Flavonoids from the Roots of Sophora flavescens and Their Potential Anti-Inflammatory and Antiproliferative Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation
2.2. Biological Studies
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Cell Culture Conditions
3.5. Cell Viability Examination
3.6. NO Production Measurement
3.7. Antiproliferative Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Lu, K.-Z.; Feng, Z.-M.; Yuan, X.; Yang, Y.-N.; Jiang, J.-S.; Zhang, X.; Zhang, P.-C. Five novel pterocarpan derivatives from Sophora flavescens. Chin. J. Chem. 2021, 39, 2763–2768. [Google Scholar] [CrossRef]
- He, X.-R.; Fang, J.-C.; Huang, L.-H.; Wang, J.-H.; Huang, X.-Q. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2015, 172, 10–29. [Google Scholar] [CrossRef]
- Zhou, Y.-J.; Gou, Y.-J.; Yang, X.-L.; Ou, Z.-L. Anti-cervical cancer role of matrine, oxymatrine and Sophora flavescens alkaloid gels and its mechanism. J. Cancer 2018, 9, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.-C.; Lin, T.-W.; Huang, Y.-L.; Wan, S.-T.; Shien, B.-J.; Chen, C.-C. Phenolic constituents of the roots of Sophora flavescens. J. Nat. Prod. 2006, 69, 1237–1240. [Google Scholar] [CrossRef]
- Kwon, M.; Ko, S.K.; Jang, M.; Kim, G.H.; Ryoo, I.J.; Son, S.; Ryu, H.W.; Oh, S.R.; Lee, W.K.; Kim, B.Y.; et al. Inhibitory effects of flavonoids isolated from Sophora flavescens on indoleamine 2,3-dioxygenase 1 activity. J. Enzyme Inhib. Med. Chem. 2019, 34, 1481–1488. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.-P.; Lutterodt, H.M.; Cheng, Z.-H.; Yu, L.-L. Anti-inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots. J. Agric. Food. Chem. 2009, 57, 4580–4585. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Cho, C.W.; Kim, H.Y.; Kim, K.T.; Choi, G.S.; Kim, H.H.; Cho, I.S.; Kwon, S.J.; Choi, S.K.; Yoon, J.Y.; et al. α-Glucosidase inhibition by prenylated and lavandulyl compounds from Sophora flavescens roots and in silico analysis. Int. J. Biol. Macromol. 2017, 102, 960–969. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Li, W.; Nie, H.; Liao, M.; Qiu, B.; Yang, Y.-L.; Chen, Y.-F. Five new alkaloids from the roots of Sophora flavescens. Chem. Biodivers. 2018, 15, e1700577. [Google Scholar] [CrossRef]
- Li, J.-J.; Zhang, X.; Shen, X.-C.; Long, Q.-D.; Xu, C.-Y.; Tian, C.-J.; Lin, Y. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait. Fitoterapia 2020, 143, 104556–104562. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, Y.-N.; Feng, Z.-M.; Jiang, J.-S.; Zhang, P.-C. Sophoflavanones A and B, two novel prenylated flavanones from the roots of Sophora flavescens. Bioorg. Chem. 2018, 79, 122–125. [Google Scholar] [CrossRef]
- Yang, Y.-N.; Zhu, H.; Yuan, X.; Zhang, X.; Feng, Z.-M.; Jiang, J.-S.; Zhang, P.-C. Seven new prenylated flavanones from the roots of Sophora flavescens and their anti-proliferative activities. Bioorg. Chem. 2021, 109, 104716. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Gerold, J.; Reiner, W.; Hans, A. Cyclohexanoid protoflavanones from the stem-bark and roots of Ongokea gore. Phytochemistry 2005, 66, 1698–1706. [Google Scholar]
- Milligan, S.; Kalita, J.; Heyerick, A.; Rong, H.; Cooman, L.D.; Keukeleire, D.D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J. Clin. Endocr. Metab. 1999, 84, 2249. [Google Scholar] [CrossRef]
- Jeong, T.S.; Ryu, Y.B.; Kim, H.Y.; Curtis-Long, M.J.; An, S.J.; Lee, J.H.; Lee, W.S.; Park, K.H. Low Density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens. Biol. Pharm. Bull. 2008, 31, 2097–2102. [Google Scholar] [CrossRef] [Green Version]
- Wollenweber, E.; Roitman, J.N. New reports on surface flavonoids from Chamaebatiaria (Rosaceae), Dodonaea (Sapindaceae), Elsholtzia (Lamiaceae), and Silphium (Asteraceae). Nat. Prod. Commun. 2007, 2, 385–389. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Arakava, T.; Hirayama, Y.; Hayashi, T. Antibacterial and antiandrogen flavonoids from Sophora flavescens. J. Nat. Prod. 1999, 62, 1595–1599. [Google Scholar] [CrossRef]
- Iinuma, M.; Ohyama, M.; Tanaka, T.; Lang, F.A. Three New Phenolic Compounds from the Roots of Sophora leachiana. J. Nat. Prod. 1993, 56, 2212. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Xu, C.; Huang, M.; Zhou, Q.; Lv, J.; Ma, X.; Ke, C.; Ye, Y.; Shu, G. Antidiabetic effects of flavonoids from Sophora flavescens EtOAc extract in type 2 diabetic KK-ay mice. J. Ethnopharmacol. 2015, 170, 161–170. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Y.; Zhao, L.L.; Chen, X.X.; Wang, F.; Cai, W.; Chen, L. A new flavonoid from Sophora flavescens Ait. Nat. Prod. Res. 2017, 31, 2228–2232. [Google Scholar] [CrossRef]
- Iinuma, M.; Ohyama, M.; Tanaka, T. Six flavonostilbenes and a flavanone in roots of Sophora alopecuroides. Phytochemistry 1995, 38, 519–525. [Google Scholar] [CrossRef]
- Shirataki, Y.; Yokoe, I.; Noguchi, M.; Tomimoi, T.; Komatsu, M. Studies on the Constituents of Sophora Species. XXII.: Constituents of the root of Sophora moorcroftiang BENTH. ex BAKER. (1). Chem. Pharm. Bull. 1988, 36, 2220–2225. [Google Scholar] [CrossRef] [Green Version]
- Ibieta, H.P.; Michael, W. Binding of flavonoids from Sophora flavescens to the rat uterine estrogen receptor. Planta Med. 2005, 71, 1065–1068. [Google Scholar]
- Hatayama, K.; Komatsu, M. Studies on the constituents of Sophora species. V. Constituents of the root of Sophora angustifolia Sieb. Et Zucc.(2). Chem. Pharm. Bull. 1971, 19, 2126–2131. [Google Scholar] [CrossRef]
- Kang, T.H.; Jeong, S.J.; Ko, W.G.; Kim, N.Y.; Lee, B.H.; Inagaki, M.; Miyamoto, T.; Higuchi, R.; Kim, Y.C. Cytotoxic lavandulyl flavanones from Sophora flavescens. J. Nat. Prod. 2000, 63, 680–681. [Google Scholar] [CrossRef]
- Shi, Y.R.; Lee, H.S.; Kim, Y.K.; Kim, S.H. Determination of isoprenyl and lavandulyl positions of flavonoids from Sophora flavescens by NMR experiment. Arch. Pharm. Res. 1997, 20, 491–495. [Google Scholar]
- Wang, Z.Q.; Lou, Y.J. Proliferation-stimulating effects of icaritin and desmethylicaritin in MCF-7 cells. Eur. J. Pharmacol. 2004, 504, 147–153. [Google Scholar] [CrossRef]
- Jung, M.J.; Kang, S.S.; Jung, H.A.; Kim, G.J.; Choi, J.S. Isolation of flavonoids and a cerebroside from the stem bark of Albizzia julibrissin. Arch. Pharm. Res. 2004, 27, 593–599. [Google Scholar] [CrossRef]
- Kawamura, T.; Hayashi, M.; Mukai, R.; Terao, J.; Nemoto, H. An Efficient Method for C8-Prenylation of Flavonols and Flavanones. Synthesis 2012, 44, 1308–1314. [Google Scholar]
- Jung, J.; Kang, S.S.; Woo, J.J.; Choi, J.S. A new lavandulylated flavonoid with free radical and onoo-scavenging activities from Sophora flavescens. Arch. Pharm. Res. 2005, 28, 1333–1336. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Hao, J.; Lv, Y.; Chen, L.; Lin, Q.; Yuan, J.; Yang, X. A Novel Flavonoid kushenol Z from Sophora flavescens mediates mTOR pathway by inhibiting phosphodiesterase and Akt activity to induce apoptosis in non-small-cell lung cancer cells. Molecules 2019, 24, 4425. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, T.; Aikawa, R.; Nikaido, T.; Sankawa, U.; Wu, L.J.; Ueno, A.; Hukushima, S. Inhibition of adenosine 3′, 5′-cyclic monophosphate phosphodiesterase by components of Sophora flavescens Aiton. Chem. Pharm. Bull. 1986, 34, 2094–2099. [Google Scholar] [CrossRef] [Green Version]
- Yagi, A.; Fukunaga, M.; Okuzako, N.; Mifuchi, I.; Kawamoto, F. Antifungal substances from Sophora flavescens. Jpn. J. Pharmacogn. 1989, 43, 343–347. [Google Scholar]
- Sato, S.; Takeo, J.; Aoyama, C.; Kawahara, H. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorgan. Med. Chem. 2007, 15, 3445–3449. [Google Scholar] [CrossRef]
- Wu, L.; Miyase, T.; Ueno, A.; Kuroyanagi, M.; Noro, T.; Fukushima, S. Studies on the Constituents of Sophora flavescens Aiton. III. Yakugaku Zasshi 1985, 105, 736–741. [Google Scholar] [CrossRef] [Green Version]
- Selepe, M.A.; Drewes, S.E.; Heerden, F.R. Total synthesis of the pyranoisoflavone kraussianone I and related isoflavones. J. Nat. Prod. 2010, 73, 1680–1685. [Google Scholar] [CrossRef]
- Umehara, K.; Nemoto, K.; Matsushita, A.; Terada, E.; Monthakantirat, O.; De-Eknamkul, W.; Miyase, T.; Warashina, T.; Degawa, M.; Noguchi, H. Flavonoids from the heartwood of the Thai medicinal plant Dalbergia parviflora and their effects on estrogenic-responsive human breast cancer cells. J. Nat. Prod. 2009, 72, 2163–2168. [Google Scholar] [CrossRef]
- Bartmańska, A.; Tronina, T.; Popłoński, J.; Milczarek, M.; Filip-Psurska, B.; Wietrzyk, J. Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules 2018, 23, 2922. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.F.; Taylor, A.W.; Nickerson, G.B.; Ivancic, M.; Deinzer, M.L. Prenylflavonoid variation in Humulus lupulus: Distribution and taxonomic significance of xanthogalenol and 4′-O-methylxanthohumol. Phytochemistry 2000, 53, 759–775. [Google Scholar] [CrossRef]
- Wu, L.; Miyase, T.; Ueno, A.; Kuroyanagi, M.; Noro, T.; Fukushima, S. Studies on the constituents of Sophora flavescens Aiton. II. Chem. Pharm. Bull. 1985, 33, 3231–3236. [Google Scholar] [CrossRef] [Green Version]
- El-Readi, M.Z.; Eid, S.; Ashour, M.L.; Tahrani, A.; Wink, M. Modulation of multidrug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine 2013, 20, 282–294. [Google Scholar] [CrossRef]
- Li, J.-C.; Dai, W.-F.; Liu, D.; Jiang, M.-Y.; Zhang, Z.-J.; Chen, X.-Q.; Chen, C.-H.; Li, R.-T.; Li, H.-M. Bioactive ent-isopimarane diterpenoids from Euphorbia neriifolia. Phytochemistry 2020, 175, 112373. [Google Scholar] [CrossRef]
- Cao, L.; Li, R.; Chen, X.; Xue, Y.; Liu, D. Neougonin A inhibits lipopolysaccharide -induced inflammatory responses via downregulation of the NF-kB signaling pathway in RAW 264.7 macrophages. Inflammation 2016, 39, 1939–1948. [Google Scholar] [CrossRef]
Position | 17 b | 18 c | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
2 | 4.04 (d, 13.6) | 84.6 | 4.40 (dd, 13.6, 2.7) | 83.7 |
3a | 2.81 (dd, 17.0,13.6) | 37.0 | 3.02 (dd, 17.0, 2.7) | 36.9 |
3b | 2.51 (d, 17.0) | 2.68 (dd,17.0, 2.7) | ||
4 | – | 198.8 | – | 198.0 |
5 | – | 163.0 | – | 162.8 |
6 | 5.84 (s) | 96.4 | 6.01 (s) | 96.3 |
7 | – | 166.0 | – | 164.8 |
8 | – | 109.0 | – | 108.1 |
9 | – | 161.3 | – | 160.7 |
10 | – | 103.2 | – | 103.0 |
1′ | – | 72.2 | – | 71.3 |
2′a | 1.75 (m) | 29.9 | 2.21 (m) | 36.7 |
2′b | 1.67 (m) | 2.21 (m) | ||
3′a | 1.86 (m) | 28.4 | 2.39 (m) | 33.0 |
3′b | 1.86 (m) | 2.03 (m) | ||
4′ | – | 101.1 | – | 210.3 |
5′a | 1.82 (m) | 28.5 | 2.74 (m) | 36.8 |
5′b | 1.65 (m) | 2.74 (m) | ||
6′a | 1.72 (d,11.7) | 31.3 | 2.10 (m) | 34.0 |
6′b | 1.45 (d,11.7) | 2.10 (m) | ||
1a″ | 3.14 (d, 6.9) | 22.4 | 3.24 (d, 6.9) | 22.1 |
1b″ | 3.14 (d, 6.9) | 3.24 (d, 6.9) | ||
2″ | 5.11 (br t, 6.9) | 124.4 | 5.16 (br t, 6.9) | 124.1 |
3″ | – | 131.6 | – | 131.0 |
4″ | 1.59 (s) | 25.9 | 1.62 (s) | 25.8 |
5″ | 1.68 (s) | 18.1 | 1.71 (s) | 17.9 |
4′-OMe | 3.15 (s) | 47.9 | – | – |
4′-OMe | 3.10 (s) | 48.1 | – | – |
Compds | IC50 b (μM) | CC50 c (μM) | Compds | IC50 b (μM) | CC50 c (μM) |
---|---|---|---|---|---|
2 | 8.4 ± 0.7 | >50 | 22 | 5.7 ± 0.4 | 13.8 ± 0.6 |
12 | 11.2 ± 1.1 | 25.7 ± 1.1 | 29 | 7.2 ± 0.6 | 20.6 ± 1.1 |
13 | 14.4 ± 0.4 | 33.8 ± 1.0 | 35 | 4.6 ± 1.1 | 21.9 ± 0.4 |
15 | 9.3 ± 0.7 | 18.8 ± 0.3 | 36 | 6.7 ± 0.6 | 16.2 ± 0.9 |
19 | 12.4 ± 0.9 | >50 | L-NMMA a | 21.8 ± 0.9 | >50 |
Compounds | IC50 b (μM) | Compds | IC50 b (μM) |
---|---|---|---|
1 | 34.9 ± 0.3 | 21 | 26.4 ± 0.3 |
5 | 37.6 ± 0.7 | 22 | 0.46 ± 0.1 |
16 | 30.8 ± 1.1 | 34 | 48.6 ± 0.8 |
19 | 41.4 ± 0.6 | 35 | 46.2 ± 0.7 |
Cisplatin a | 24.5 ± 0.8 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-F.; Liu, T.-T.; Li, G.-X.; Chen, X.-Q.; Li, R.-T.; Zhang, Z.-J. Flavonoids from the Roots of Sophora flavescens and Their Potential Anti-Inflammatory and Antiproliferative Activities. Molecules 2023, 28, 2048. https://doi.org/10.3390/molecules28052048
Yang Y-F, Liu T-T, Li G-X, Chen X-Q, Li R-T, Zhang Z-J. Flavonoids from the Roots of Sophora flavescens and Their Potential Anti-Inflammatory and Antiproliferative Activities. Molecules. 2023; 28(5):2048. https://doi.org/10.3390/molecules28052048
Chicago/Turabian StyleYang, Yan-Fei, Ting-Ting Liu, Guo-Xian Li, Xuan-Qin Chen, Rong-Tao Li, and Zhi-Jun Zhang. 2023. "Flavonoids from the Roots of Sophora flavescens and Their Potential Anti-Inflammatory and Antiproliferative Activities" Molecules 28, no. 5: 2048. https://doi.org/10.3390/molecules28052048
APA StyleYang, Y. -F., Liu, T. -T., Li, G. -X., Chen, X. -Q., Li, R. -T., & Zhang, Z. -J. (2023). Flavonoids from the Roots of Sophora flavescens and Their Potential Anti-Inflammatory and Antiproliferative Activities. Molecules, 28(5), 2048. https://doi.org/10.3390/molecules28052048