Synthesis and the In Vitro Evaluation of Antitumor Activity of Novel Thiobenzanilides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Thiobenzanilide Derivatives
2.2. Antiproliferative Activity
2.3. ADME Predictions
3. Materials and Methods
3.1. Chemistry
3.1.1. General Methods
3.1.2. General Procedure for the Synthesis of the Thiobenzanilide Derivatives 1–18
- N-(4-benzylphenyl)-2-nitrobenzothioamide (1)
- 2-nitro-N-(4-phenoxyphenyl)benzothioamide (2)
- 2-nitro-N-(4-octylphenyl)benzothioamide (3)
- 2-nitro-N-[4-octyloxy)phenyl]benzothioamide (4)
- 2-nitro-N-phenylbenzothioamide (5)
- N-(4-octylphenyl)-2-(trifluoromethyl)benzothioamide (6)
- N-(4-(octyloxi)phenyl)-2-(trifluoromethyl)benzothioamide (7)
- N-phenyl-2-(trifluoromethyl)benzothioamide (8)
- N-(4-phenoxyphenyl)-2-(trifluoromethyl)benzothioamide (9)
- N-(4-benzylphenyl)benzothioamide (10)
- N-(4-phenoxyphenyl)benzothioamide (11)
- N-(4-octylphenyl)benzothioamide (12)
- N-(4-(octyloxy)phenyl)benzothioamide (13)
- N-phenylbenzothioamide (14)
- N-(4-benzylphenyl)-3,5-dinitrobenzothioamide (15)
- N-(4-octylphenyl)-3,5-dinitrobenzothioamide (16)
- 3,5-dinitro-N-(4-(octyloxy)phenyl)benzothioamide (17)
- 3,5-dinitro-N-phenylbenzothioamide (18)
3.1.3. Computational Methods
3.1.4. Growth Inhibition Activity Assay against Human Cancer Cell Lines
3.2. ADME Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Organization Cancer. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 30 May 2022).
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Skin Cancer Foundation Skin Cancer: Knowledge Is Your Best Defense. Available online: https://www.skincancer.org/skin-cancer-information/ (accessed on 30 January 2022).
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melanoma Skin Cancer. Available online: https://www.cancerresearchuk.org/about-cancer/melanoma (accessed on 16 December 2022).
- Amaral, T.; Sinnberg, T.; Meier, F.; Krepler, C.; Levesque, M.; Niessner, H.; Garbe, C. The Mitogen-Activated Protein Kinase Pathway in Melanoma Part I—Activation and Primary Resistance Mechanisms to BRAF Inhibition. Eur. J. Cancer 2017, 73, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, S.; Przybyło, M.; Stępień, E. The Clinical Trial Landscape for Melanoma Therapies. J. Clin. Med. 2019, 8, 368. [Google Scholar] [CrossRef] [Green Version]
- Trojaniello, C.; Festino, L.; Vanella, V.; Ascierto, P.A. Encorafenib in Combination with Binimetinib for Unresectable or Metastatic Melanoma with BRAF Mutations. Expert Rev. Clin. Pharmacol. 2019, 12, 259–266. [Google Scholar] [CrossRef]
- Millet, A.; Martin, A.R.; Ronco, C.; Rocchi, S.; Benhida, R. Metastatic Melanoma: Insights into the Evolution of the Treatments and Future Challenges. Med. Res. Rev. 2017, 37, 98–148. [Google Scholar] [CrossRef]
- Corazao-Rozas, P.; Guerreschi, P.; Jendoubi, M.; André, F.; Jonneaux, A.; Scalbert, C.; Garçon, G.; Malet-Martino, M.; Balayssac, S.; Rocchi, S.; et al. Mitochondrial Oxidative Stress Is the Achille’s Heel of Melanoma Cells Resistant to Braf-Mutant Inhibitor. Oncotarget 2013, 4, 1986–1998. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Li, H.; Zhang, L.; Wang, P.; Lv, Y.; Sun, Z.; Tan, J.; Yuan, Q.; Tan, W. Ferrocene-Containing Nucleic Acid-Based Energy-Storage Nanoagent for Continuously Photo-Induced Oxidative Stress Amplification. Angew. Chem.-Int. Ed. 2022, 61, e202200237. [Google Scholar] [CrossRef]
- Tan, S.; Li, D.; Zhu, X. Cancer Immunotherapy: Pros, Cons and Beyond. Biomed. Pharmacother 2020, 124, 109821. [Google Scholar] [CrossRef]
- Patrinely, J.R.; Johnson, R.; Lawless, A.R.; Bhave, P.; Sawyers, A.; Dimitrova, M.; Yeoh, H.L.; Palmeri, M.; Ye, F.; Fan, R.; et al. Chronic Immune-Related Adverse Events Following Adjuvant Anti-PD-1 Therapy for High-Risk Resected Melanoma. JAMA Oncol. 2021, 7, 744–748. [Google Scholar] [CrossRef]
- Ralli, M.; Botticelli, A.; Visconti, I.C.; Angeletti, D.; Fiore, M.; Marchetti, P.; Lambiase, A.; De Vincentiis, M.; Greco, A. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J. Immunol. Res. 2020, 2020, 9235638. [Google Scholar] [CrossRef]
- Sullivan, R.; LoRusso, P.; Boerner, S.; Dummer, R. Achievements and Challenges of Molecular Targeted Therapy in Melanoma. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.W.; Liu, X.H.; Fan, J.X.; Peng, S.Y.; Wang, J.W.; Wang, X.N.; Zhang, C.; Liu, C.J.; Zhang, X.Z. Self-Mineralized Photothermal Bacteria Hybridizing with Mitochondria-Targeted Metal–Organic Frameworks for Augmenting Photothermal Tumor Therapy. Adv. Funct. Mater. 2020, 30, 1909806. [Google Scholar] [CrossRef]
- Brunhofer, G.; Studenik, C.; Ecker, G.F.; Erker, T. Synthesis, Spasmolytic Activity and Structure-Activity Relationship Study of a Series of Polypharmacological Thiobenzanilides. Eur. J. Pharm. Sci. 2011, 42, 37–44. [Google Scholar] [CrossRef]
- Niewiadomy, A.; Matysiak, J.; Mącik-Niewiadomy, G. In Vitro Evaluation of 2,4-Dihydroxythiobenzanilides against Various Moulds. Eur. J. Pharm. Sci. 2001, 13, 243–248. [Google Scholar] [CrossRef]
- Kozic, J.; Novotná, E.; Volková, M.; Stolaříková, J.; Trejtnar, F.; Wsól, V.; Vinšová, J. Synthesis and in Vitro Antimycobacterial and Isocitrate Lyase Inhibition Properties of Novel 2-Methoxy-2′-Hydroxybenzanilides, Their Thioxo Analogues and Benzoxazoles. Eur. J. Med. Chem. 2012, 56, 108–119. [Google Scholar] [CrossRef]
- Kuneš, J.; Balšánek, V.; Pour, M.; Waisser, K.; Kaustová, J. On the Relationship between the Substitution Pattern of Thiobenzanilides and Their Antimycobacterial Activity. Farmaco 2002, 57, 777–782. [Google Scholar] [CrossRef]
- Hu, W.P.; Yu, H.S.; Chen, Y.R.; Tsai, Y.M.; Chen, Y.K.; Liao, C.C.; Chang, L.S.; Wang, J.J. Synthesis and Biological Evaluation of Thiobenzanilides as Anticancer Agents. Bioorganic Med. Chem. 2008, 16, 5295–5302. [Google Scholar] [CrossRef]
- Kucinska, M.; Giron, M.D.; Piotrowska, H.; Lisiak, N.; Granig, W.H.; Lopez-Jaramillo, F.J.; Salto, R.; Murias, M.; Erker, T. Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides. PLoS ONE 2016, 11, e0145615. [Google Scholar] [CrossRef]
- Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance Mechanisms of Breast Cancer and Their Countermeasures. Biomed. Pharmacother 2019, 114, 108800. [Google Scholar] [CrossRef]
- Ach, D.; Reboul, V.; Metzner, P. Benzylic Metallation of Thiobenzamides and Thionaphthamides. Eur. J. Org. Chem. 2002, 2002, 2573–2586. [Google Scholar] [CrossRef]
- Fäseke, V.C.; Sparr, C. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Axially Chiral Aromatic Amides. Angew. Chem.-Int. Ed. 2016, 55, 7261–7264. [Google Scholar] [CrossRef] [PubMed]
- Chabaud, L.; Clayden, J.; Helliwell, M.; Page, A.; Raftery, J.; Vallverdú, L. Conformational Studies of Tertiary Oligo-m-Benzanilides and Oligo-p-Benzanilides in Solution. Tetrahedron 2010, 66, 6936–6957. [Google Scholar] [CrossRef]
- Stewart, W.E.; Siddall, T.H. Nuclear Magnetic Resonance Studies of Amides. Chem. Rev. 1970, 70, 517–550. [Google Scholar] [CrossRef]
- Wiberg, K.B.; Rush, D.J. Solvent Effects on the Thioamide Rotational Barrier: An Experimental and Theoretical Study. J. Am. Chem. Soc. 2001, 123, 2038–2046. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2010; ISBN 9783527324736. [Google Scholar]
- Kozic, J.; Novák, Z.; Římal, V.; Profant, V.; Kuneš, J.; Vinšová, J. Conformations, Equilibrium Thermodynamics and Rotational Barriers of Secondary Thiobenzanilides. Tetrahedron 2016, 72, 2072–2083. [Google Scholar] [CrossRef]
- Effinger, A.; Driscoll, C.M.O.; Mcallister, M. In Vitro and In Silico ADME Prediction. In ADME Processes in Pharmaceutical Sciences; Talevi, A., Quiroga, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-99593-9. [Google Scholar] [CrossRef]
- Mignani, S.; Rodrigues, J.; Tomas, H.; Jalal, R.; Singh, P.P.; Majoral, J.P.; Vishwakarma, R.A. Present Drug-Likeness Filters in Medicinal Chemistry during the Hit and Lead Optimization Process: How Far Can They Be Simplified? Drug Discov. Today 2018, 23, 605–615. [Google Scholar] [CrossRef]
- Kardile, R.A.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Thopate, S.R. Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives as Small Molecule Mutant EGFR Inhibitors Targeting Resistance in NSCLC: In Vitro Screening and ADME Predictions. Eur. J. Med. Chem. 2023, 245, 114889. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Zhurko, G.; Zhurko, D. Chemcraft Graphical Program for Visualization of Computed Results 2015. Available online: https://www.chemcraftprog.com (accessed on 6 December 2022).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Gaspar, H.; Bronze, S.; Oliveira, C.; Victor, B.L.; Machuqueiro, M.; Pacheco, R.; Caldeira, M.J.; Santos, S. Proactive Response to Tackle the Threat of Emerging Drugs: Synthesis and Toxicity Evaluation of New Cathinones. Forensic Sci. Int. 2018, 290, 146–156. [Google Scholar] [CrossRef]
Compound | R1 | R2 | R3 | R4 | Yield (%) |
---|---|---|---|---|---|
1 | NO2 | H | H | CH2Ph | 58 |
2 | NO2 | H | H | OPh | 45 |
3 | NO2 | H | H | (CH2)7CH3 | 13 |
4 | NO2 | H | H | O(CH2)7CH3 | 15 |
5 | NO2 | H | H | H | 15 |
6 | CF3 | H | H | (CH2)7CH3 | 37 |
7 | CF3 | H | H | O(CH2)7CH3 | 86 |
8 | CF3 | H | H | H | 21 |
9 | CF3 | H | H | OPh | 82 |
10 | H | H | H | CH2Ph | 69 |
11 | H | H | H | OPh | 56 |
12 | H | H | H | (CH2)7CH3 | 42 |
13 | H | H | H | O(CH2)7CH3 | 14 |
14 | H | H | H | H | 72 |
15 | H | NO2 | NO2 | CH2Ph | 91 |
16 | H | NO2 | NO2 | (CH2)7CH3 | 74 |
17 | H | NO2 | NO2 | O(CH2)7CH3 | 56 |
18 | H | NO2 | NO2 | H | 34 |
Compound | Solvent | ΔΔG (kcal/mol) | (Z)/(E) | Exp. (Z)/(E) |
---|---|---|---|---|
1 | CDCl3 | −0.55 | 1:0.40 | 1:0.6 |
1 | C6D6 | −0.75 | 1:0.28 | 1:0.4 |
1 | THF-d8 | −1.03 | 1:0.18 | 1:0.1 |
1 | (CD3)2CO | −1.09 | 1:0.16 | 1:0.1 |
1 | DMSO-d6 | −1.01 | 1:0.18 | 1:0.1 |
2 | CDCl3 | −0.42 | 1:0.49 | - |
3 | CDCl3 | −0.60 | 1:0.36 | - |
4 | CDCl3 | −0.13 | 1:0.80 | - |
5 | CDCl3 | −0.60 | 1:0.36 | - |
6 | CDCl3 | −4.51 | 1:0.00 | - |
7 | CDCl3 | −1.62 | 1:0.07 | - |
8 | CDCl3 | −2.10 | 1:0.03 | - |
9 | CDCl3 | −1.64 | 1:0.06 | - |
10 | CDCl3 | −2.03 | 1:0.03 | - |
11 | CDCl3 | −1.35 | 1:0.10 | - |
12 | CDCl3 | −1.58 | 1:0.07 | - |
13 | CDCl3 | −2.16 | 1:0.03 | - |
14 | CDCl3 | −1.24 | 1:0.12 | - |
15 | CDCl3 | −0.65 | 1:0.34 | - |
16 | CDCl3 | −0.61 | 1:0.36 | - |
17 | CDCl3 | −0.54 | 1:0.40 | - |
18 | CDCl3 | −1.20 | 1:0.13 | - |
A375 | MCF-7 | ||||
---|---|---|---|---|---|
Compound | Upper | Lower | Hill Slope | ||
1 | >100 | ||||
2 | >100 | ||||
3 | 681 | ||||
4 | 652 | ||||
5 | >100 | ||||
6 | 902 | ||||
7 | >100 | ||||
8 | >100 | ||||
9 | 73 | ||||
10 | >100 | ||||
11 | >100 | ||||
12 | >100 | ||||
13 | - | - | - | >100 | |
14 | - | - | - | >100 | |
15 | 43 | ||||
16 | - | - | - | >100 | |
17 | 962 | ||||
18 | 93 | ||||
Doxorubicin | - | - | - | - | |
Tamoxifen | - | - | - | - | 30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvaro-Martins, M.J.; Railean, V.; Martins, F.; Machuqueiro, M.; Pacheco, R.; Santos, S. Synthesis and the In Vitro Evaluation of Antitumor Activity of Novel Thiobenzanilides. Molecules 2023, 28, 1877. https://doi.org/10.3390/molecules28041877
Álvaro-Martins MJ, Railean V, Martins F, Machuqueiro M, Pacheco R, Santos S. Synthesis and the In Vitro Evaluation of Antitumor Activity of Novel Thiobenzanilides. Molecules. 2023; 28(4):1877. https://doi.org/10.3390/molecules28041877
Chicago/Turabian StyleÁlvaro-Martins, Maria João, Violeta Railean, Filomena Martins, Miguel Machuqueiro, Rita Pacheco, and Susana Santos. 2023. "Synthesis and the In Vitro Evaluation of Antitumor Activity of Novel Thiobenzanilides" Molecules 28, no. 4: 1877. https://doi.org/10.3390/molecules28041877
APA StyleÁlvaro-Martins, M. J., Railean, V., Martins, F., Machuqueiro, M., Pacheco, R., & Santos, S. (2023). Synthesis and the In Vitro Evaluation of Antitumor Activity of Novel Thiobenzanilides. Molecules, 28(4), 1877. https://doi.org/10.3390/molecules28041877