Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium Azospirillum baldaniorum Sp245: Aspects of Methodology and Matrix Composition
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Spectroscopic Characterisation of A. baldaniorum Sp245 Biofilms and Their Macrocomponents
2.1.1. Optimisation of the Sample Preparation Procedure for Biofilms of A. baldaniorum Sp245 Formed on Solid Surfaces for FTIR Spectroscopic Analysis
2.1.2. FTIR Spectroscopic Analyses of A. baldaniorum Sp245 Biofilm Formed at the Air–Liquid Interface, the Biofilm Matrix and Its Macrocomponents
2.2. Chemical Characterisation of A. baldaniorum Sp245 Biofilm Matrix Components
Assignment (Functional Groups) | BZnSe | BA/L | Cells (BA/L) | BM | BM1 | BM2 | BM3 |
---|---|---|---|---|---|---|---|
O–H; N–H (amide A in proteins), ν | 3294 | 3291 | 3288 | 3292 | 3287 | 3293 | 3292 |
C–H in methyl groups –CH3 (νas) | 2961 | 2960 | 2960 | 2959 | 2958 | 2962 | 2973 |
C–H in methylene groups >CH2 (νas) | 2931 | 2927 | 2927 | 2926 | 2925 | 2933 | 2933 |
C–H in methyl groups –CH3 (νs) | ~2875w | 2874w | 2874w | 2875w | 2876w | 2875 | ~2876sh |
C–H in methylene groups >CH2 (νs) | ~2855w | 2855w | 2855w | 2854w | 2854 | ~2854sh,w | ~2854sh |
Ester C=O, ν (phospholipids; PHB) | 1732 | ~1730sh | 1725 | ~1730sh,w | ~1735sh | ~1735sh,w | ~1730sh,w |
Amide I (proteins; amide bonds) | 1655 | 1656 | 1656 | 1654 | 1654;1635 | 1654 | 1638 |
Amide II (proteins; amide bonds) | 1544 | 1543 | 1543 | 1541 | 1545 | 1545 | 1545 |
–CH2– and –CH3, δ (in proteins, lipids, sugars, etc.) | 1456 | 1452 | 1452 | 1455 | 1453 | 1452 | 1452 |
COO−, νs (in amino acid side chains and carboxylated polysaccharides) 2 | 1395 | 1400 | 1401 | 1396 | 1408 | 1400 | 1407 |
C–O–C/C–C–O, ν (in esters; PHB, etc.) | 1309 | ~1309w | 1280 | 1309 | 1314 | 1310 | 1267 |
C–O–C (esters)/amide III/O–P=O, νas | 1269 | 1240 | 1236 | 1239 | 1238 | 1242 | 1237 |
C–O, C–C, C–OH, ν; C–O–H, C–O–C, δ (in polysaccharides) | 1129sh, ~1190w | ~1125sh | 1126 | 1122 | 1124s | 1153 | 1123s |
O–P=O, νs; C–O, C–OH | 1083 | 1066 | 1060 | 1063 | 1064s | 1076 | 1061s |
3. Materials and Methods
3.1. Cultivation of A. baldaniorum Sp245 and Growth of Biofilms
3.2. Separation of Macrocomponents of A. baldaniorum Sp245 Biofilm
3.3. Colorimetric Assay
3.4. Analysis of Monosaccharide and Fatty Acid Composition
3.5. SDS–Polyacrylamide Gel Electrophoresis
3.6. FTIR Spectroscopic Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kusić, D.; Kampe, B.; Ramoji, A.; Neugebauer, U.; Rösch, P.; Popp, J. Raman spectroscopic differentiation of planktonic bacteria and biofilms. Anal. Bioanal. Chem. 2015, 407, 6803–6813. [Google Scholar] [CrossRef]
- Basu, P. Existing and novel techniques to study biofilms. In Microbial Biofilms: Current Research and Practical Implications; Mitra, A., Ed.; Caister Academic Press: Poole, UK, 2020; pp. 99–134. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Tugarova, A.V.; Shchelochkov, A.G.; Kovács, K.; Kuzmann, E. Diffuse reflectance infrared Fourier transform (DRIFT) and Mössbauer spectroscopic study of Azospirillum brasilense Sp7: Evidence for intracellular iron(II) oxidation in bacterial biomass upon lyophilisation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117970. [Google Scholar] [CrossRef]
- Valasi, L.; Kokotou, M.G.; Pappas, C.S. GC-MS, FTIR and Raman spectroscopic analysis of fatty acids of Pistacia vera (Greek variety “Aegina”) oils from two consecutive harvest periods and chemometric differentiation of oils quality. Food Res. Int. 2021, 148, 110590. [Google Scholar] [CrossRef]
- Cheeseman, S.; Shaw, Z.L.; Vongsvivut, J.; Crawford, R.J.; Dupont, M.F.; Boyce, K.J.; Gangadoo, S.; Bryant, S.J.; Bryant, G.; Cozzolino, D.; et al. Analysis of pathogenic bacterial and yeast biofilms using the combination of synchrotron ATR-FTIR microspectroscopy and chemometric approaches. Molecules 2021, 26, 3890. [Google Scholar] [CrossRef]
- Yang, J.; Yin, C.; Miao, X.; Meng, X.; Liu, Z.; Hu, L. Rapid discrimination of adulteration in Radix astragali combining diffuse reflectance mid-infrared Fourier transform spectroscopy with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119251. [Google Scholar] [CrossRef]
- Sato, E.T.; Machado, N.; Araújo, D.R.; Paulino, L.C.; Martinho, H. Fourier transform infrared absorption (FTIR) on dry stratum corneum, corneocyte-lipid interfaces: Experimental and vibrational spectroscopy calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119218. [Google Scholar] [CrossRef]
- Procacci, B.; Rutherford, S.H.; Greetham, G.M.; Towrie, M.; Parker, A.W.; Robinson, C.V.; Howle, C.R.; Hunt, N.T. Differentiation of bacterial spores via 2D-IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119319. [Google Scholar] [CrossRef]
- Demissie, T.B.; Sundar, M.S.; Thangavel, K.; Andrushchenko, V.; Bedekar, A.V.; Bouř, P. Origins of optical activity in an oxo-helicene: Experimental and computational studies. ACS Omega 2021, 6, 2420–2428. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Tugarova, A.V. Bioanalytical applications of Mössbauer spectroscopy. Russ. Chem. Rev. 2021, 90, 1415–1453. [Google Scholar] [CrossRef]
- Yuzikhin, O.S.; Gogoleva, N.E.; Shaposhnikov, A.I.; Konnova, T.A.; Osipova, E.V.; Syrova, D.S.; Ermakova, E.A.; Shevchenko, V.P.; Nagaev, Y.I.; Shevchenko, K.V.; et al. Rhizosphere bacterium Rhodococcus sp. P1Y metabolizes abscisic acid to form dehydrovomifoliol. Biomolecules 2021, 11, 345. [Google Scholar] [CrossRef]
- Krupová, M.; Leszczenko, P.; Sierka, E.; Hamplová, S.E.; Pelc, R.; Andrushchenko, V. Vibrational circular dichroism unravels supramolecular chirality and hydration polymorphism of nucleoside crystals. Chem. Eur. J. 2022, 28, e202201922. [Google Scholar] [CrossRef]
- Fernández-Domínguez, D.; Guilayn, F.; Patureau, D.; Jimenez, J. Characterising the stability of the organic matter during anaerobic digestion: A selective review on the major spectroscopic techniques. Rev. Environ. Sci. Bio/Technol. 2022, 21, 691–726. [Google Scholar] [CrossRef]
- Lima, C.; Ahmed, S.; Xu, Y.; Muhamadali, H.; Parry, C.; McGalliard, R.J.; Carrol, E.D.; Goodacre, R. Simultaneous Raman and infrared spectroscopy: A novel combination for studying bacterial infections at the single cell level. Chem. Sci. 2022, 13, 8171–8179. [Google Scholar] [CrossRef]
- Yilmaz, H.; Mohapatra, S.S.; Culha, M. Surface-enhanced infrared absorption spectroscopy for microorganisms discrimination on silver nanoparticle substrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120699. [Google Scholar] [CrossRef]
- Yuzikhin, O.S.; Shaposhnikov, A.I.; Konnova, T.A.; Syrova, D.S.; Hamo, H.; Ermekkaliev, T.S.; Shevchenko, V.P.; Shevchenko, K.V.; Gogoleva, N.E.; Nizhnikov, A.A.; et al. Isolation and characterization of 1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexene-1-acetic acid, a metabolite in bacterial transformation of abscisic acid. Biomolecules 2022, 12, 1508. [Google Scholar] [CrossRef]
- Cheah, Y.T.; Chan, D.J.C. A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances. J. Appl. Microbiol. 2022, 132, 3490–3514. [Google Scholar] [CrossRef]
- Saraeva, I.; Tolordava, E.; Yushina, Y.; Sozaev, I.; Sokolova, V.; Khmelnitskiy, R.; Sheligyna, S.; Pallaeva, T.; Pokryshkin, N.; Khmelenin, D.; et al. Direct bactericidal comparison of metal nanoparticles and their salts against S. aureus culture by TEM and FT-IR spectroscopy. Nanomaterials 2022, 12, 3857. [Google Scholar] [CrossRef]
- Ojeda, J.J.; Dittrich, M. Fourier transform infrared spectroscopy for molecular analysis of microbial cells. In Microbial Systems Biology: Methods and Protocols. Methods in Molecular Biology; Navid, A., Ed.; Humana Press: Totowa, NJ, USA, 2012; Volume 881, Chapter 8; pp. 187–211. [Google Scholar] [CrossRef]
- Martin, F.L.; Kelly, J.G.; Llabjani, V.; Martin-Hirsch, P.L.; Patel, I.I.; Trevisan, J.; Fullwood, N.J.; Walsh, M.J. Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat. Protoc. 2010, 5, 1748–1760. [Google Scholar] [CrossRef]
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef] [Green Version]
- Morais, C.L.M.; Paraskevaidi, M.; Cui, L.; Fullwood, N.J.; Isabelle, M.; Lima, K.M.G.; Martin-Hirsch, P.L.; Sreedhar, H.; Trevisan, J.; Walsh, M.J.; et al. Standardization of complex biologically derived spectrochemical datasets. Nat. Protoc. 2019, 14, 1546–1577. [Google Scholar] [CrossRef] [Green Version]
- Kamnev, A.A.; Tugarova, A.V.; Dyatlova, Y.A.; Tarantilis, P.A.; Grigoryeva, O.P.; Fainleib, A.M.; De Luca, S. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 558–564. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Kamnev, A.A. Poly-3-hydroxybutyrate synthesis by different Azospirillum brasilense strains under varying nitrogen deficiency: A comparative in-situ FTIR spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119458. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Vladimirova, A.A.; Mamchenkova, P.V.; Tugarova, A.V. Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample preparation effects. Molecules 2021, 26, 1146. [Google Scholar] [CrossRef]
- Bogino, P.C.; Oliva, M.M.; Sorroche, F.G.; Giordano, W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int. J. Mol. Sci. 2013, 14, 15838–15859. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563. [Google Scholar] [CrossRef]
- Pandit, A.; Adholeya, A.; Cahill, D.; Brau, L.; Kochar, M. Microbial biofilms in nature: Unlocking their potential for agricultural applications. J. Appl. Microbiol. 2020, 129, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Rodríguez-Merchán, E.C.; Davidson, D.J.; Liddle, A.D. Recent strategies to combat infections from biofilm-forming bacteria on orthopaedic implants. Int. J. Mol. Sci. 2021, 22, 10243. [Google Scholar] [CrossRef]
- Sun, C.; Wang, X.; Dai, J.; Ju, Y. Metal and metal oxide nanomaterials for fighting planktonic bacteria and biofilms: A review emphasizing on mechanistic aspects. Int. J. Mol. Sci. 2022, 23, 11348. [Google Scholar] [CrossRef]
- Chirman, D.; Pleshko, N. Characterization of bacterial biofilm infections with Fourier transform infrared spectroscopy: A review. Appl. Spectrosc. Rev. 2021, 56, 673–701. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Kranz, C.; Mizaikoff, B.; Cioffi, N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal. Chim. Acta 2022, 1195, 339433. [Google Scholar] [CrossRef]
- dos Santos Ferreira, N.; Hayashi Sant’ Anna, F.; Massena Reis, V.; Ambrosini, A.; Gazolla Volpiano, C.; Rothballer, M.; Schwab, S.; Baura, V.A.; Balsanelli, E.; de Oliveira Pedrosa, F.; et al. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 6203–6212. [Google Scholar] [CrossRef]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; de Carlan, C.L.N.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O.; et al. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Cassán, F.; López, G.; Nievas, S.; Coniglio, A.; Torres, D.; Donadio, F.; Molina, R.; Mora, V. What do we know about the publications related with Azospirillum? A metadata analysis. Microb. Ecol. 2021, 81, 278–281. [Google Scholar] [CrossRef]
- Cruz-Hernández, M.A.; Mendoza-Herrera, A.; Bocanegra-García, V.; Rivera, G. Azospirillum spp. from plant growth-promoting bacteria to their use in bioremediation. Microorganisms 2022, 10, 1057. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; de Almeida Roberto, L.; Hungria, M.; Corrêa, R.S.; Magri, E.; Correia, T.D. Meta-analysis of maize responses to Azospirillum brasilense inoculation in Brazil: Benefits and lessons to improve inoculation efficiency. Appl. Soil Ecol. 2022, 170, 104276. [Google Scholar] [CrossRef]
- Notununu, I.; Moleleki, L.; Roopnarain, A.; Adeleke, R. Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere 2022, 32, 90–106. [Google Scholar] [CrossRef]
- Tsivileva, O.; Shaternikov, A.; Ponomareva, E. Edible mushrooms could take advantage of the growth-promoting and biocontrol potential of Azospirillum. Proc. Latvian Acad. Sci. Section B Nat. Exact Appl. Sci. 2022, 76, 211–217. [Google Scholar] [CrossRef]
- Sheludko, A.V.; Kulibyakina, O.V.; Shirokov, A.A.; Petrova, L.P.; Matora, L.Y.; Katsy, E.I. The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense. Microbiology 2008, 77, 313–317. [Google Scholar] [CrossRef]
- Shelud’ko, A.V.; Filip’echeva, Y.A.; Shumilova, E.M.; Khlebtsov, B.N.; Burov, A.M.; Petrova, L.P.; Katsy, E.I. Changes in biofilm formation in the nonflagellated flhB1 mutant of Azospirillum brasilense Sp245. Microbiology 2015, 84, 144–151. [Google Scholar] [CrossRef]
- Shumilova, E.M.; Shelud’ko, A.V.; Filip’echeva, Y.A.; Evstigneeva, S.S.; Ponomareva, E.G.; Petrova, L.P.; Katsy, E.I. Changes in cell surface properties and biofilm formation efficiency in Azospirillum brasilense Sp245 mutants in the putative genes of lipid metabolism mmsB1 and fabG1. Microbiology 2016, 85, 172–179. [Google Scholar] [CrossRef]
- Shelud’ko, A.V.; Filip’echeva, Y.A.; Telesheva, E.M.; Burov, A.M.; Evstigneeva, S.S.; Burygin, G.L.; Petrova, L.P. Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofilms. Microbiology 2018, 87, 610–620. [Google Scholar] [CrossRef]
- Ramirez-Mata, A.; Pacheco, M.R.; Moreno, S.J.; Xiqui-Vazquez, M.L.; Baca, B.E. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots. Microbiol. Res. 2018, 215, 155–163. [Google Scholar] [CrossRef]
- Shelud’ko, A.V.; Filip’echeva, Y.A.; Telesheva, E.M.; Yevstigneeva, S.S.; Petrova, L.P.; Katsy, E.I. Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions. World J. Microbiol. Biotechnol. 2019, 35, 19. [Google Scholar] [CrossRef]
- Shelud’ko, A.V.; Mokeev, D.I.; Evstigneeva, S.S.; Filip’echeva, Y.A.; Burov, A.M.; Petrova, L.P.; Ponomareva, E.G.; Katsy, E.I. Cell ultrastructure in Azospirillum brasilense biofilms. Microbiology 2020, 89, 50–63. [Google Scholar] [CrossRef]
- Shelud’ko, A.V.; Mokeev, D.I.; Evstigneeva, S.S.; Filip’echeva, Y.A.; Burov, A.M.; Petrova, L.P.; Katsy, E.I. Suppressed biofilm formation efficiency and decreased biofilm resistance to oxidative stress and drying in an Azospirillum brasilense ahpC mutant. Microbiology 2021, 90, 56–65. [Google Scholar] [CrossRef]
- Petrova, L.P.; Filip’echeva, Y.A.; Telesheva, E.M.; Pylaev, T.E.; Shelud’ko, A.V. Variations in lipopolysaccharide synthesis affect formation of Azospirillum baldaniorum biofilms in planta at elevated copper content. Microbiology 2021, 90, 470–480. [Google Scholar] [CrossRef]
- Mokeev, D.I.; Volokhina, I.V.; Telesheva, E.M.; Evstigneeva, S.S.; Grinev, V.S.; Pylaev, T.E.; Petrova, L.P.; Shelud’ko, A.V. Resistance of biofilms formed by the soil bacterium Azospirillum brasilense to osmotic stress. Microbiology 2022, 91, 682–692. [Google Scholar] [CrossRef]
- Díaz, P.R.; Romero, M.; Pagnussatt, L.; Amenta, M.; Valverde, C.F.; Cámara, M.; Creus, C.M.; Maroniche, G.A. Azospirillum baldaniorum Sp245 exploits Pseudomonas fluorescens A506 biofilm to overgrow in dual-species macrocolonies. Environ. Microbiol. 2022, 24, 5707–5720. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Sheludko, A.V.; Dyatlova, Y.A.; Filip’echeva, Y.A.; Kamnev, A.A. FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610. J. Mol. Struct. 2017, 1140, 142–147. [Google Scholar] [CrossRef]
- Naumann, D. Infrared spectroscopy in microbiology. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Chichester, UK, 2000; pp. 102–131, (Updated version: Lasch, P.; Naumann, D. Infrared spectroscopy in microbiology. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Chichester, UK, 2015. 10.1002/9780470027318.a0117.pub2). [Google Scholar] [CrossRef]
- Kamnev, A.A.; Sadovnikova, J.N.; Tarantilis, P.A.; Polissiou, M.G.; Antonyuk, L.P. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: A diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic study. Microb. Ecol. 2008, 56, 615–624. [Google Scholar] [CrossRef]
- Velichko, N.S.; Grinev, V.S.; Fedonenko, Y.P. Characterization of biopolymers produced by planktonic and biofilm cells of Herbaspirillum lusitanum P6-12. J. Appl. Microbiol. 2020, 129, 1349–1363. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Bajrami, D.; Fischer, S.; Barth, H.; Sarquis, M.A.; Ladero, V.M.; Fernández, M.; Sportelli, M.C.; Cioffi, N.; Kranz, C.; Mizaikoff, B. In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy. NPJ Biofilms Microbiomes 2022, 8, 92. [Google Scholar] [CrossRef]
- Katharios-Lanwermeyer, S.; O’Toole, G.A. Biofilm maintenance as an active process: Evidence that biofilms work hard to stay put. J. Bacteriol. 2022, 204, e00587-21. [Google Scholar] [CrossRef]
- Yevstigneyeva, S.S.; Sigida, E.N.; Fedonenko, Y.P.; Konnova, S.A.; Ignatov, V.V. Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions. Microbiology 2016, 85, 664–671. [Google Scholar] [CrossRef]
- Konnova, O.N.; Boiko, A.S.; Burygin, G.L.; Fedonenko, Y.P.; Matora, L.Y.; Konnova, S.A.; Ignatov, V.V. Chemical and serological studies of liposaccharides of bacteria of the genus Azospirillum. Microbiology 2008, 77, 305–312. [Google Scholar] [CrossRef]
- Sigida, E.N.; Kokoulin, M.S.; Dmitrenok, P.S.; Grinev, V.S.; Fedonenko, Y.P.; Konnova, S.A. The structure of the O-specific polysaccharide and lipid A of the type strain Azospirillum rugosum DSM-19657. Russ. J. Bioorg. Chem. 2020, 46, 60–70. [Google Scholar] [CrossRef]
- Fedonenko, Y.P.; Zatonsky, G.V.; Konnova, S.A.; Zdorovenko, E.L.; Ignatov, V.V. Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245. Carbohydr. Res. 2002, 337, 869–872. [Google Scholar] [CrossRef]
- Kawahara, K. Variation, modification and engineering of lipid A in endotoxin of Gram-negative bacteria. Int. J. Mol. Sci. 2021, 22, 2281. [Google Scholar] [CrossRef]
- Choma, A.; Komaniecka, I. Characterization of a novel lipid A structure isolated from Azospirillum lipoferum lipopolysaccharide. Carbohydr. Res. 2008, 343, 799–804. [Google Scholar] [CrossRef]
- Baldani, V.L.D.; Baldani, J.I.; Döbereiner, J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 1983, 29, 924–929. [Google Scholar] [CrossRef]
- Turkovskaya, O.V.; Golubev, S.N. The Collection of Rhizosphere Microorganisms: Its importance for the study of associative plant-bacterium interactions. Vavilov J. Genet. Breed. 2020, 24, 315–324. [Google Scholar] [CrossRef]
- Day, J.M.; Döbereiner, J. Physiological aspects of N2-fixation by a Spirillum from Digitaria roots. Soil Biol. Biochem. 1976, 8, 45–50. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Berenblum, I.; Chain, E. An improved method for the colorimetric determination of phosphate. Biochem. J. 1938, 32, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Karkhanis, Y.D.; Zeltner, J.Y.; Jackson, J.J.; Carlo, D.J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal. Biochem. 1978, 85, 595–601. [Google Scholar] [CrossRef]
- Sawardeker, J.S.; Sloneker, J.H.; Jeanes, A. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal. Chem. 1965, 37, 1602–1604. [Google Scholar] [CrossRef]
- Mayer, H.; Tharanathan, R.N.; Weckesser, J. Analysis of lipopolysaccharides of Gram-negative bacteria. Meth. Microbiol. 1985, 18, 157–207. [Google Scholar] [CrossRef]
- Hitchcock, P.J.; Brown, T.M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 1983, 154, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-M.; Frasch, C.E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 1982, 119, 115–119. [Google Scholar] [CrossRef]
- Chen, H.Y.; Cheng, H.; Bjerknes, M. One-step Coomassie brilliant blue R-250 staining of proteins in polyacrylamide gel. Anal. Biochem. 1993, 212, 295–296. [Google Scholar] [CrossRef]
Components | LPS | BM | BM1 | BM2 | BM3 |
---|---|---|---|---|---|
Total sugars | 55.4 ± 4.5 | 9.1 ± 1.0 | 42.1 ± 3.4 | 10.4 ± 1.8 | 62.3 ± 4.8 |
Proteins | – | 67.4 ± 0.4 | 18.7 ± 1.5 | 53.2 ± 3.7 | – |
Kdo | 2.6 ± 0.2 | 0.3 ± 0.1 | 0.9 ± 0.1 | 0.3 ± 0.1 | 1.5 ± 0.1 |
Phosphate | 1.4 ± 0.2 | 1.2 ± 0.1 | 0.9 ± 0.1 | 0.8 ± 0.1 | 2.3 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamnev, A.A.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Fedonenko, Y.P.; Evstigneeva, S.S.; Tugarova, A.V. Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium Azospirillum baldaniorum Sp245: Aspects of Methodology and Matrix Composition. Molecules 2023, 28, 1949. https://doi.org/10.3390/molecules28041949
Kamnev AA, Dyatlova YA, Kenzhegulov OA, Fedonenko YP, Evstigneeva SS, Tugarova AV. Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium Azospirillum baldaniorum Sp245: Aspects of Methodology and Matrix Composition. Molecules. 2023; 28(4):1949. https://doi.org/10.3390/molecules28041949
Chicago/Turabian StyleKamnev, Alexander A., Yulia A. Dyatlova, Odissey A. Kenzhegulov, Yulia P. Fedonenko, Stella S. Evstigneeva, and Anna V. Tugarova. 2023. "Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium Azospirillum baldaniorum Sp245: Aspects of Methodology and Matrix Composition" Molecules 28, no. 4: 1949. https://doi.org/10.3390/molecules28041949
APA StyleKamnev, A. A., Dyatlova, Y. A., Kenzhegulov, O. A., Fedonenko, Y. P., Evstigneeva, S. S., & Tugarova, A. V. (2023). Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium Azospirillum baldaniorum Sp245: Aspects of Methodology and Matrix Composition. Molecules, 28(4), 1949. https://doi.org/10.3390/molecules28041949