Recent Progress in Vacuum Engineering of Ionic Liquids
Abstract
:1. Introduction
2. New Vacuum Deposition Process of ILs as an Art of Engineering
3. Unique Properties of Nano IL Films
3.1. Glass Transition [23]
3.2. Ionic Conductivity
3.3. Viscoelasitcity
4. Applications of Vacuum-Deposited ILs
4.1. Vaccum Deposition via Thin Film IL
4.1.1. Preparation of a KBr(111) Film and Its Solvation Structure of IL on the (111) Surface
4.1.2. Polymorphs Control of 2,2′:5′,2″-Terthiophene
4.2. Recent Applications
4.2.1. Vacuum Deposition of Metal Ion-Containing IL
4.2.2. IL Gel Films as an Electrolyte Nanosheet
5. Summary and Future Perspectives
Funding
Conflicts of Interest
References
- Ishii, Y.; Shimada, T.; Okazaki, N.; Hasegawa, T. Wetting-Dewetting Oscillations of Liquid Films during Solution-Mediated Vacuum Deposition of Rubrene. Langmuir 2007, 23, 6864–6869. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micaelo, N.M.; Baptista, A.M.; Soares, C.M. Parametrization of 1-Butyl-3-methylimidazolium Hexafluorophosphate/Nitrate Ionic Liquid for the GROMOS Force Field. J. Phys. Chem. B 2006, 110, 14444–14451. [Google Scholar] [CrossRef] [PubMed]
- Höfft, O.; Bahr, S.; Himmerlich, M.; Krischok, S.; Schaefer, J.A.; Kempter, V. Electronic Structure of the Surface of the Ionic Liquid [EMIM][Tf2N] Studied by Metastable Impact Electron Spectroscopy (MIES), UPS, and XPS. Langmuir 2006, 22, 7120–7123. [Google Scholar] [CrossRef] [PubMed]
- Kuwabata, S.; Kongkanand, A.; Oyamatsu, D.; Torimoto, T. Observation of Ionic Liquid by Scanning Electron Microscope. Chem. Lett. 2006, 35, 600–601. [Google Scholar] [CrossRef]
- Torimoto, T.; Okazaki, K.; Kiyama, T.; Hirahara, K.; Tanaka, N.; Kuwabata, S. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl. Phys. Lett. 2006, 89, 243117. [Google Scholar] [CrossRef]
- Kaneko, T.; Baba, K.; Hatakeyama, R. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode. J. Appl. Phys. 2009, 105, 103306. [Google Scholar] [CrossRef]
- Fukui, K.; Yokota, Y.; Imanishi, A. Local Analyses of Ionic Liquid/Solid Interfaces by Frequency Modulation Atomic Force Microscopy and Photoemission Spectroscopy. Chem. Rec. 2014, 14, 964–973. [Google Scholar] [CrossRef]
- Brettholle, M.; Höfft, O.; Klarhöfer, L.; Mathes, S.; Macus-Friedrichs, W.; Abedin, S.Z.E.; Krischok, S.; Janek, J.; Endres, F. Plasma Electrochemistry in Ionic Liquids: Deposition of Copper Nanoparticles. Phys. Chem. Chem. Phys. 2010, 12, 1750–1755. [Google Scholar] [CrossRef]
- Earle, M.J.; Esperanca, M.S.S.; Gilea, M.A.; Canongia Lopes, J.N.; Rebelo, L.P.N.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. The distillation and volatility of ionic liquids. Nature 2006, 439, 831–834. [Google Scholar] [CrossRef]
- Paulechka, Y.U.; Zaitsau, D.H.; Kaboand, G.J.; Strechan, A.A. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. Thermochim. Acta 2005, 439, 158–160. [Google Scholar] [CrossRef]
- Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.J.; Satterley, C.J.; Villar-Garcia, I.J. Vapourisation of ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Cremer, T.; Killian, M.; Gottfried, J.M.; Paape, N.; Wasserscheid, P.; Maier, F.; Steinrück, H.-P. Physical Vapor Deposition of [EMIM][Tf2N]: A New Approach to the Modification of Surface Properties with Ultrathin Ionic Liquid Films. ChemPhysChem 2008, 9, 2185–2190. [Google Scholar] [CrossRef] [PubMed]
- Buchner, F.; Forster-Tonigold, K.; Uhl, B.; Alwast, D.; Wagner, N.; Frank-hondeh, H.; Groß, A.; Behm, R.J. Toward the Microscopic Identification of Anions and Cations at the Ionic Liquid|Ag(111) Interface: A Combined Experimental and Theoretical Investigation. ACS Nano 2013, 9, 7773–7784. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Kobayashi, K.; Kitaura, R.; Miyata, Y.; Shinohara, H. Direct HRTEM Observation of Ultrathin Freestanding Ionic Liquid Film on Carbon Nanotube Grid. ACS Nano 2011, 5, 4902–4908. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.C.S.; Rocha, R.M.; Vaz, I.C.M.; Torres, M.C.; Mendes, A.; Santos, L.M.N.B.F. Description and Test of a New Multilayer Thin Film Vapor Deposition Apparatus for Organic Semiconductor Materials. J. Chem. Eng. Data 2015, 60, 3776–3791. [Google Scholar] [CrossRef] [Green Version]
- Yaginuma, S.; Itaka, K.; Haemori, M.; Katayama, M.; Ueno, K.; Ohnishi, T.; Lippmaa, M.; Matsumoto, Y.; Koinuma, H. Molecular Layer-by-Layer Growth of C 60 Thin Films by Continuous-Wave Infrared Laser Deposition. Appl. Phys. Express 2008, 1, 015005. [Google Scholar] [CrossRef]
- Maruyama, S.; Takeyama, Y.; Taniguchi, H.; Fukumoto, H.; Itoh, M.; Kumigashira, H.; Oshima, M.; Yamamoto, T.; Matsumoto, Y. Molecular Beam Deposition of Nanoscale Ionic Liquids in Ultrahigh Vacuum. ACS Nano 2010, 4, 5946–5952. [Google Scholar] [CrossRef]
- Takazawa, R.; Toyabe, K.; Maruyama, S.; Matsumoto, Y. In situ diagnosis of vacuum-deposited nanoscale ionic liquid [emim][TFSA], Li salt [Li][TFSA] and their solution films through a combination of ellipsometry and impedance spectroscopy. Jpn. J. Appl. Phys. 2020, 59, 085001. [Google Scholar] [CrossRef]
- Takahashi, R.; Maruyama, S.; Ohsawa, Y.; Matsumoto, Y. Vapor Deposition Polymerization and Porous Structural Formation of Polyurea Thin Films via Nano-ionic Liquid Films. Chem. Lett. 2018, 47, 1460–1463. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Coelhoa, A.F.S.M.G.; Mendesb, A.; Santos, L.M.N.B.F. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces. Appl. Surf. Sci. 2018, 428, 242–249. [Google Scholar] [CrossRef]
- Teixeira, M.S.M.; Santos, L.M.N.B.F.; Costa, J.C.S. Nucleation, Coalescence, and Thin-Film Growth of Triflate-Based Ionic Liquids on ITO, Ag, and Au Surfaces. Colloids Interfaces 2022, 6, 46. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Maruyama, S.; Matsumoto, Y. In situ vacuum ellipsometry approach to investigation of glass transition behavior in ionic liquid thin films. Chem. Phys. Lett. 2020, 754, 137691. [Google Scholar]
- Tokuda, H.; Tsuzuki, S.; Susan, M.A.B.H.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 2006, 110, 19593–19600. [Google Scholar] [CrossRef]
- Hughes, T.J.; Syed, T.; Graham, B.F.; Marsh, K.N.; May, E.F. Heat Capacities and Low Temperature Thermal Transitions of 1-Hexyl and 1-Octyl-3-methylimidazolium bis (trifluoromethylsulfonyl)amide. J. Chem. Eng. Data 2011, 56, 2153–2159. [Google Scholar] [CrossRef]
- Nemoto, F.; Kofu, M.; Yamamuro, O. Thermal and Structural Studies of Imidazolium- Based Ionic Liquids with and without Liquid-Crystalline Phases: The Origin of Nanostructure. J. Phys. Chem. B 2015, 119, 5028–5034. [Google Scholar] [CrossRef]
- Tress, M.; Erber, M.; Mapesa, E.U.; Huth, H.; Müller, J.; Serghei, A.; Schick, C.; Eichhorn, K.-J.; Voit, B.; Kremer, F. Glassy Dynamics and Glass Transition in Nanometric Thin Layers of Polystyrene. Macromolecules 2010, 43, 9937–9944. [Google Scholar] [CrossRef]
- Fox, T.G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1956, 1, 123–313. [Google Scholar]
- Maruyama, S.; Prastiawan, I.B.H.; Toyabe, K.; Higuchi, Y.; Koganezawa, T.; Kubo, M.; Matsumoto, Y. Ionic Conductivity in Ionic Liquid Nano Thin Films. ACS Nano 2018, 12, 10509–10517. [Google Scholar] [CrossRef]
- Yamauchi, M.; Maruyama, S.; Ohashi, N.; Toyabe, K.; Matsumoto, Y. Epitaxial growth of atomically flat KBr(111) films via thin film ionic liquid in a vacuum. CrystEngComm 2016, 18, 3399–3403. [Google Scholar] [CrossRef]
- Schernich, S.; Kostyshyn, D.; Wagner, V.; Taccardi, N.; Laurin, M.; Wasserscheid, P.; Libuda, J. Interactions Between the Room- Temperature Ionic Liquid [C2C1Im][OTf] and Pd(111), Well- Ordered Al2O3, and Supported Pd Model Catalysts from IR Spectroscopy. J. Phys. Chem. C 2014, 118, 3188–3193. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Araújo, J.M.M.; Oliveira, F.S.; Esperança, J.M.S.S.; Lopes, J.N.C.; Marrucho, I.M.; Rebelo, L.P.N. Solubility of inorganic salts in pure ionic liquids. J. Chem. Thermodyn. 2012, 55, 29–36. [Google Scholar] [CrossRef]
- Yoshii, A.; Maruyama, S.; Toyabe, K.; Takazawa, R.; Koganezawa, T.; Matsumoto, Y. Fabrication of ionic liquid polycrystalline nano thin films and their ion conducting properties accompanied by solid-liquid phase transition. Thin Solid Films 2019, 677, 77–82. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhu, J.; Alias, H.; Ding, Y.; Nancarrow, P.; Hardacre, C.; Rooney, D.; Tan, C. Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2]. Int. J. Heat Fluid Flow 2008, 29, 149–155. [Google Scholar] [CrossRef]
- Shakeel, A.; Mahmood, H.; Farooq, U.; Ullah, Z.; Yasin, S.; Iqbal, T.; Chassagne, C.; Moniruzzaman, M. Rheology of Pure Ionic Liquids and Their Complex Fluids: A Review. ACS Sustain. Chem. Eng. 2019, 7, 13586–13626. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.; Ishikawa, Y.; Mitsui, T.; Aoki, K.; Matsumoto, Y. Surface thermal fluctuation spectroscopy study of ultra-thin ionic liquid films on quartz. Appl. Phys. Express 2021, 14, 075503. [Google Scholar] [CrossRef]
- Mitsui, T.; Aoki, K. Fluctuation spectroscopy of surface melting of ice with and without impurities. Phys. Rev. E 2019, 99, 010801. [Google Scholar] [CrossRef] [Green Version]
- Tay, A.; Thibierge, C.; Fournier, D.; Fretigny, C.; Lequeux, F.; Monteux, C.; Roger, J.P.; Talini, L. Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy. Rev. Sci. Instrum. 2008, 79, 103107. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.S.; Ellis, W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–91. [Google Scholar] [CrossRef]
- Deshmukh, P.; Sharma, M.; Nalamati, S.; Reynoids, C.L., Jr.; Liu, Y.; Iyer, S. Molecular beam epitaxial growth of high quality Ga-catalyzed GaAs1–xSbx(x > 0.8) nanowires on Si (111) with photoluminescence emission reaching 1.7 μm. Semicond. Sci. Technol. 2018, 33, 125007. [Google Scholar] [CrossRef]
- Hu, J.; Odom, T.W.; Lieber, C.M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res. 1999, 32, 435–445. [Google Scholar] [CrossRef]
- Purushothaman, V.; Ramakrishnan, V.; Jeganathan, K. Interplay of VLS and VS growth mechanism for GaN nanowires by a self- catalytic approach. RSC Adv. 2012, 2, 4802–4806. [Google Scholar] [CrossRef]
- Ferro, G.; Chaussende, D.; Cauwet, F.; Monteil, Y. Effect of the Si Droplet Size on the VLS Growth Mechanism of SiC Homoepitaxial Layers. Mater. Sci. Forum 2002, 389–393, 287–290. [Google Scholar] [CrossRef]
- Osumi, A.; Nakano, K.; Sannodo, N.; Maruyama, S.; Matsumoto, Y.; Mitani, T.; Kato, T.; Yonezawa, Y.; Okumura, H. Platinum additive impacts on vapor-liquid-solid growth chemical interface for high-quality SiC single crystal films. Mater. Today Chem. 2020, 16, 100266. [Google Scholar] [CrossRef]
- Yun, K.S.; Choi, B.D.; Matsumoto, Y.; Song, J.H.; Kanda, N.; Itoh, T.; Kawasaki, M.; Chikyow, T.; Ahmet, A.P.; Koinuma, H. Vapor–liquid–solid tri-phase pulsed-laser epitaxy of RBa2Cu3O7-y single-crystal films. Appl. Phys. Lett. 2002, 80, 61. [Google Scholar] [CrossRef]
- Takahashi, R.; Yonezawa, Y.; Ohtani, M.; Kawasaki, M.; Nakajima, K.; Chikyow, T.; Koinuma, H.; Matsumoot, Y. Perfect Bi4Ti3O12 Single-Crystal Films via Flux-Mediated Epitaxy. Adv. Funct. Mater. 2006, 16, 485–491. [Google Scholar] [CrossRef]
- Voigt, M.; Dorsfeld, S.; Volz, A.; Sokolowski, M. Nucleation and Growth of Molecular Organic Crystals in a Liquid Film under Vapor Deposition. Phys. Rev. Lett. 2002, 91, 026103. [Google Scholar] [CrossRef]
- Takeyama, Y.; Maruyama, S.; Matsumoto, Y. Growth of Single-Crystal Phase Pentacene in Ionic Liquids by Vacuum Deposition. Cryst. Growth Des. 2011, 11, 2273–2278. [Google Scholar] [CrossRef]
- Takeyama, Y.; Ono, S.; Matsumoto, Y. Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition. Appl. Phys. Lett. 2012, 101, 083303. [Google Scholar] [CrossRef]
- Takeyama, Y.; Maruyama, S.; Taniguchi, H.; Itoh, M.; Ueno, K.; Matsumoto, Y. Ionic liquid-mediated epitaxy of high-quality C60 crystallites in a vacuum. CrystEngComm 2012, 14, 4939–4945. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Campos, R.M.; Castro, A.C.M.; Farinha, A.F.M.; Olivelria, G.N.P.; Araüjo, J.P.; Santos, L.M.N.B.F. The effect of onic liquids on the nucleation and growth of perylene films obtained by vapor deposition. CrystEngComm 2023, 25, 913–924. [Google Scholar] [CrossRef]
- Horike, S.; Koshiba, Y.; Misaki, M.; Ishida, K. Crystal growth of rubrene in ionic liquids by vacuum vapor deposition. Jpn. J. Appl. Phys. 2014, 53, 05FT03. [Google Scholar] [CrossRef]
- Horike, S.; Misaki, M.; Koshiba, Y.; Morimoto, M.; Ishida, K. Unique Morphology and Optical Properties of Tris(8-hydroxyquinoline)aluminum Crystal Grown by Ionic Liquid-assisted Vacuum Vapor Deposition. Chem. Lett. 2016, 45, 1156–1158. [Google Scholar] [CrossRef]
- Kumada, S.; Matsuzaki, K.; Hosono, H.; Susaki, T. Tuning of Surface Roughness and Lattice Constant in MgO(111)/Al2O3(0001) Grown by Laser Energy Controlled Pulsed Laser Deposition. Jpn. J. Appl. Phys. 2011, 50, 085503. [Google Scholar] [CrossRef]
- Kato, S.; Takeyama, Y.; Maruyama, S.; Matsumoto, Y. Nonfaceted Growth of (111)-Oriented Epitaxial Alkali-Halide Crystals via an Ionin Liquid Flux in a Vacuum. Cryst. Growth Des. 2010, 10, 3608–3611. [Google Scholar] [CrossRef]
- Mungse, H.P.; Okudaira, S.; Yamauchi, M.; Ichii, T.; Utsunomiya, T.; Maruyama, S.; Matsumoto, Y.; Sugimura, H. Surface charge dependent structure of ionic liquid/alkali halide interfaces investigated by atomic force microscopy. Jpn. J. Appl. Phys. 2022, 61, SL1009. [Google Scholar] [CrossRef]
- Mattheus, C.C.; Dros, A.B.; Baas, J.; Meetsma, A.; de Boer, J.L.; Palstra, T.T.M. Polymorphism in pentacene. Acta Cryst. C 2001, 57, 939–941. [Google Scholar] [CrossRef] [Green Version]
- Soeda, J.; Okamoto, T.; Hamaguchi, A.; Ikeda, Y.; Sato, H.; Yamano, A.; Takeya, J. Two-dimensional crystal growth of thermally converted organic semiconductors at the surface of ionic liquid and high-mobility organic field-effect transistors. J. Org. Electron. 2013, 14, 1211–1217. [Google Scholar] [CrossRef]
- Bischof, D.; Tripp, M.W.; Ivlev, S.I.; Koert, U.; Witte, G. Solvent Polarity Controlled Polymorphs of Polar Aromatic Molecules. Cryst. Growth Des. 2022, 22, 6857–6862. [Google Scholar] [CrossRef]
- Okawara, K.; Maruyama, S.; Matsumoto, Y. Ionic liquid-assisted vapor deposition and polymorphs control of 2,2′:5′,2′′-terthiophene crystals. Jpn. J. Appl. Phys. 2019, 58, 085503. [Google Scholar] [CrossRef]
- Schweicher, G.; Paquay, N.; Amato, C.; Resel, R.; Koni, M.; Talvy, S.; Lemaur, V.; Cornil, J.; Greets, Y.; Gbabode, G. Toward Single Crystal Thin Films of Terthiophene by Directional Crystallization Using a Thermal Gradient. Cryst. Growth Des. 2011, 11, 3663–3672. [Google Scholar] [CrossRef]
- Endres, F. Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors. ChemPhysChem 2002, 3, 144–154. [Google Scholar] [CrossRef]
- Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.; Watanabe, M.; Terada, N. Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material. Chem. Commun. 2006, 544–545. [Google Scholar] [CrossRef] [PubMed]
- Krischok, S.; Ispas, A.; Zühlsdorff, A.; Ulbrich, A.; Bund, A.; Endres, F. Ta and Nb electrodeposition from ionic liquids. ECS Trans. 2012, 50, 229–237. [Google Scholar] [CrossRef]
- Chaneliere, C.; Autran, J.L.; Devine, R.A.B.; Balland, B. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R 1998, 22, 269–322. [Google Scholar] [CrossRef]
- Hozuki, N.; Kaminaga, K.; Maruyama, S.; Shiga, D.; Kumigashira, H.; Takato, H.; Kondo, M.; Matsumoto, Y. Room-Temperature Preparation of Ta Ions-Containing Ionic Liquid and its Vapor Deposition toward Ta-Oxide Film Coating. J. Electrochem. Soc. 2022, 169, 013504. [Google Scholar] [CrossRef]
- Borisenko, N.; Ispas, A.; Zschippang, E.; Liu, Q.; Abedin, S.Z.E.; Bund, A.; Endres, F. In situ STM and EQCM studies of tantalum electrodeposition from TaF5 in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)amide. Electrochim. Acta 2009, 54, 1519–1528. [Google Scholar] [CrossRef]
- Krebs, F.; Höfft, O.; Endres, F. Investigations on the electrochemistry and reactivity of tantalum species in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide using X-ray photoelectron spectroscopy (in situ and ex-situ XPS). Appl. Surf. Sci. 2023, 608, 155130. [Google Scholar] [CrossRef]
- Maruyama, S.; Ohsawa, Y.; Takahashi, R.; Matsumoto, Y. In situ AFM study of low-temperature polymerization and network formation of thin film polyurea in ionic liquid. Eur. Polym. J. 2018, 105, 421–425. [Google Scholar] [CrossRef]
- Watanabe, H.; Takazawa, R.; Takahashi, R.; Maruyama, S.; Matsumoto, Y. Nanogels Constituted of Polyurea Filled with an Ionic Liquid as an Electrolyte for Electric Double-Layer Transistors. ACS Appl. Nano Mater. 2020, 3, 9610–9615. [Google Scholar] [CrossRef]
- Kanai, M.; Watanabe, K.; Maruyama, S.; Matsumoto, Y. Ionic liquid/ZnO(000-1) single crystal and epitaxial film interfaces studied through a combination of electrochemical measurements and a pulsed laser deposition process under vacuum. Phys. Chem. Chem. Phys. 2019, 21, 25506–25512. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, C.; Kanai, M.; Maruyama, S.; Matsumoto, Y. Vacuum Electrochemistry Approach to Investigate Electrical Double-Layer Capacitances of Ionic Liquid for Epitaxial Thin-Film Electrodes of TiO2 and SrO on Niobium-Doped (001)SrTiO3. ChemElectroChem 2020, 7, 3253–3259. [Google Scholar] [CrossRef]
- Okawara, K.; Nishimura, T.; Maruyama, S.; Kubo, M.; Matsumoto, Y. In-vacuum electropolymerization of vapor-deposited source molecules into polymer films in ionic liquid. React. Chem. Eng. 2020, 5, 33–38. [Google Scholar] [CrossRef]
- Komatsu, H.; Tanaka, M.; Kaminaga, K.; Maruyama, S.; Matsumoto, Y. Electric Double Layer Action of High-quality Ionic Liquid Crystal Thin Films. Chem. Lett. 2022, 51, 162–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, Y. Recent Progress in Vacuum Engineering of Ionic Liquids. Molecules 2023, 28, 1991. https://doi.org/10.3390/molecules28041991
Matsumoto Y. Recent Progress in Vacuum Engineering of Ionic Liquids. Molecules. 2023; 28(4):1991. https://doi.org/10.3390/molecules28041991
Chicago/Turabian StyleMatsumoto, Yuji. 2023. "Recent Progress in Vacuum Engineering of Ionic Liquids" Molecules 28, no. 4: 1991. https://doi.org/10.3390/molecules28041991
APA StyleMatsumoto, Y. (2023). Recent Progress in Vacuum Engineering of Ionic Liquids. Molecules, 28(4), 1991. https://doi.org/10.3390/molecules28041991