Lu, Y., Dai, Z., Zhao, S., Xu, Y., & Nie, Y. (2023). R97 at “Handlebar” Binding Mode in Active Pocket Plays an Important Role in Fe(II)/α-Ketoglutaric Acid-Dependent Dioxygenase cis-P3H-Mediated Selective Synthesis of (2S,3R)-3-Hydroxypipecolic Acid. Molecules, 28(4), 1854. https://doi.org/10.3390/molecules28041854