Authentication of Polish Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on Volatile Compounds Analysis in Combination with Machine Learning Algorithms: Hotrienol as a Marker of the Zweigelt Variety
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Winemaking Process and Wine Samples
3.2. Chemicals
3.3. SPME-GC/MS
3.3.1. HS-SPME
3.3.2. GC/MS
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alañón, M.E.; Pérez-Coello, M.S.; Marina, M.L. Wine science in the metabolomics era. TrAC Trends Anal. Chem. 2015, 74, 1–20. [Google Scholar] [CrossRef]
- Pereira, L.; Gomes, S.; Barrias, S.; Gomes, E.P.; Baleiras-Couto, M.; Fernandes, J.R.; Martins-Lopes, P. From the Field to the Bottle—An Integrated Strategy for Wine Authenticity. Beverages 2018, 4, 71. [Google Scholar] [CrossRef] [Green Version]
- Villano, C.; Lisanti, M.T.; Gambuti, A.; Vecchio, R.; Moio, L.; Frusciante, L.; Aversano, R.; Carputo, D. Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks. Food Control 2017, 80, 1–10. [Google Scholar] [CrossRef]
- Cosme, F.; Milheiro, J.; Pires, J.; Guerra-Gomes, F.I.; Filipe-Ribeiro, L.; Nunes, F.M. Authentication of Douro DO monovarietal red wines based on anthocyanin profile: Comparison of partial least squares–discriminant analysis, decision trees and artificial neural networks. Food Control 2021, 125, 107979. [Google Scholar] [CrossRef]
- Callejon, R.M.; Clavijo, A.; Ortigueira, P.; Troncoso, A.M.; Paneque, P.; Morales, M.L. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Anal. Chim. Acta 2010, 660, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Darriet, P.; Thibon, C.; Dubourdieu, D. Aroma and aroma precursors in grape berry. In The Biochemistry of the Grape Berry; Gerós, H., Chaves, M.M., Serge Delrot, Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 111–136. [Google Scholar]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Karimali, D.; Kosma, I.; Badeka, A. Varietal classification of red wine samples from four native Greek grape varieties based on volatile compound analysis, color parameters and phenolic composition. Eur. Food Res. Technol. 2020, 246, 41–53. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Blackman, J.W.; Schmidtke, L.M. Exploring the regional typicality of Australian Shiraz wines using untargeted metabolomics. Aust. J. Grape Wine Res. 2021, 27, 378–391. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Karabagias, V.K.; Badeka, A.V. Volatilome of white wines as an indicator of authenticity and adulteration control using statistical analysis. Aust. J. Grape Wine Res. 2021, 27, 269–279. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Establishment of the varietal profile of Vitis vinifera L. grape varieties from different geographical regions based on HS-SPME/GC–qMS combined with chemometric tools. Microchem. J. 2014, 116, 107–117. [Google Scholar] [CrossRef]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Zini, C.A. Differentiation of wines according to grape variety using multivariate analysis of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection data. Food Chem. 2013, 141, 3897–3905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziółkowska, A.; Wąsowicz, E.; Jeleń, H.H. Differentiation of wines according to grape variety and geographical origin based on volatiles profiling using SPME-MS and SPME-GC/MS methods. Food Chem. 2016, 213, 714–720. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; González-Casado, A.; Bagur-González, M.G.; Cuadros-Rodríguez, L. Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity–A review. Food Res. Int. 2019, 122, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Płotka-Wasylka, J. Classification of Polish wines by application of ultra-fast gas chromatography. Eur. Food Res. Technol. 2018, 244, 1463–1471. [Google Scholar] [CrossRef]
- Springer, A.E. Wine authentication: A fingerprinting multiclass strategy to classify red varietals through profound chemometric analysis of volatiles. Eur. Food Res. Technol. 2019, 245, 179–190. [Google Scholar] [CrossRef]
- Gómez-Meire, S.; Campos, C.; Falqué, E.; Díaz, F.; Fdez-Riverola, F. Assuring the authenticity of northwest Spain white wine varieties using machine learning techniques. Food Res. Int. 2014, 60, 230–240. [Google Scholar] [CrossRef]
- Tzachristas, A.; Dasenaki, M.; Aalizadeh, R.; Thomaidis, N.S.; Proestos, C. LC-MS based metabolomics for the authentication of selected Greek white wines. Microchem. J. 2021, 169, 106543. [Google Scholar] [CrossRef]
- Hosu, A.; Cristea, V.M.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Mascellani, A.; Hoca, G.; Babisz, M.; Krska, P.; Kloucek, P.; Havlik, J. 1H NMR chemometric models for classification of Czech wine type and variety. Food Chem. 2021, 339, 127852. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhan, J.; Huang, W. Identification of wine according to grape variety using near-infrared spectroscopy based on radial basis function neural networks and least-squares support vector machines. Food Anal. Methods 2017, 10, 3306–3311. [Google Scholar] [CrossRef]
- Ranaweera, R.K.; Gilmore, A.M.; Capone, D.L.; Bastian, S.E.; Jeffery, D.W. Spectrofluorometric analysis combined with machine learning for geographical and varietal authentication, and prediction of phenolic compound concentrations in red wine. Food Chem. 2021, 361, 130149. [Google Scholar] [CrossRef] [PubMed]
- International Standard for the Labelling of Wines. Available online: https://www.oiv.int/public/medias/8175/en-oiv-wine-labelling-standard-2022.pdf (accessed on 12 January 2023).
- European Union Wine Lists. Wine Grape Varieties Authorized for Production and for Labelling and Presentation in the Wine Sector, in Application of Article 81 and Article 120(2)(b) of Regulation (EU) No 1308/2013 (Article 50(1)(g) and 51(2) of R. (EU) 2018/273) Listed by Member State. Available online: https://agriculture.ec.europa.eu/system/files/2019-11/win-list-08b-grape-varieties-by-country_en_0.pdf (accessed on 12 January 2023).
- Stój, A.; Kapusta, I.; Domagała, D. Classification of red wines produced from Zweigelt and Rondo grape varieties based on the analysis of phenolic compounds by UPLC-PDA-MS/MS. Molecules 2020, 25, 1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welke, J.E.; Manfroi, V.; Zanus, M.; Lazzarotto, M.; Zini, C.A. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection. J. Chromatogr. A 2012, 1226, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Mallouchos, A.; Loukatos, P.; Bekatorou, A.; Koutinas, A.; Komaitis, M. Ambient and low temperature winemaking by immobilized cells on brewer’s spent grains: Effect on volatile composition. Food Chem. 2007, 104, 918–927. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.; Cacho, J.; Marques, J.C. Volatile profile of Madeira wines submitted to traditional accelerated ageing. Food Chem. 2014, 162, 122–134. [Google Scholar] [CrossRef] [PubMed]
- García-Carpintero, E.G.; Gallego, M.G.; Sánchez-Palomo, E.; Viñas, M.G. Impact of alternative technique to ageing using oak chips in alcoholic or in malolactic fermentation on volatile and sensory composition of red wines. Food Chem. 2012, 134, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Duarte, W.F.; Dias, D.R.; Oliveira, J.M.; Teixeira, J.A.; De Almeida e Silva, J.B.; Schwan, R.F. Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu. LWT-Food Sci. Technol. 2010, 43, 1564–1572. [Google Scholar] [CrossRef]
- Song, S.; Tanga, Q.; Hayat, K.; Karangwa, E.; Zhang, X.; Xiao, Z. Effect of enzymatic hydrolysis with subsequent mild thermal oxidation of tallow on precursor formation and sensory profiles of beef flavours assessed by partial least squares regression. Meat Sci. 2014, 96, 1191–1200. [Google Scholar] [CrossRef]
- King, E.S.; Stoumen, M.; Buscema, F.; Hjelmeland, A.K.; Ebeler, S.E.; Heymann, H.; Boulton, R.B. Regional sensory and chemical characteristics of Malbec wines from Mendoza and California. Food Chem. 2014, 143, 256–267. [Google Scholar] [CrossRef]
- Mendes, B.; Gonçalves, J.; Câmara, J.S. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines—A comparative study. Talanta 2012, 88, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, U.; Hansen, M.; Christensen, L.P.; Jensen, K.; Kaack, K. Olfactory and quantitative analysis of aroma compounds in elder flower (Sambucus nigra L.) drink processed from five cultivars. J. Agric. Food Chem. 2000, 48, 2376–2383. [Google Scholar] [CrossRef] [PubMed]
- Jurek, K. Der Einfluss der Vinifikation auf das Aroma der Rotweinsorten Blaufränkisch und Zweigelt. Master’s Thesis, Technischen Universität Graz, Graz, Austria, 2010. [Google Scholar]
- Stój, A.; Czernecki, T.; Sosnowska, B.; Niemczynowicz, A.; Matwijczuk, A. Impact of Grape Variety, Yeast and Malolactic Fermentation on Volatile Compounds and Fourier Transform Infrared Spectra in Red Wines. Pol. J. Food Nutr. Sci. 2022, 72, 39–55. [Google Scholar] [CrossRef]
- Stój, A.; Czernecki, T.; Domagała, D.; Targoński, Z. Comparative characterization of volatile profiles of French, Italian, Spanish, and Polish red wines using headspace solid-phase microextraction/gas chromatography-mass spectrometry. Int. J. Food Prop. 2017, 20 (Suppl. 1), S830–S845. [Google Scholar] [CrossRef] [Green Version]
- Stój, A.; Czernecki, T.; Domagala, D.; Targoński, Z. Application of volatile compound analysis for distinguishing between red wines from Poland and from other European countries. S. Afr. J. Enol. Vitic. 2017, 38, 245–263. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Arneborg, N.; Toldam-Andersen, T.B.; Petersen, M.A.; Bredie, W.L. Effect of sequential fermentations and grape cultivars on volatile compounds and sensory profiles of Danish wines. J. Sci. Food Agric. 2017, 97, 3594–3602. [Google Scholar] [CrossRef]
- Gammacurta, M.; Marchand, S.; Albertin, W.; Moine, V.; de Revel, G. Impact of yeast strain on ester levels and fruity aroma persistence during aging of Bordeaux red wines. J. Agric. Food Chem. 2014, 62, 5378–5389. [Google Scholar] [CrossRef]
- Liu, N.; Qin, Y.; Song, Y.; Ye, D.; Yuan, W.; Pei, Y.; Xue, B.; Liu, Y. Selection of indigenous Saccharomyces cerevisiae strains in Shanshan County (Xinjiang, China) for winemaking and their aroma-producing characteristics. World J. Microbiol. Biotechnol. 2015, 31, 1781–1792. [Google Scholar] [CrossRef]
- Fernández-González, M.; Di Stefano, R.; Briones, A. Hydrolysis and transformation of terpene glycosides from muscat must by different yeast species. Food Microbiol. 2003, 20, 35–41. [Google Scholar] [CrossRef]
- Abrahamse, C.E.; Bartowsky, E.J. Timing of malolactic fermentation inoculation in Shiraz grape must and wine: Influence on chemical composition. World J. Microbiol. Biotechnol. 2012, 28, 255–265. [Google Scholar] [CrossRef]
- Costello, P.J.; Francis, I.L.; Bartowsky, E.J. Variations in the effect of malolactic fermentation on the chemical and sensory properties of Cabernet Sauvignon wine: Interactive influences of Oenococcus oeni strain and wine matrix composition. Aust. J. Grape Wine R. 2012, 18, 287–301. [Google Scholar] [CrossRef]
- Lasik-Kurdyś, M.; Majcher, M.; Nowak, J. Effects of different techniques of malolactic fermentation induction on diacetyl metabolism and biosynthesis of selected aromatic esters in cool-climate grape wines. Molecules 2018, 23, 2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malherbe, S.; Tredoux, A.G.; Nieuwoudt, H.H.; du Toit, M. Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition. J. Ind. Microbiol. Biotechnol. 2012, 39, 477–494. [Google Scholar] [CrossRef]
- da Costa, N.L.; Valentin, L.A.; Castro, I.A.; Barbosa, R.M. Predictive modeling for wine authenticity using a machine learning approach. Artif. Intell. Agric. 2021, 5, 157–162. [Google Scholar] [CrossRef]
- Costa, N.L.; Llobodanin, L.A.G.; Castro, I.A.; Barbosa, R. Using Support Vector Machines and neural networks to classify Merlot wines from South America. Inf. Process. Agric. 2019, 6, 265–278. [Google Scholar] [CrossRef]
- Costa, N.L.; Llobodanin, L.A.G.; Castro, I.A.; Barbosa, R. Geographical classification of Tannat wines based on support vector machines and feature selection. Beverages 2018, 4, 97. [Google Scholar] [CrossRef] [Green Version]
Peak No. | Compound | Similarity (%) | RT (min) | LTPRI Exp. | LTPRI Lit. | References |
---|---|---|---|---|---|---|
Acids | ||||||
20 | Acetic acid | 99 | 34.874 | 1469 | 1457 | [27] |
28 | Propanoic acid | 89 | 39.088 | 1554 | 1536 | [27] |
31 | 2-Methylpropanoic acid | 98 | 40.221 | 1580 | 1573 | [28] |
52 | Hexanoic acid | 98 | 48.552 | 1852 | 1851 | [28] |
59 | Octanoic Acid | 98 | 53.311 | 2061 | 2067 | [28] |
60 | Nonanoic acid | 94 | 55.426 | 2167 | 2170 | [27] |
63 | Decanoic acid | 98 | 57.416 | 2270 | 2281 | [28] |
66 | Benzoic acid | 78 | 61.369 | 2449 | 2434 | [29] |
67 | Dodecanoic acid | 93 | 62.125 | 2479 | 2488 | [28] |
Alcohols | ||||||
2 | 2-Methylpropan-1-ol | 98 | 16.232 | 1121 | 1100 | [30] |
4 | Butan-1-ol | 97 | 18,828 | 1171 | 1173 | [27] |
5 | 3-Methylbutan-1-ol | 99 | 21.775 | 1228 | 1221 | [31] |
6 | Pentan-1-ol | 95 | 23.532 | 1263 | 1259 | [28] |
8 | 4-Methylpentan-1-ol | 96 | 26.403 | 1319 | 1309 | [32] |
9 | 3-Methylpentan-1-ol | 98 | 26.989 | 1330 | 1322 | [32] |
11 | Hexan-1-ol | 98 | 28.237 | 1353 | 1361 | [28] |
12 | (E)-3-Hexen-1-ol | 96 | 28.867 | 1365 | 1358 | [32] |
13 | 3-Ethoxypropan-1-ol | 93 | 29.520 | 1378 | 1371 | [27] |
14 | (Z)-3-Hexen-1-ol | 90 | 29.925 | 1386 | 1379 | [32] |
18 | Octen-3-ol | 96 | 33.955 | 1454 | 1451 | [33] |
19 | Heptan-1-ol | 97 | 34.282 | 1459 | 1470 | [27] |
22 | 2-Ethylhexan-1-ol | 98 | 36.215 | 1491 | 1486 | [32] |
23 | 3-Ethyl-4-methylpentan-1-ol | 92 | 37.176 | 1509 | 1509 | [27] |
26 | Butane-2,3-diol | 98 | 38.732 | 1545 | 1563 | [27] |
29 | Octan-1-ol | 99 | 39.344 | 1560 | 1567 | [28] |
32 | Propane-1,2-diol | 90 | 40.855 | 1595 | 1591 | [27] |
34 | 2-(2-Ethoxyethoxy)- ethanol | 96 | 41.732 | 1620 | 1622 | [27] |
39 | Nonan-1-ol | 97 | 43.083 | 1660 | 1656 | [29] |
46 | Decan-1-ol | 95 | 46.147 | 1761 | 1755 | [29] |
54 | Phenylmethanol | 80 | 49.320 | 1883 | 1879 | [34] |
56 | 2-Phenylethanol | 97 | 50.168 | 1919 | 1919 | [28] |
57 | Dodecan-1-ol | 97 | 51.181 | 1963 | 1959 | [29] |
65 | Hexadecan-1-ol | 96 | 59.427 | 2368 | 2400 | [33] |
Aldehydes | ||||||
24 | Benzaldehyde | 92 | 37.892 | 1526 | 1522 | [28] |
38 | 4-Methylbenzaldehyde | 92 | 42.774 | 1651 | 1638 | [32] |
Esters | ||||||
1 | Ethyl 3-methylbutanoate | 93 | 14.443 | 1079 | 1066 | [32] |
10 | Ethyl 2-hydroxypropanoate | 98 | 27.943 | 1348 | 1338 | [27] |
15 | Methyl octanoate | 87 | 29.967 | 1386 | 1381 | [27] |
16 | Ethyl octanoate | 98 | 32.775 | 1434 | 1429 | [27] |
21 | 2-Methylpropyl 2-hydroxypropanoate | 94 | 34.665 | 1465 | 1454 | [35] |
25 | Ethyl nonanoate | 91 | 38.340 | 1536 | 1540 | [28] |
30 | 3-Methylbutyl 2-hydroxypropanoate | 98 | 39.889 | 1572 | 1568 | [35] |
37 | Ethyl decanoate | 95 | 42.336 | 1638 | 1643 | [27] |
40 | Ethyl benzoate | 87 | 43.403 | 1669 | 1665 | [27] |
41 | Diethyl butanedioate | 96 | 43.675 | 1677 | 1672 | [32] |
42 | Ethyl 9-decenoate | 92 | 44.067 | 1689 | 1697 | [28] |
47 | Methyl 2-hydroxy benzoate | 82 | 46.712 | 1781 | 1775 | [27] |
48 | Ethyl phenylacetate | 95 | 46.937 | 1789 | 1787 | [28] |
49 | 2-Phenylethyl acetate | 97 | 47.730 | 1819 | 1810 | [32] |
51 | Ethyl dodecanoate | 91 | 48.281 | 1841 | 1840 | [29] |
55 | Ethyl 3-phenylpropanoate | 92 | 49.464 | 1889 | 1892 | [27] |
58 | Diethyl-2-hydroxybutanedioate | 89 | 52.939 | 2044 | 2038 | [27] |
61 | Methyl hexadecanoate | 92 | 56.302 | 2212 | 2211 | [29] |
62 | Ethyl hexadecanoate | 84 | 56.970 | 2247 | 2243 | [27] |
Furan compounds | ||||||
35 | Ethyl 2-furoate | 87 | 41.936 | 1626 | 1627 | [27] |
36 | Dihydrofuran-2(3H)-one | 89 | 42.283 | 1636 | 1627 | [28] |
Ketones | ||||||
3 | 4-Methyl-3-penten-2-one | 98 | 17.497 | 1145 | 1139 | [36] |
7 | 3-Hydroxybutan-2-one | 93 | 25.403 | 1300 | 1289 | [28] |
Sulphur compounds | ||||||
44 | 3-(Methylsulfanyl)propan-1-ol | 96 | 45.001 | 1720 | 1715 | [32] |
Terpenes | ||||||
17 | (Z)-Linalool oxide | 96 | 33.397 | 1444 | 1446 | [29] |
27 | 3,7-Dimethyl-1,6-octadien-3-ol (β-Linalol) | 93 | 38.922 | 1550 | 1554 | [27] |
33 | 3,7-Dimethyl-1,5,7-octatrien-3-ol (Hotrienol) | 96 | 41.425 | 1610 | 1603 | [29] |
43 | 3-Cyclohexene-1-methanol,α,α,4-trimethyl-(α-Terpineol) | 87 | 44.322 | 1697 | 1694 | [29] |
45 | 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) | 85 | 45.774 | 1747 | 1737 | [28] |
50 | (E)-1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one (β-Damascenone) | 96 | 47.843 | 1823 | 1821 | [29] |
53 | (E)-6,10-dimethyl-5,9-Undecadien-2-one (Geranylacetone) | 97 | 48.627 | 1855 | 1855 | [29] |
64 | (E,E)-3,7,11-trimethyl-2,6,10-Dodecatrien-1-ol ((E,E)-Farnesol) | 91 | 58.976 | 2347 | 2366 | [29] |
Accuracy | |||
---|---|---|---|
Compound | Test Set | Rondo | Zweigelt |
Acids | 93.33 | 87.50 | 100 |
Alcohols | 100 | 100 | 100 |
Esters | 86.67 | 71.43 | 100 |
Terpenes | 93.33 | 100 | 83.33 |
Others | 86.67 | 87.50 | 85.71 |
All | 100 | 100 | 100 |
Accuracy | |||
---|---|---|---|
Compound | Test Set | Rondo | Zweigelt |
Acids 1 | 86.67 | 87.50 | 85.71 |
Alcohols 1 | 100 | 100 | 100 |
Esters | 93.33 | 100 | 88.89 |
Terpenes 1 | 93.33 | 90 | 100 |
Others | 80 | 72.73 | 100 |
All | 100 | 100 | 100 |
Accuracy (%) | |||
---|---|---|---|
Notations | Compounds | SVM | kNN |
O1 | octen-3-ol | 73.33 | 73.33 |
O2 | 3-ethyl-4-methylpentan-1-ol | 100 | 100 |
O3 | butane-2,3-diol | 86.67 | 60.00 |
O4 | 2-phenylethyl acetate | 93.33 | 53.33 |
O5 | 3,7-dimethyl-1,5,7-octatrien-3-ol (hotrienol) | 100 | 100 |
O6 | 3-(methylsulfanyl)propan-1-ol | 86.67 | 80.00 |
T1 | octen-3-ol; butane-2,3-diol | 80.00 | 73.33 |
T2 | octen-3-ol; 2-phenylethyl acetate | 73.33 | 73.33 |
T3 | octen-3-ol; 3-(methylsulfanyl)propan-1-ol | 80.00 | 73.33 |
T4 | butane-2,3-diol; 2-phenylethyl acetate | 86.67 | 80.00 |
T5 | butane-2,3-diol; 3-(methylsulfanyl)propan-1-ol | 93.33 | 93.33 |
T6 | 2-phenylethyl acetate; 3-(methylsulfanyl)propan-1-ol | 100 | 86.67 |
TR1 | octen-3-ol; butane-2,3-diol; 2-phenylethyl acetate | 80.00 | 86.67 |
TR2 | octen-3-ol; butane-2,3-diol; 3-(methylsulfanyl)propan-1-ol | 73.33 | 80.00 |
TR3 | octen-3-ol; 2-phenylethyl acetate; 3-(methylsulfanyl)propan-1-ol | 80.00 | 86.67 |
TR4 | butane-2,3-diol; 2-phenylethyl acetate; 3-(methylsulfanyl)propan-1-ol | 93.33 | 93.33 |
F | octen-3-ol; butane-2,3-diol; 2-phenylethyl acetate; 3-(methylsulfanyl)propan-1-ol | 80.00 | 86.67 |
Wine Code | Grape Variety | Yeast | Lactic Acid Bacteria |
---|---|---|---|
Z1 | Zweigelt | SafŒno™ SC 22 | - |
Z1 LAB | Zweigelt | SafŒno™ SC 22 | Viniflora Oenos |
Z2 | Zweigelt | SafŒno™ HD S62 | - |
Z2 LAB | Zweigelt | SafŒno™ HD S62 | Viniflora Oenos |
Z3 | Zweigelt | Essentiale Grand Cru | - |
Z3 LAB | Zweigelt | Essentiale Grand Cru | Viniflora Oenos |
Z4 | Zweigelt | Siha Active Yeast 8 | - |
Z4 LAB | Zweigelt | Siha Active Yeast 8 | Viniflora Oenos |
Z5 | Zweigelt | Siha Rubino Cru | - |
Z5 LAB | Zweigelt | Siha Rubino Cru | Viniflora Oenos |
R1 | Rondo | SafŒno™ SC 22 | - |
R1 LAB | Rondo | SafŒno™ SC 22 | Viniflora Oenos |
R2 | Rondo | SafŒno™ HD S62 | - |
R2 LAB | Rondo | SafŒno™ HD S62 | Viniflora Oenos |
R3 | Rondo | Essentiale Grand Cru | - |
R3 LAB | Rondo | Essentiale Grand Cru | Viniflora Oenos |
R4 | Rondo | Siha Active Yeast 8 | - |
R4 LAB | Rondo | Siha Active Yeast 8 | Viniflora Oenos |
R5 | Rondo | Siha Rubino Cru | - |
R5 LAB | Rondo | Siha Rubino Cru | Viniflora Oenos |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stój, A.; Czernecki, T.; Domagała, D. Authentication of Polish Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on Volatile Compounds Analysis in Combination with Machine Learning Algorithms: Hotrienol as a Marker of the Zweigelt Variety. Molecules 2023, 28, 1961. https://doi.org/10.3390/molecules28041961
Stój A, Czernecki T, Domagała D. Authentication of Polish Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on Volatile Compounds Analysis in Combination with Machine Learning Algorithms: Hotrienol as a Marker of the Zweigelt Variety. Molecules. 2023; 28(4):1961. https://doi.org/10.3390/molecules28041961
Chicago/Turabian StyleStój, Anna, Tomasz Czernecki, and Dorota Domagała. 2023. "Authentication of Polish Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on Volatile Compounds Analysis in Combination with Machine Learning Algorithms: Hotrienol as a Marker of the Zweigelt Variety" Molecules 28, no. 4: 1961. https://doi.org/10.3390/molecules28041961
APA StyleStój, A., Czernecki, T., & Domagała, D. (2023). Authentication of Polish Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on Volatile Compounds Analysis in Combination with Machine Learning Algorithms: Hotrienol as a Marker of the Zweigelt Variety. Molecules, 28(4), 1961. https://doi.org/10.3390/molecules28041961