Induction of Drug-Resistance and Production of a Culture Medium Able to Induce Drug-Resistance in Vinblastine Untreated Murine Myeloma Cells
Abstract
:1. Introduction
2. Results
2.1. Induction of Resistance and MTT Assay
2.2. Metabolomics Analyses Highlight a Significant Up-Regulation of Methionine and Amino Acid Metabolism in Resistant and Induced-Resistant Cells
3. Discussion
4. Materials and Methods
4.1. Cell Growth and Maintenance
4.2. MTT Assay
4.3. Resistant and Induced Cells
4.4. Ultra-High-Pressure Liquid Chromatography–Mass Spectrometry (MS) Metabolomics and Tracing Experiments
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pollyea, D.A.; Stevens, B.M.; Jones, C.L.; Winters, A.; Pei, S.; Minhajuddin, M.; D’Alessandro, A.; Culp-Hill, R.; Riemondy, K.A.; Gillen, A.E.; et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 2018, 24, 1859–1866. [Google Scholar] [CrossRef]
- Michael, M.; Doherty, M.M. Tumoral drug metabolism: Overview and its implications for cancer therapy. J. Clin. Oncol. 2005, 23, 205–229. [Google Scholar] [CrossRef]
- Zahreddine, H.; Borden, K.L. Mechanisms and insights into drug resistance in cancer. Front. Pharm. 2013, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Mehta, K.; Fok, J.Y. Targeting transglutaminase-2 to overcome chemoresistance in cancer cells. In Drug Resistance in Cancer Cells; Mehta, K., Bates, S.E., Siddik, Z.H., Eds.; Springer: New York, NY, USA, 2009; pp. 95–114. [Google Scholar] [CrossRef]
- Du, Y.; Chen, B. Detection approaches for multidrug resistance genes of leukemia. Drug Des. Dev. Ther. 2017, 11, 1255–1261. [Google Scholar] [CrossRef] [Green Version]
- Giddings, E.L.; Champagne, D.P.; Wu, M.H.; Laffin, J.M.; Thornton, T.M.; Valenca-Pereira, F.; Culp-Hill, R.; Fortner, K.A.; Romero, N.; East, J.; et al. Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat. Commun. 2021, 12, 2804. [Google Scholar] [CrossRef]
- Plumb, J.A.; Strathdee, G.; Sludden, J.; Kaye, S.B.; Brown, R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000, 60, 6039–6044. [Google Scholar] [PubMed]
- Lompardía, S.L.; Papademetrio, D.L.; Mascaró, M.; del Carmen Álvarez, E.M.; Hajos, S.E. Human leukemic cell lines synthesize hyaluronan to avoid senescence and resist chemotherapy. Glycobiology 2013, 23, 1463–1476. [Google Scholar] [CrossRef] [Green Version]
- Worm, J.; Kirkin, A.F.; Dzhandzhugazyan, K.N.; Guldberg, P. Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. J. Biol. Chem. 2001, 276, 39990–40000. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Thompson, C.B. Metabolic regulation of epigenetics. Cell Metab. 2012, 16, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.T.; Hickman, J.A.; Dive, C. Epigenetic determinants of resistance to etoposide regulation of Bcl-XL and Bax by tumor microenvironmental factors. J. Natl. Cancer Inst. 2000, 92, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression and therapy: An epigenetic overview. Int. J. Mol. Sci. 2013, 14, 21087–21113. [Google Scholar] [CrossRef] [Green Version]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, M.M. Mechanism of cancer drug resistance. Annu. Rev. Med. 2002, 53, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, R.; Clynes, M.; Dowling, P.; O’Donovan, N.; O’Driscoll, L. Drug resistance in cancer—Searching for mechanisms, markers and therapeutic agents. Expert Opin. Drug Metab. Toxicol. 2007, 3, 805–817. [Google Scholar] [CrossRef]
- Culp-Hill, R.; D’Alessandro, A.; Pietras, E.M. Extinguishing the Embers: Targeting AML Metabolism. Trends Mol. Med. 2021, 27, 332–344. [Google Scholar] [CrossRef]
- Zupkó, I.; Jaeger, W.; Topcu, Z.; Wu, C. Anticancer Properties of Natural Products. BioMed Res. Int. 2015, 2015, 1–2. [Google Scholar] [CrossRef]
- Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E. Natural products for human health: An historical overview of the drug discovery approaches. Nat. Prod. Res. 2017, 32, 1926–1950. [Google Scholar] [CrossRef]
- Azab, A.; Nassar, A.; Azab, A.N. Anti-Inflammatory Activity of Natural Products. Molecules 2016, 21, 1321. [Google Scholar] [CrossRef]
- Bernardini, S.; Silva Osorio, M.; Tiezzi, A. Plants: An infinite source of molecules useful for pharmaceuticals. Curr. Tradit. Med. 2018, 4, 157–165, ISSN: 2215-0838. [Google Scholar] [CrossRef]
- Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv. 2018, 36, 506–520. [Google Scholar] [CrossRef]
- Sitarek, P.; Kowalczyk, T.; Wieczfinska, J.; Merecz-Sadowska, A.; Górski, K.; Śliwiński, T.; Skała, E. Plant Extracts as a Natural Source of Bioactive Compounds and Potential Remedy for the Treatment of Certain Skin Diseases. Curr. Pharm. Des. 2020, 26, 2859–2875. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective Herbs for the Management of Alzheimer’s Disease. Biomolecules 2021, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Chai, H.; Kinghorn, A. Discovery of new anticancer agents from higher plants. Front. Biosci. 2012, 4, 142–156. [Google Scholar] [CrossRef]
- Noble, R.H.; Cutts, J.H.; Beer, C.H. Further biological activities of vincaleukoblastine—An alkaloid isolated from Vinca rosea (L.). Biochem. Pharm. 1958, 1, 1347–1348. [Google Scholar] [CrossRef]
- Neuss, N.; Gorman, M.; Boaz, H.E.; Cone, N.J. Vinca alkaloids. XI. Structures of leurocristine and vincaleukoblastine. J. Am. Chem. Soc. 1962, 84, 1509–1510. [Google Scholar] [CrossRef]
- Svoboda, G.H. Alkaloids of Vinca rosea (Catharanthus roseus). IX. Extraction and characterization of leurosidine and leurocristine. Lloydia 1961, 24, 173–178. [Google Scholar]
- Hartwell, J.L.; Schrecker, A.W. Components of podophyllin. V. The constitution of podophyllotoxin. J. Am. Chem. Soc. 1951, 73, 2909–2916. [Google Scholar] [CrossRef]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef]
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 1966, 88, 3888–3890. [Google Scholar] [CrossRef]
- Cragg, G.M.J.; Newman, D.; Yang, S.S. Natural Product Extracts of Plant and Marine Origin Having Antileukemia Potential. The NCI Experience. J. Nat. Prod. 2006, 69, 488–498. [Google Scholar] [CrossRef]
- Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE 2017, 11, e0187925. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Y.; Chen, C.; Sui, X.; Yang, J.; Wang, L.; Zhou, J. The crosstalk between autophagy and ferroptosis: What can we learn to target drug resistance in cancer? Cancer Biol. Med. 2019, 16, 630–646. [Google Scholar] [CrossRef]
- Costa, G.; Carbone, P.P.; Gold, G.L.; Owens, A.H., Jr.; Miller, S.P.; Krant, M.J.; Bono, V.H., Jr. Clinical trial of vinblastine in multiple myeloma. Cancer Chemother. Rep. 1963, 27, 87–89. [Google Scholar]
- Meynard, L.; Galtier, J.; Favre, S.; Debus, L.; Lascaux, A.; Dilhuydy, M.S.; Gros, F.X.; Sauvezie, M.; Milpied, N.; Bouabdallah, K.; et al. Vinblastine for elderly and frail patients with Hodgkin lymphoma. Leuk. Lymphoma 2020, 61, 3239–3242. [Google Scholar] [CrossRef]
- Nass, J.; Efferth, T. Drug targets and resistance mechanisms in multiple myeloma. Cancer Drug Resist. 2018, 1, 87–117. [Google Scholar] [CrossRef] [Green Version]
- Abdi, J.; Chen, G.; Chang, H. Drug resistance in multiple myeloma: Latest findings and new concepts on molecular mechanisms. Oncotarget 2013, 4, 2186–2207, Erratum in Oncotarget 2015, 6, 7364. [Google Scholar] [CrossRef] [Green Version]
- Amaral, M.V.S.; De Sousa Portilho, A.J.; Da Silva, E.L.; De Oliveira Sales, L.; Da Silva Maués, J.H.; Amaral De Moraes, M.E.; Aquino Moreira-Nunes, C. Establishment of Drug-resistant Cell Lines as a Model in Experimental Oncology: A Review. Anticancer. Res. 2019, 39, 6443–6455. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.C.; Ferry, D.R.; Higgins, C.F.; Callaghan, R. The equilibrium and kinetic drug binding properties of the mouse P-gp1a and P-gp1b P-glycoproteins are similar. Br. J. Cancer 1999, 81, 783–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garzoli, S.; Laghezza Masci, V.; Ovidi, E.; Turchetti, G.; Zago, D.; Tiezzi, A. Chemical Investigation of a Biologically Active Schinus molle L. Leaf Extract. J. Anal. Methods Chem. 2019, 2019, 8391263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovidi, E.; Masci, V.L.; Taddei, A.R.; Paolicelli, P.; Petralito, S.; Trilli, J.; Mastrogiovanni, F.; Tiezzi, A.; Casadei, M.A.; Giacomello, P.; et al. Chemical Investigation and Screening of Anti-Proliferative Activity on Human Cell Lines of Pure and Nano-Formulated Lavandin Essential Oil. Pharmaceuticals 2020, 13, 352. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, S.M.; Gao, X.; Dai, Z.; Locasale, J.W. Methionine metabolism in health and cancer: A nexus of diet and precision medicine. Nat. Rev. Cancer 2019, 19, 625–637. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Hansen, K.C.; Eisenmesser, E.Z.; Zimring, J.C. Protect, repair, destroy or sacrifice: A role of oxidative stress biology in inter-donor variability of blood storage? Blood Transfus. 2019, 17, 281–288. [Google Scholar] [CrossRef]
- Reisz, J.A.; Nemkov, T.; Dzieciatkowska, M.; Culp-Hill, R.; Stefanoni, D.; Hill, R.C.; Yoshida, T.; Dunham, A.; Kanias, T.; Dumont, L.J.; et al. Methylation of protein aspartates and deamidated asparagines as a function of blood bank storage and oxidative stress in human red blood cells. Transfusion 2018, 58, 2978–2991. [Google Scholar] [CrossRef]
- San-Millan, I.; Brooks, G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 2017, 38, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Quest Graph. EC50 Calculator. Available online: https://www.aatbio.com/tools/ec50-calculator (accessed on 5 November 2019).
- Nemkov, T.; Hansen, K.C.; D’Alessandro, A. A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. Rapid Commun. Mass Spectrom. 2017, 31, 663–673. [Google Scholar] [CrossRef] [Green Version]
- Reisz, J.A.; Zheng, C.; D’Alessandro, A.; Nemkov, T. Untargeted and Semi-targeted Lipid Analysis of Biological Samples Using Mass Spectrometry-Based Metabolomics. Methods Mol. Biol. 2019, 1978, 121–135. [Google Scholar] [CrossRef]
- Nemkov, T.; Reisz, J.A.; Gehrke, S.; Hansen, K.C.; D’Alessandro, A. High-Throughput Metabolomics: Isocratic and Gradient Mass Spectrometry-Based Methods. Methods Mol. Biol. 2019, 1978, 13–26. [Google Scholar] [CrossRef]
- Clasquin, M.F.; Melamud, E.; Rabinowitz, J.D. LC-MS data processing with MAVEN: A metabolomic analysis and visualization engine. Curr. Protoc. Bioinform. 2012, 37, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masci, V.L.; Stefanoni, D.; D’Alessandro, A.; Zambelli, M.; Modesti, L.; Pollini, D.; Ovidi, E.; Tiezzi, A. Induction of Drug-Resistance and Production of a Culture Medium Able to Induce Drug-Resistance in Vinblastine Untreated Murine Myeloma Cells. Molecules 2023, 28, 2051. https://doi.org/10.3390/molecules28052051
Masci VL, Stefanoni D, D’Alessandro A, Zambelli M, Modesti L, Pollini D, Ovidi E, Tiezzi A. Induction of Drug-Resistance and Production of a Culture Medium Able to Induce Drug-Resistance in Vinblastine Untreated Murine Myeloma Cells. Molecules. 2023; 28(5):2051. https://doi.org/10.3390/molecules28052051
Chicago/Turabian StyleMasci, Valentina Laghezza, Davide Stefanoni, Angelo D’Alessandro, Marta Zambelli, Lorenzo Modesti, Daniele Pollini, Elisa Ovidi, and Antonio Tiezzi. 2023. "Induction of Drug-Resistance and Production of a Culture Medium Able to Induce Drug-Resistance in Vinblastine Untreated Murine Myeloma Cells" Molecules 28, no. 5: 2051. https://doi.org/10.3390/molecules28052051
APA StyleMasci, V. L., Stefanoni, D., D’Alessandro, A., Zambelli, M., Modesti, L., Pollini, D., Ovidi, E., & Tiezzi, A. (2023). Induction of Drug-Resistance and Production of a Culture Medium Able to Induce Drug-Resistance in Vinblastine Untreated Murine Myeloma Cells. Molecules, 28(5), 2051. https://doi.org/10.3390/molecules28052051