The Differences of Mechanisms in Antihypertensive and Anti-Obesity Effects of Eucommia Leaf Extract between Rodents and Humans
Abstract
:1. Introduction
2. The Contents of The Main Components in Eucommia Leaf Extract
3. Atrial Natriuretic Peptide Secretion by Geniposidic Acid in Eucommia Leaf Extracts in Rats
4. The Antihypertensive Effect of Eucommia Leaf Extract in Rodents
4.1. Eucommia Leaf Extract—Hypertension
4.2. Geniposidic Acid-Atrial Natriuretic Peptide
4.3. Atrial Natriuretic Peptide-Nitric Oxide Pathway
5. The Anti-Obesity Effect of Eucommia Leaf Extract in Rodents
5.1. Eucommia Leaf Extract—Obesity
5.2. Asperuloside
5.3. Geniposidic Acid
5.4. The Blood Sugar Lowering Effect of Asperuloside Treatment
6. The Antihypertensive Effect of Eucommia Leaf Extract in Humans
7. The Anti-Obesity Effects of Eucommia Leaf Extract in Humans
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishibe, S.; Saitoh, M.K.; Sakai, J.; Higuchi, O.; Sasaki, M. Consideration for antihypertensive effect of Eucommia leaf extract. Jpn. Pharmacol. Ther. 2022, 50, 1013–1021. [Google Scholar]
- Kozuma, K.; Tsuchiya, S.; Kohori, J.; Hase, T. Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens. Res. 2005, 28, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, T.; Ochiai, R.; Watanabe, T.; Kataoka, K.; Komikado, M.; Tokimitsu, I.; Tsuchida, T. Visceral fat-reducing effect of continuous coffee beverage consumption in obese subjects. Jpn. Pharmacol. Ther. 2009, 37, 333–344. [Google Scholar]
- Suzuki, A.; Yamamoto, N.; Jokura, H.; Yamamoto, M.; Fujii, A.; Tokimitsu, I.; Saito, I. Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats. J. Hypertens. 2006, 24, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zheng, S.; Sheng, Y.; Miao, T.; Xu, J.; Xu, W.; Huang, K.; Zhao, C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obes mice. J. Sci. Food Agric. 2021, 101, 631–637. [Google Scholar] [CrossRef]
- Namba, T.; Hattori, M.; Yie, J.N.; Ma, Y.H.; Nomura, Y.; Kaneko, S.; Kitamura, Y.; Koizumi, T.; Katayama, K.; Lu, W. Studies on Tu-Chung leaves (I), Pharmacological effects of the water extract in vivo. J. Trad. Med. 1986, 3, 89–97. [Google Scholar]
- Nakamura, K.; Hosoo, S.; Yamaguchi, S.; Koyama, M.; Yamazaki, R.; Hirata, T.; Yamaguchi, Y.; Yamasaki, H.; Minamino, N.; Wada, K.; et al. Geniposidic acid upregulates atrial natriuretic peptide secretion and lowers blood pressure in spontaneously hypertensive rats. J. Funct. Foods 2018, 40, 634–638. [Google Scholar] [CrossRef]
- Gong, N.; Fan, H.; Ma, A.N.; Xiao, Q.; Wang, Y.X. Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology 2014, 84, 31–45. [Google Scholar] [CrossRef]
- Kim, M.; Platt, M.J.; Shibasaki, T.; Quaggin, S.E.; Backx, P.H.; Seino, S.; Simpson, J.A.; Drucker, D.J. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat. Med. 2013, 19, 567–575. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, K.C.; Cheng, J.T. New target(s) for diabetes treatment. Ann. Diabetes Res. 2017, 1, 1002. [Google Scholar]
- Nishibe, S.; Kojima, Y.; Murakami, S.; Saitoh, K.M.; Sakai, J. Consideration for antihypertensive effects of Eucommia bark extract and Eucommia leaf extract. Jpn. Pharmacol. Ther. 2021, 49, 2069–2075. [Google Scholar]
- Skov, J.; Holst, J.J.; Gøtze, J.P.; Frøkiær, J.; Christiansen, J.S. Glucagon-like peptide-1: Effect on pro-atrial natriuretic peptide in healthy males. Endocr. Connect. 2014, 3, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Lovshin, J.A.; Barnie, A.; DeAlmeida, A.; Logan, A.; Zinman, B.; Drucker, D.J. Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic peptide in hypertensive subjects with type 2 diabetes. Diabetes Care 2015, 38, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagami, H.; Morishita, R. Antihypertensive and angioprotective effects of incretin-related drugs. Curr. Top Kidney Hypertens. 2016, 5, 108–113. [Google Scholar]
- Greenway, F.; Liu, Z.; Yu, Y.; Gupta, A. A clinical trial testing the safety and efficacy of a standardized Eucommia ulmoides Oliver bark exract to treat hypertension. Altem. Rev. 2011, 16, 338–347. [Google Scholar]
- Yamaguchi, Y.; Kawamura, N.; Tsuboi, T.; Yamaguchi, Y.; Hirata, T.; Ueda, T.; Tagawa, C.; Nakazawa, Y.; Onizuka, S.; Nishibe, S. Effect of the Eucommia ulmoides leaf extract on blood pressure. Int. Symp. Eucommia ulmoides 2007, 1, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Hirata, T. Antihypertensive effect and safety of Eucommia leaf glycoside beverage. Jpn. Assoc. Funct. Food Consultant. Bull. 2011, 6, 1–6. [Google Scholar]
- Kwan, C.Y.; Chen, C.X.; Deyama, T.; Nishibe, S. Endothelium-dependent vasorelaxant effects of the aqueous extracts of the Eucommia ulmoides Oliv. leaf and bark; implications on their antihypertensive action. Vascul. Pharmacol. 2004, 40, 229–235. [Google Scholar] [CrossRef]
- Imaizumi, T.; Takeshita, A. Influence of ANP on sympathetic nerve activity and chronotropic regulation of the heart. J. Cardiovasc. Electrophysiol. 1993, 4, 719–729. [Google Scholar] [CrossRef]
- Pennacchio, M.; Syah, Y.M.; Ghisalberti, E.L.; Alexander, E. Cardioactive compounds from Eremophila species. J. Ethnopharmacol. 1996, 53, 21–27. [Google Scholar] [CrossRef]
- Costa, M.A.; Bosc, L.V.G.; Majowicz, M.P.; Vidal, N.A.; Balaszczuk, A.M.; Arranz, C.T. Atrial natriuretic peptide modifies arterial blood pressure through nitric oxide pathway in rats. Hypertension 2000, 35, 1119–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.A.; Elesgaray, R.; Loria, A.; Balaszczuk, A.M.; Arranz, C. Atrial natriuretic peptide influence on nitric oxide system in kidney and heart. Regul. Pept. 2004, 118, 151–157. [Google Scholar]
- Ishimitsu, A.; Tojo, A.; Satonaka, H.; Ishimitsu, T. Eucommia ulmoides (Tochu) and its extract geniposidic acid reduced blood pressure and improved renal hemodynamics. Biomed. Pharmacother. 2021, 141, 111901. [Google Scholar] [CrossRef] [PubMed]
- Hosoo, S.; Koyama, M.; Kato, M.; Hirata, T.; Yamaguchi, Y.; Yamasaki, H.; Wada, A.; Wada, K.; Nishibe, S.; Nakamura, K. The restorative effects of Eucommia ulmoides Oliver leaf extract on vascular function in spontaneously hypertensive rats. Molecules 2015, 20, 21971–21981. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, T.; Hirata, T.; Wada, A.; Kawamura, N.; Yamaguchi, Y.; Fujimura, K.; Ueda, T.; Yurugi, Y.; Soya, H.; Nishibe, S. Chronic administration of Eucommia leaf stimulates metabolic function of rats across several organs. Br. J. Nut. 2010, 104, 1868–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gariballa, S.; Alkaabi, J.; Yasin, J.; Essa, A.A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr. Disord. 2019, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, T.; Hirata, T.; Hosoo, S.; Nakajima, K.; Wada, A.; Yurugi, Y.; Soya, H.; Matsui, T.; Yamaguchi, A.; Ogata, M.; et al. Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity. J. Nutr. Sci. 2012, 1, e10. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Yokoyama, Y.; Tanaka, K.; Benegiamo, G.; Hirayama, A.; Zhu, Q.; Kitamura, N.; Sugizaki, T.; Morimoto, K.; Itoh, H. Asperuloside improves obesity and type 2 diabetes through modulation of gut microbiota and metabolic signaling. iScience 2020, 23, 101522. [Google Scholar] [CrossRef]
- Shimizu, H.; Kitano, R.O.; Kimura, I. Regulation of host energy metabolism by gut microbiota-derived short-chain fatty acids. Glycative Stress Res. 2019, 6, 181–191. [Google Scholar]
- Kojima, Y.; Murakami, S.; Higuchi, O.; Sasaki, M.; Saitoh, K.M.; Sakai, J.; Nishibe, S. Consideration on the increase of Akkamansia muciniphila bacteria in gut by the iridoid glucoside, asperuloside in Eucommia leaves. Jpn. Pharmacol. Ther. 2021, 49, 1107–1114. [Google Scholar]
- Nishibe, S.; Mitsui-Saitoh, K.; Sakai, J.; Fujikawa, T. The biological effects of Forsythia leaves containing the cyclc AMP phosphodiesterase 4 inhibitor phillyrin. Molecules 2021, 26, 2362. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, N.; Mori, N. Diverse insect adaptation strategies for the defensive substance iridoid individual strategy and evolutionary direction. Kagaku Seibutu. 2018, 56, 454–456. [Google Scholar] [CrossRef]
- Yerevanian, A.; Soukas, A.A. Metformin: Mechanisms in human obesity and weight loss. Curr. Obes. Rep. 2019, 8, 156–164. [Google Scholar] [CrossRef]
- McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia 2016, 59, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, A.; Miller, S.; Nicholls, A.W.; Baker, D.; Van Horn, S.; Thomas, E.; Rajpal, D.; Splvak, A.; Brown, J.R.; Nunez, D.J. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014, 9, e100778. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Xu, J.; Xue, Z.; Zhang, M.; Pang, X.; Zhang, X.; Zhao, L. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesiy in rats. Sci. Rep. 2015, 5, 14405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordicchia, M.; Liu, D.; Amri, E.Z.; Ailhaud, G.; Dessì-Fulgheri, P.; Zhang, C.; Takahashi, N.; Sarzani, R.; Collins, S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Investig. 2012, 122, 1022–1036. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Nagoshi, T.; Oi, Y.; Yoshii, A.; Tanaka, Y.; Takahashi, H.; Kashiwagi, Y.; Tanaka, T.D.; Yoshimura, M. Treatment with atrial natriuretic peptide induces adipose tissue browning and exerts thermogenic actions in vivo. Sci. Rep. 2021, 11, 17466. [Google Scholar] [CrossRef]
- Miyazaki, S.; Oikawa, H.; Hirata, T.; Ueda, T.; Zhang, W.; Nishibe, S.; Fujikawa, T. Chronic administration of Eucommia leaf extract (ELE) and asperuloside (ASP), the major component of ELE, prevents adipocyte hypertrophy in white adipose tissues. Glob. Drugs Ther. 2018, 3, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, S.; Yamaguchi, Y.; Ueda, T.; Kajimoto, O.; Nakazawa, Y.; Nakagawa, S.; Kajimoto, Y. Hypotensive effects of beverages containing Eucommia leaf glycosides on high normotensive and mild hypertensive subjects. Int. Symp. Eucommia ulmoides 2007, 1, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Kario, K. Inflammation and arteriosclerosis, high blood pressure. J. Jpn. Soc. Int. Med. 2010, 99, 76–83. [Google Scholar]
- Faria, A.P.; Ritter, A.M.V.; Catharina, A.S.; Souza, D.P.; Naseri, E.P.; Bertolo, M.B.; Pioli, M.R.; Carvalho, C.C.; Modolo, R.; Moreno, H. Effects of anti-TNF alpha therapy on blood pressure in resistant hypertensive subjects: A randomized, double-blind, pacebo-controlled pilot study. Arq. Bras. Cardiol. 2021, 116, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Hürlimann, D.; Forster, A.; Noll, G.; Enseleit, F.; Chenevard, R.; Distler, O.; Béchir, M.; Spieker, L.E.; Neidhart, M.; Michel, B.A.; et al. Anti-tumor necrosis factor-α treatment improves endothelial function in patients with rheumatoid arthritis. Circulation 2002, 106, 2184–2187. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.G.; Kinote, Å.; Pereira, D.J.; Renno, A.; Santos, R.C.; Ferreira-Melo, S.E.; Velloso, L.A.; Bordin, S.; Anhe, G.F.; Junior, H.M. Infliximab prevents increased systolic blood pressure and upregulates the AKT/eNOS pathway in the aorta of spontaneously hypertensive rats. Eur. J. Pharmacol. 2013, 700, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.Y.; Wang, J.Y.; Wang, K.; Zhang, Y.; Liu, K.; Chen, X.Y.; Yuan, Y. Inhibition of rheumatoid arthritis using bark, leaf, and male flower extracts of Eucommia ulmoides. Evid. Based Complement. Altern. Med. 2020, 2020, 3260278. [Google Scholar] [CrossRef] [PubMed]
- Hobara, N.H.; Hashikawa, N.; Sugiman, N.; Hosoo, S.; Hirata, T.; Yamaguchi, Y.; Yamasaki, H.; Kawasaki, H.; Nishibe, S. Oral administration of Eucommia ulmoides Oliv. leaves extract protects against atherosclerosis by improving macrophage function in ApoE knockout mice. J. Food Sci. 2020, 5, 4018–4024. [Google Scholar] [CrossRef]
- Kim, Y.O.; Lee, S.W.; Sohn, S.H.; Kim, S.Y.; Oh, M.S.; Kim, S.K. Anti-inflammatory effects of water extract of Eucommia ulmoides Olive on the LPS-induced RAW 264.7 cells. Korean J. Med. Crop. Sci. 2012, 20, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Sun, J.; Xie, W.; Wan, Z.; Jin, Y.; Zhu, J. Study of geniposidic acid on anti-inflammatory action for adjuvant-induced arthritis rats and mechanism of synoviocyte apoptosis in vitro. China J. Chin. Mater. Med. 2009, 34, 3082–3086. [Google Scholar]
- Gao, Y.; Chen, Z.; Liang, X.; Xie, C.; Chen, Y. Anti-atherosclerotic effect of geniposidic acid in arabbit model and related cellular mechanism. Pharm. Biol. 2015, 53, 280–285. [Google Scholar] [CrossRef]
- Cheng, L.C.; Guo, B.C.; Chen, C.H.; Chang, C.J.; Yeh, T.S.; Lee, T.S. Endothelial nitric oxide mediates the anti-atherosclerotic action of Torenia concolor Lindley var. Formosama Yamazaki. Int. J. Mol. Sci. 2020, 21, 1532. [Google Scholar] [CrossRef] [Green Version]
- Hosoo, S.; Hirata, T.; Yamaguchi, Y.; Wada, A.; Nakagawa, K.; Uehara, Y. Beneficial effects of beverage containing Eucommia leaf extract on vascular endothelial function in subjects with high normal blood pressure. Jpn. Pharmacol. Ther. 2015, 43, 195–205. [Google Scholar]
- Deehan, E.; Ramirez, E.C.; Triador, L.; Madsen, K.L.; Prado, C.M.; Field, C.J.; Ball, G.D.C.; Tan, Q.; Orsso, C.; Dinu, I. Efficacy of metformin and fermentable fiber combination therapy in adolescents with severe obesity and insulin resistance: Study protocol for a double-blind randomized controlled trial. Deehan Trials 2021, 22, 148. [Google Scholar] [CrossRef] [PubMed]
- Imai, M.; Kobayashi, Y.; Hirata, T.; Yoshikawa, H.; Ueda, T.; Nishibe, S. Effects of food containing Eucommia leaf extract on body fat reduction-A randomized, double-blind, placebo-controlled, parallel-group study. Jpn. Pharmacol. Ther. 2017, 45, 93–102. [Google Scholar]
- Zhou, C.J.; Hao, L.; Ij, K.; Hou, X.Q.; Liu, X.L.; Weng, W.C.; Hirata, T.; Yamaguchi, Y.; Wada, A.; Ueda, T. The inhibitive effect of Eucommia ulmoides leaves extract on abdominal fat. Int. J. Endocrinol. Metab. 2011, 31, 368–370. [Google Scholar]
- Menni, C.; Jackson, M.A.; Pallister, T.; Steves, C.J.; Spector, T.D.; Valdes, A.M. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 2017, 41, 1099–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ΔSBP (mmHg) | ||
---|---|---|
Week 3 | Week 7 | |
WKY SHR-control SHR-ELE | 3.6 ± 1.8 ** 35.6 ± 0.7 17.8 ± 2.5 ** | 16.4 ± 4.7 ** 72.9 ± 2.4 67.1 ± 2.3 ** |
Plasma Nitric Oxide Level (µM) | Media Thickness (µm) | |
---|---|---|
WKY | 3.49 ± 0.22 | 90.4 ± 3.6 ** |
SHR-control | 6.37 ± 0.59 | 124.7 ± 5.9 |
SHR-ELE | 11.75 ± 1.95 * | 101.9 ± 1.4 ** |
Diet (HFD) | |||
---|---|---|---|
Control | 3% ELE | 9% ELE | |
Physical parameters | |||
Final body weight (g/rat) | 548.6 ± 16.8 | 485.3 ± 13.6 * | 422.2 ± 17.7 * |
Food intake (g/day/rat) | 25.3 ± 3.0 | 19.7 ± 3.6 | 15.2 ± 1.7 * |
WAT weight (g/rat) | |||
Perirenal white adipose tissue | 10.0 ± 0.8 | 5.6 ± 0.4 *** | 3.5 ± 0.6 *** |
Epididymal white adipose tissue | 18.3 ± 0.7 | 13.9 ± 0.6 *** | 5.8 ± 0.4 *** |
Plasma parameters | |||
Glucose (mg/L) | 1520 ± 17 | 1458 ± 5 * | 1433 ± 17 * |
Insulin (ng/mL) | 6.6 ± 0.5 | 4.2 ± 0.5 ** | 2.4 ± 0.3 *** |
Free fatty acid (µEq/L) | 610.4 ± 78.8 | 450.8 ± 33.8 | 493.4 ± 26.2 |
Total cholesterol (mg/L) | 780 ± 27 | 655 ± 28 ** | 725 ± 15 |
Adiponectin (µg/L) | 27 ± 3 | 42 ± 4 | 53 ± 4 ** |
TNF-α (pg/mL) | 178.5 ± 22.6 | 137.1 ± 15.1 | 63.5 ± 8.3 * |
Resistin (ng/mL) | 187.6 ± 15.9 | 175.9 ± 15.9 | 111.4 ± 11.0 ** |
Leptin (ng/mL) | 6.8 ± 0.4 | 5.9 ± 0.7 | 6.7 ± 0.8 |
Fold Change to Control | ||
---|---|---|
Gene name (Accession No) | 3% HFD-ELE | 9% HFD-ELE |
Perirenal white adipose tissue | ||
PPAR peroxisome proliferator-activated receptor (NM013124) | 1.14 ± 0.13 | 1.43 ± 0.11 * |
Adiponectin (NM144744) | 1.41 ± 0.12 * | 2.20 ± 0.23 * |
Brown adipose tissue | ||
UCP1(NM019354) | 1.01 ± 0.12 | 1.49 ± 0.18 * |
UCP2(NM013167) | 0.88 ± 0.43 | 1.13 ± 0.31 |
Diet (HFD) | ||||
---|---|---|---|---|
Control | 0.03% ASP | 0.1% ASP | 0.3% ASP | |
Physical parameters | ||||
Initial body weight (g/rat) | 71.0 ± 1.0 | 71.2 ± 1.5 | 72.5 ± 0.5 | 71.0 ± 0.6 |
Food intake (g/day/rat) | 27.8 ± 2.2 | 21.3 ± 3.2 * | 17.7 ± 2.7 * | 14.9 ± 2.0 * |
Final body weight (g/rat) | 564 ± 9 | 516 ± 19 * | 465 ± 8 * | 461 ± 7 * |
Body weight gain (g/rat) | 493 ± 10 | 445 ± 18 * | 393 ± 8 * | 390 ± 7 * |
Relative WAT weight (%) | ||||
Perirenal white adipose tissue | 2.7 ± 0.3 | 1.5 ± 0.2 * | 1.4 ± 0.1 * | 1.3 ± 0.1 * |
Epididymal white adipose tissue | 2.6 ± 0.2 | 2.5 ± 0.2 | 2.2 ± 0.1 | 2.0 ± 0.1 |
Plasma parameters | ||||
Glucose (mg/L) | 1621 ± 71 | 1501 ± 37 * | 1394 ± 42 * | 1338 ± 55 * |
Insulin (ng/mL) | 7.7 ± 0.6 | 5.2 ± 1.1 * | 3.9 ± 0.8 * | 3.3 ± 0.6 * |
Free fatty acid (µEq/L) | 639.1 ± 33.7 | 449 ± 56.0 * | 402.7 ± 21.6 * | 397.3 ± 20.9 * |
Total cholesterol (mg/L) | 880 ± 34 | 721 ± 25 * | 708 ± 24 * | 664 ± 26 * |
Adiponectin (µg/L) | 29 ± 5 | 39 ± 6 * | 48 ± 4 * | 53 ± 3 * |
TNF-α (pg/mL) | 198.3 ± 18.2 | 136.5 ± 13.1 * | 98.7 ± 9.2 * | 70.6 ± 8.9 * |
Fold Change to Control | |||
---|---|---|---|
Gene name (Accession No) | 0.03% HFD-ASP | 0.1% HFD-ASP | 0.3% HFD-ASP |
Perirenal white adipose tissue | |||
PPARγ (NM013124) | 1.18 ± 0.02 | 1.80 ± 0.12 * | 2.11 ± 0.08 * |
Adiponectin (NM144744) | 1.01 ± 0.02 | 2.30 ± 0.22 * | 3.03 ± 0.14 * |
Brown adipose tissue | |||
UCP1 (NM012682) | 0.98 ± 0.04 | 1.38 ± 0.10 | 1.98 ± 0.07 * |
UCP2(NM019354) | 1.10 ± 0.07 | 1.42 ± 0.13 * | 1.84 ± 0.07 * |
UCP3(NM013167) | 0.96 ± 0.06 | 0.92 ± 0.06 | 0.89 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishibe, S.; Oikawa, H.; Mitsui-Saitoh, K.; Sakai, J.; Zhang, W.; Fujikawa, T. The Differences of Mechanisms in Antihypertensive and Anti-Obesity Effects of Eucommia Leaf Extract between Rodents and Humans. Molecules 2023, 28, 1964. https://doi.org/10.3390/molecules28041964
Nishibe S, Oikawa H, Mitsui-Saitoh K, Sakai J, Zhang W, Fujikawa T. The Differences of Mechanisms in Antihypertensive and Anti-Obesity Effects of Eucommia Leaf Extract between Rodents and Humans. Molecules. 2023; 28(4):1964. https://doi.org/10.3390/molecules28041964
Chicago/Turabian StyleNishibe, Sansei, Hirotaka Oikawa, Kumiko Mitsui-Saitoh, Junichi Sakai, Wenping Zhang, and Takahiko Fujikawa. 2023. "The Differences of Mechanisms in Antihypertensive and Anti-Obesity Effects of Eucommia Leaf Extract between Rodents and Humans" Molecules 28, no. 4: 1964. https://doi.org/10.3390/molecules28041964
APA StyleNishibe, S., Oikawa, H., Mitsui-Saitoh, K., Sakai, J., Zhang, W., & Fujikawa, T. (2023). The Differences of Mechanisms in Antihypertensive and Anti-Obesity Effects of Eucommia Leaf Extract between Rodents and Humans. Molecules, 28(4), 1964. https://doi.org/10.3390/molecules28041964