Design of TiO2-Based Hybrid Systems with Multifunctional Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sol–Gel Synthesis (TiO2@LP_S)
2.2. Heterocoagulation Process (TiO2/LP_E)
2.3. Comparison between TiO2@LP_1:1_S and TiO2/LP_1:1_E
2.4. Functional Characterization
2.4.1. Photocatalytic Tests
2.4.2. Sorption Tests
2.4.3. Antibacterial Tests
2.4.4. NOx Abatement Tests
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Sol–Gel Synthesis (TiO2@LP_S)
3.2.2. Heterocoagulation Process (TiO2/LP_E)
3.2.3. Spray-Freeze-Drying Technique
3.3. Physicochemical Characterizations
3.3.1. Colloidal Characterization
3.3.2. X-ray Diffraction (XRD)
3.3.3. Transmission Electron Microscopy (TEM)
3.3.4. Fourier Transform Infrared (FTIR) Spectroscopy
3.3.5. Specific Surface Area by BET Method
3.4. Functional Characterizations
3.4.1. Photocatalytic Degradation of Rhodamine B (RhB)
3.4.2. Sorption Tests
3.4.3. Antibacterial Tests
3.4.4. NOx Abatement Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Transforming Our World: The 2030 Agenda for Sustainable Development, United Nations. Available online: https://sdgs.un.org/2030agenda (accessed on 20 December 2022).
- Lee, S.Y.; Park, S.J. TiO2 Photocatalyst for Water Treatment Applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar] [CrossRef]
- Ortelli, S.; Blosi, M.; Delpivo, C.; Gardini, D.; Dondi, M.; Gualandi, I.; Tonelli, D.; Aina, V.; Fenoglio, I.; Gandhi, A.A.; et al. Multiple Approach to Test Nano TiO2 Photo-Activity. J. Photochem. Photobiol. A Chem. 2014, 292, 26–33. [Google Scholar] [CrossRef]
- Faccani, L.; Ortelli, S.; Blosi, M.; Costa, A.L. Ceramized Fabrics and Their Integration in a Semi-Pilot Plant for the Photodegradation of Water Pollutants. Catalysts 2021, 11, 1418. [Google Scholar] [CrossRef]
- Koivisto, A.J.; Trabucco, S.; Ravegnani, F.; Calzolari, F.; Nicosia, A.; del Secco, B.; Altin, M.; Morabito, E.; Blosi, M.; Costa, A.; et al. Nanosized Titanium Dioxide Particle Emission Potential from a Commercial Indoor Air Purifier Photocatalytic Surface: A Case Study. Open Res. Eur. 2022, 2, 84. [Google Scholar] [CrossRef]
- Meena, K.R.; Kanwar, S.S. Lipopeptides as Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics. BioMed Res. Int. 2015, 2015, 473050. [Google Scholar] [CrossRef] [PubMed]
- Eras-Muñoz, E.; Farré, A.; Sánchez, A.; Font, X.; Gea, T. Microbial Biosurfactants: A Review of Recent Environmental Applications. Bioengineered 2022, 13, 12365–12391. [Google Scholar] [CrossRef]
- Moryl, M.; Spetana, M.; Dziubek, K.; Paraszkiewicz, K.; Rózalska, S.; Płaza, G.A.; Rózalski, A. Antimicrobial, Antiadhesive and Antibiofilm Potential of Lipopeptides Synthesised by Bacillus subtilis, on Uropathogenic Bacteria. Acta Biochim. Pol. 2015, 62, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; van Hamme, J.D.; Ward, O.P. Surfactants in Microbiology and Biotechnology: Part 2. Application Aspects. Biotechnol. Adv. 2007, 25, 99–121. [Google Scholar] [CrossRef]
- Inès, M.; Dhouha, G. Lipopeptide Surfactants: Production, Recovery and Pore Forming Capacity. Peptides 2015, 71, 100–112. [Google Scholar] [CrossRef]
- Théatre, A.; Cano-Prieto, C.; Bartolini, M.; Laurin, Y.; Deleu, M.; Niehren, J.; Fida, T.; Gerbinet, S.; Alanjary, M.; Medema, M.H.; et al. The Surfactin-Like Lipopeptides from Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front. Bioeng. Biotechnol. 2021, 9, 623701. [Google Scholar] [CrossRef]
- Kourmentza, C.; Freitas, F.; Alves, V.; Reis, M.A.M. Microbial conversion of waste and surplus materials into high-value added products: The case of biosurfactants. In Microbial Applications; Kalia, V., Kumar, P., Eds.; Springer: Cham, Switzerland, 2017; Volume 1, pp. 29–77. [Google Scholar] [CrossRef]
- Vollenbroich, D.; Vater, J.; Maria Kamp, R.; Pauli, G. Mechanism of Inactivation of Enveloped Viruses by the Biosurfactant Surfactin from Bacillus subtilis. Biologicals 1997, 25, 289–297. [Google Scholar] [CrossRef]
- Kracht, M.; Rokos, H.; Ozel, M.; Kowall, M.; Pauli, G.; Vatera, J. Antiviral and Hemolytic Activities of Surfactin Isoforms and Their Methyl Ester Derivatives. J. Antibiot. 1999, 52, 613–619. [Google Scholar] [CrossRef]
- Sharma, R.K.; Dey, G.; Banerjee, P.; Maity, J.P.; Lu, C.M.; Siddique, J.A.; Wang, S.C.; Chatterjee, N.; Das, K.; Chen, C.Y. New Aspects of Lipopeptide-Incorporated Nanoparticle Synthesis and Recent Advancements in Biomedical and Environmental Sciences: A Review. J. Mater. Chem. B 2023, 11, 10–32. [Google Scholar] [CrossRef]
- Christopher, F.C.; Ponnusamy, S.K.; Ganesan, J.J.; Ramamurthy, R. Investigating the Prospects of Bacterial Biosurfactants for Metal Nanoparticle Synthesis—A Comprehensive Review. IET Nanobiotechnol. 2019, 13, 243. [Google Scholar] [CrossRef]
- Satyanarayana Reddy, A.; Chen, C.Y.; Chen, C.C.; Jean, J.S.; Chen, H.R.; Tseng, M.J.; Fan, C.W.; Wang, J.C. Biological Synthesis of Gold and Silver Nanoparticles Mediated by the Bacteria Bacillus subtilis. J. Nanosci. Nanotechnol. 2010, 10, 6567–6574. [Google Scholar] [CrossRef]
- Krishnan, N.; Velramar, B.; Pandiyan, R.; Velu, R.K. Anti-Pseudomonal and Anti-Endotoxic Effects of Surfactin-Stabilized Biogenic Silver Nanocubes Ameliorated Wound Repair in Streptozotocin-Induced Diabetic Mice. Artif. Cells Nanomed. Biotechnol. 2018, 46, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.R.; Dwivedi, S.; Al-Khedhairy, A.A.; Musarrat, J. Synthesis of Stable Cadmium Sulfide Nanoparticles Using Surfactin Produced by Bacillus Amyloliquifaciens Strain KSU-109. Colloids Surf. B Biointerfaces 2011, 85, 207–213. [Google Scholar] [CrossRef]
- Ortelli, S.; Costa, A.L.; Zanoni, I.; Blosi, M.; Geiss, O.; Bianchi, I.; Mehn, D.; Fumagalli, F.; Ceccone, G.; Guerrini, G.; et al. TiO2@BSA Nano-Composites Investigated through Orthogonal Multi-Techniques Characterization Platform. Colloids Surf. B Biointerfaces 2021, 207, 112037. [Google Scholar] [CrossRef] [PubMed]
- Blosi, M.; Brigliadori, A.; Zanoni, I.; Ortelli, S.; Albonetti, S.; Costa, A.L. Chlorella Vulgaris Meets TiO2 NPs: Effective Sorbent/Photocatalytic Hybrid Materials for Water Treatment Application. J. Environ. Manag. 2022, 304, 114187. [Google Scholar] [CrossRef]
- Jenkinsa, P.; Snowdenb, M. Depletion Flocculation in Colloidal Dispersions. Adv. Colloid Interface Sci. 1996, 68, 57–96. [Google Scholar] [CrossRef]
- Monticone, S.; Tufeu, R.; Kanaev, A.V.; Scolan, E.; Sanchez, C. Quantum Size Effect in TiO2 Nanoparticles: Does It Exist? Appl. Surf. Sci. 2000, 162–163, 565–570. [Google Scholar] [CrossRef]
- Vorontsov, A.V.; Tsybulya, S.V. Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase. Ind. Eng. Chem. Res. 2018, 57, 2526–2536. [Google Scholar] [CrossRef]
- Hu, G.; Chen, S.; Shi, Q.; He, X.; Chen, P. Determination of the Amorphous Phase in Titania and Its Influence on Photocatalytic Properties. Appl. Catal. B Environ. 2016, 195, 39–47. [Google Scholar] [CrossRef]
- Ortelli, S.; Costa, A.L. Nanoencapsulation Techniques as a “Safer by (Molecular) Design” Tool. Nano-Struct. Nano-Objects 2018, 13, 155–162. [Google Scholar] [CrossRef]
- Rajakumar, G.; Rahuman, A.A.; Roopan, S.M.; Khanna, V.G.; Elango, G.; Kamaraj, C.; Zahir, A.A.; Velayutham, K. Fungus-Mediated Biosynthesis and Characterization of TiO2 Nanoparticles and Their Activity against Pathogenic Bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 91, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Al-Amin, M.; Chandra Dey, S.; Rashid, T.U.; Ashaduzzaman, M.; Shamsuddin, S.M. Solar Assisted Photocatalytic Degradation of Reactive Azo Dyes in Presence of Anatase Titanium Dioxide. Int. J. Latest Res. Eng. Technol. 2016, 2, 14–21. [Google Scholar]
- Rojas, J.A.; Ardila-Rodríguez, L.A.; Diniz, M.F.; Gonçalves, M.; Ribeiro, B.; Rezende, M.C. Optimization of Triton X-100 Removal and Ultrasound Probe Parameters in the Preparation of Multiwalled Carbon Nanotube Buckypaper. Mater. Des. 2019, 166, 107612. [Google Scholar] [CrossRef]
- Costa, A.L.; Ortelli, S.; Blosi, M.; Albonetti, S.; Vaccari, A.; Dondi, M. TiO2 Based Photocatalytic Coatings: From Nanostructure to Functional Properties. Chem. Eng. J. 2013, 225, 880–886. [Google Scholar] [CrossRef]
- Ortelli, S.; Blosi, M.; Albonetti, S.; Vaccari, A.; Dondi, M.; Costa, A.L. TiO2 based Nano-Photocatalysis Immobilized on Cellulose Substrates. J. Photochem. Photobiol. A Chem. 2014, 276, 58–64. [Google Scholar] [CrossRef]
- Ortelli, S.; Costa, A.L.; Dondi, M. TiO2 Nanosols Applied Directly on Textiles Using Different Purification Treatments. Materials 2015, 8, 7988–7996. [Google Scholar] [CrossRef]
- Baldi, G.; Bitossi, M.; Barzanti, A. Method for the Preparation of Aqueous Dispersions of TiO2 in the Form of Na-Noparticles, and Dispersions Obtainable with This Method. WO2007088151A1, 16 January 2013. [Google Scholar]
Sample | dDLS (nm) | Zeta-potELS (mV) | pHiep |
---|---|---|---|
LP | nd * | −38 ± 6 | 1.7 |
TiO2@TX | 64 ± 2 | +39 ± 7 | 6.2 |
TiO2@LP_1:0.1_S | 77 ± 4 | +33 ± 6 | 6.1 |
TiO2@LP_1:0.5_S | 215 ± 15 | +28 ± 5 | 6.0 |
TiO2@LP_1:1_S | 720 ± 143 | +24 ± 4 | 6.0 |
TiO2@LP_1:2_S | 870 ± 84 | −7 ± 2 | 1.7 |
TiO2@LP_1:6_S | 1000 ± 25 | −40 ± 8 | 2.1 |
TiO2@LP_1:8_S | 1020 ± 178 | −43 ± 5 | 1.7 |
Sample | dDLS (nm) | Zeta-potELS (mV) | pHiep |
---|---|---|---|
LP | nd * | −38 ± 6 | 1.7 |
TiO2@TX | 64 ± 2 | +39 ± 7 | 6.2 |
TiO2/LP_1:1_E | 1100 ± 200 | −16 ± 4 | 3.4 |
TiO2/LP_1:6_E | 216 ± 5 | −31 ± 58 | 1.7 |
TiO2/LP_1:8_E | 243 ± 2 | −41 ± 5 | 1.5 |
Sample | Conversion (%) | k (min−1) |
---|---|---|
TiO2@TX (ref.) | 99 | 9.5 × 10−2 |
TiO2@LP_1:0.1_S | 99 | 8.5 × 10−2 |
TiO2@LP_1:0.5_S | 90 | 4.0 × 10−2 |
TiO2@LP_1:1_S | 87 | 2.3 × 10−2 |
TiO2@LP_1:2_S | 47 | 0.6 × 10−2 |
TiO2@LP_1:6_S | 16 | 0.5 × 10−2 |
TiO2@LP_1:8_S | 12 | 0.1 × 10−2 |
Sample | Conversion (%) | k (min−1) |
---|---|---|
TiO2@TX (ref.) | 99 | 9.5 × 10−2 |
TiO2/LP_1:1_E | 18 | 0.5 × 10−2 |
TiO2/LP_1:6_E | 5 | 0.6 × 10−3 |
TiO2/LP_1:8_E | 5 | 0.6 × 10−3 |
Sample | Cu2+ Sorption (mg Cu2+/gsample) | |
---|---|---|
1 h | 24 h | |
LP | 2.53 | 2.53 |
TiO2@TX (ref.) | 1.36 | 1.39 |
TiO2@LP_1:0.1_S | 1.16 | 1.28 |
TiO2@LP_1:1_S | 1.28 | 1.23 |
TiO2@LP_1:8_S | 2.53 | 2.53 |
TiO2/LP_1:1_E | 1.18 | 1.35 |
TiO2/LP_1:8_E | 2.53 | 2.53 |
Sample | Add-on (%) | Bacterial Reduction (%) |
---|---|---|
LP | 1.7 | 40 |
TiO2@TX (ref.) | 3.1 | 72 |
TiO2@LP_1:0.1_S | 3.9 | 89 |
TiO2@LP_1:1_S | 3.9 | 85 |
TiO2@LP_1:8_S | 5.3 | 77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortelli, S.; Vespignani, M.; Zanoni, I.; Blosi, M.; Vineis, C.; Piancastelli, A.; Baldi, G.; Dami, V.; Albonetti, S.; Costa, A.L. Design of TiO2-Based Hybrid Systems with Multifunctional Properties. Molecules 2023, 28, 1863. https://doi.org/10.3390/molecules28041863
Ortelli S, Vespignani M, Zanoni I, Blosi M, Vineis C, Piancastelli A, Baldi G, Dami V, Albonetti S, Costa AL. Design of TiO2-Based Hybrid Systems with Multifunctional Properties. Molecules. 2023; 28(4):1863. https://doi.org/10.3390/molecules28041863
Chicago/Turabian StyleOrtelli, Simona, Maurizio Vespignani, Ilaria Zanoni, Magda Blosi, Claudia Vineis, Andreana Piancastelli, Giovanni Baldi, Valentina Dami, Stefania Albonetti, and Anna Luisa Costa. 2023. "Design of TiO2-Based Hybrid Systems with Multifunctional Properties" Molecules 28, no. 4: 1863. https://doi.org/10.3390/molecules28041863
APA StyleOrtelli, S., Vespignani, M., Zanoni, I., Blosi, M., Vineis, C., Piancastelli, A., Baldi, G., Dami, V., Albonetti, S., & Costa, A. L. (2023). Design of TiO2-Based Hybrid Systems with Multifunctional Properties. Molecules, 28(4), 1863. https://doi.org/10.3390/molecules28041863