Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design, Synthesis and Molecular Weight of PBDT Polymers
2.2. Solubility and Thermal Stability
2.3. Theoretical Analysis
2.4. Fundamental Optical Properties
2.5. Electrochemical Properties
2.6. Photovoltaic Performance
2.7. Spectroelectrochemistry Properties
2.8. Electrochromic Properties
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Polymers
3.3. Preparation of Electrochromic Film
3.4. Fabrication and Characterization of the Organic Solar Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wang, D.; Liu, H.R.; Li, Y.H.; Zhou, G.Q.; Zhan, L.L.; Zhu, H.M.; Lu, X.H.; Chen, H.Z.; Li, C.Z. High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 2021, 5, 945–957. [Google Scholar] [CrossRef]
- Hsu, L.C.; Isono, T.; Lin, Y.C.; Kobayashi, S.; Chiang, Y.C.; Jiang, D.H.; Hung, C.C.; Ercan, E.; Yang, W.C.; Hsieh, H.C.; et al. Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching. ACS Appl. Mater. Inter. 2021, 13, 2932–2943. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.Y.; Shen, H.G.; Perera, K.; Tran, D.T.; Boudouris, B.W.; Mei, J.G. Designing Donor-Acceptor Copolymers for Stable and High-Performance Organic Electrochemical Transistors. ACS Macro Lett. 2021, 10, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.Z.; Abdalla, H.; Kemerink, M. Conjugated Polymer Blends for Organic Thermoelectrics. Adv. Electron. Mater. 2019, 5, 1800821. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ye, G.; Potgieser, H.G.O.; Koopmans, M.; Sami, S.; Nugraha, M.I.; Villalva, D.R.; Sun, H.; Dong, J.; Yang, X.; et al. Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectrics. Adv. Mater. 2021, 33, e2006694. [Google Scholar] [CrossRef] [PubMed]
- Sirringhaus, H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, H.; Kim, Y. Hole Injection Role of p-Type Conjugated Polymer Nanolayers in Phosphorescent Organic Light-Emitting Devices. Electronics 2021, 10, 2283. [Google Scholar] [CrossRef]
- Osterholm, A.M.; Ponder, J.F.; De Keersmaecker, M.; Shen, D.E.; Reynolds, J.R. Disentangling Redox Properties and Capacitance in Solution Processed Conjugated Polymers. Chem. Mater. 2019, 31, 2971–2982. [Google Scholar] [CrossRef]
- Ponder, J.F.; Osterholm, A.M.; Reynolds, J.R. Conjugated Polyelectrolytes as Water Processable Precursors to Aqueous Compatible Redox Active Polymers for Diverse Applications: Electrochromism, Charge Storage, and Biocompatible Organic Electronics. Chem. Mater. 2017, 29, 4385–4392. [Google Scholar] [CrossRef]
- Yeung, S.Y.; Veronica, A.; Li, Y.; Hsing, I.M. High-Performance Internal Ion-Gated Organic Electrochemical Transistors for High-Frequency Bioimpedance Analysis. Adv. Mater. Technol. 2022, 8, 2201116. [Google Scholar] [CrossRef]
- Li, W.-S.; Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.; Tagawa, S.; Masunaga, H.; Sasaki, S.; Takata, M.; Aida, T. Amphiphilic Molecular Design as a Rational Strategy for Tailoring Bicontinuous Electron Donor and Acceptor Arrays: Photoconductive Liquid Crystalline Oligothiophene−C60 Dyads. J. Am. Chem. Soc. 2008, 130, 8886–8887. [Google Scholar] [CrossRef] [PubMed]
- Meng, B.; Liu, J.; Wang, L.X. Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem. 2020, 11, 1261–1270. [Google Scholar] [CrossRef]
- Shao, M.; He, Y.J.; Hong, K.L.; Rouleau, C.M.; Geohegan, D.B.; Xiao, K. A water-soluble polythiophene for organic field-effect transistors. Polym. Chem. 2013, 4, 5270–5274. [Google Scholar] [CrossRef]
- Tan, E.L.; Kim, J.; Stewart, K.; Pitsalidis, C.; Kwon, S.; Siemons, N.; Kim, J.; Jiang, Y.F.; Frost, J.M.; Pearce, D.; et al. The Role of Long-Alkyl-Group Spacers in Glycolated Copolymers for High-Performance Organic Electrochemical Transistors. Adv. Mater. 2022, 34, e2202574. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, J.; Sun, H.; Li, Y.; Wang, Y.; Wu, Z.; Jeong, S.Y.; Woo, H.Y.; Fabiano, S.; Guo, X. Thiazole Imide-Based All-Acceptor Homopolymer with Branched Ethylene Glycol Side Chains for Organic Thermoelectrics. Angew. Chem. Int. Ed. 2022, 61, e202214192. [Google Scholar] [CrossRef]
- Xu, X.; Yu, L.; Meng, H.; Dai, L.; Yan, H.; Li, R.; Peng, Q. Polymer Solar Cells with 18.74% Efficiency: From Bulk Heterojunction to Interdigitated Bulk Heterojunction. Adv. Funct. Mater. 2022, 32, 2108797. [Google Scholar] [CrossRef]
- Qi, S.; Wang, C.; Liu, Z.; Han, Y.; Bai, F.; Chen, Z. Electrochromic and photovoltaic properties of benzothiadiazole-based donor-acceptor conjugated polymers with oligo(ethylene glycol) side chains. Dye. Pigment. 2022, 204, 110432. [Google Scholar] [CrossRef]
- Meng, B.; Song, H.Y.; Chen, X.X.; Xie, Z.Y.; Liu, J.; Wang, L.X. Replacing Alkyl with Oligo(ethylene glycol) as Side Chains of Conjugated Polymers for Close pi-pi Stacking. Macromolecules 2015, 48, 4357–4363. [Google Scholar] [CrossRef]
- Chen, X.X.; Zhang, Z.J.; Liu, J.; Wang, L.X. A polymer electron donor based on isoindigo units bearing branched oligo(ethylene glycol) side chains for polymer solar cells. Polym. Chem. 2017, 8, 5496–5503. [Google Scholar] [CrossRef]
- Cui, J.J.; Park, J.H.; Kim, D.W.; Choi, M.W.; Chung, H.Y.; Kwon, O.K.; Kwon, J.E.; Park, S.Y. Designing Nonfullerene Acceptors with Oligo(Ethylene Glycol) Side Chains: Unraveling the Origin of Increased Open-Circuit Voltage and Balanced Charge Carrier Mobilities. Chem. Asian J. 2021, 16, 2481–2488. [Google Scholar] [CrossRef]
- Sun, W.W.; Chen, H.Y.; Zhang, B.; Cheng, Q.R.; Yang, H.Y.; Chen, Z.Y.; Zeng, G.; Ding, J.Y.; Chen, W.J.; Li, Y.W. Host-Guest Active Layer Enabling Annealing-Free, Nonhalogenated Green Solvent Processing for High-Performance Organic Solar Cells(dagger). Chin. J. Chem. 2022, 40, 2963–2972. [Google Scholar] [CrossRef]
- Mei, J.G.; Bao, Z.N. Side Chain Engineering in Solution-Processable Conjugated Polymers. Chem. Mater. 2014, 26, 604–615. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Xing, X.; Fang, D.; Zhao, Y.; Zhu, Y.; Ali, M.U.; Shi, Y.; Bai, J.; Wu, P.; et al. The Effect of Oligo(Ethylene Oxide) Side Chains: A Strategy to Improve Contrast and Switching Speed in Electrochromic Polymers. Chemphyschem 2020, 21, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, X.; Jiang, F.; Zhou, W.; Liu, C.; Duan, X.; Xu, J. Functionalized Poly(3,4-ethylenedioxy bithiophene) Films for Tuning Electrochromic and Thermoelectric Properties. J. Phys. Chem. B 2017, 121, 9281–9290. [Google Scholar] [CrossRef]
- Advincula, A.A.; Jones, A.L.; Thorley, K.J.; Österholm, A.M.; Ponder, J.F.; Reynolds, J.R. Probing Comonomer Selection Effects on Dioxythiophene-Based Aqueous-Compatible Polymers for Redox Applications. Chem. Mater. 2022, 34, 4633–4645. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front. 2021, 8, 4554–4559. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para-quinone methides with beta-ketoesters. Chem. Commun. 2022, 58, 6653–6656. [Google Scholar] [CrossRef]
- Yang, Q.; Wen, Y.; Zhong, A.; Xu, J.; Shao, S. An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging. New J. Chem. 2020, 44, 16265–16268. [Google Scholar] [CrossRef]
- Wang, L.-H.; Chen, X.-J.; Ye, D.-N.; Liu, H.; Chen, Y.; Zhong, A.-G.; Li, C.-Z.; Liu, S.-Y. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C–H direct arylation. Polym. Chem. 2022, 13, 2351–2361. [Google Scholar] [CrossRef]
- Yao, W.; He, L.; Han, D.; Zhong, A. Sodium Triethylborohydride-Catalyzed Controlled Reduction of Unactivated Amides to Secondary or Tertiary Amines. J. Org. Chem. 2019, 84, 14627–14635. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org. Chem. Front. 2020, 7, 3515–3520. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lu, Y.-J.; Su, Y.-W.; Lin, Y.-C.; Lin, H.-K.; Chen, H.-C.; Wang, H.-C.; Li, J.-X.; Wu, K.-H.; Wei, K.-H. Enhancing performance of ternary blend photovoltaics by tuning the side chains of two-dimensional conjugated polymer. Org. Electron. 2019, 71, 185–193. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, C.-H.; Li, R.-H.; Tsao, C.-S.; Saeki, A.; Wang, H.-C.; Chang, B.; Huang, L.-Y.; Yang, Y.; Wei, K.-H. Atom-Varied Side Chains in Conjugated Polymers Affect Efficiencies of Photovoltaic Devices Incorporating Small Molecules. ACS App. Polym. Mater. 2019, 2, 636–646. [Google Scholar] [CrossRef]
- Lin, K.; Wu, C.; Zhang, G.; Wu, Z.; Tang, S.; Lin, Y.; Li, X.; Jiang, Y.; Lin, H.; Wang, Y.; et al. Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering. Molecules 2022, 27, 8424. [Google Scholar] [CrossRef]
- He, Z.; Xu, H.; Zhang, Y.; Hou, Y.; Niu, H. Conjugated Polymers Containing EDOT Units as Novel Materials for Electrochromic and Resistance Memory Devices. Polymers 2022, 14, 4965. [Google Scholar] [CrossRef]
- Ming, S.; Li, Z.; Zhen, S.; Liu, P.; Jiang, F.; Nie, G.; Xu, J. High-performance D-A-D type electrochromic polymer with π spacer applied in supercapacitor. Chem. Eng. J. 2020, 390, 124572. [Google Scholar] [CrossRef]
- Neo, W.T.; Ong, K.H.; Lin, T.T.; Chua, S.J.; Xu, J.W. Effects of fluorination on the electrochromic performance of benzothiadiazole-based donor-acceptor copolymers. J. Mater. Chem. C 2015, 3, 5589–5597. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Facchetti, A.; Marks, T.J. Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chem. Rev. 2017, 117, 10291–10318. [Google Scholar] [CrossRef]
- Torabi, S.; Jahani, F.; Van Severen, I.; Kanimozhi, C.; Patil, S.; Havenith, R.W.A.; Chiechi, R.C.; Lutsen, L.; Vanderzande, D.J.M.; Cleij, T.J.; et al. Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubility. Adv. Funct. Mater. 2015, 25, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Elizalde-Segovia, R.; Zayat, B.; Salamat, C.Z.; Pace, G.; Zhai, K.; Vincent, R.C.; Dunn, B.S.; Segalman, R.A.; Tolbert, S.H.; et al. Enhancing the Ionic Conductivity of Poly(3,4-propylenedioxythiophenes) with Oligoether Side Chains for Use as Conductive Cathode Binders in Lithium-Ion Batteries. Chem. Mater. 2022, 34, 2672–2686. [Google Scholar] [CrossRef]
- Zhou, N.J.; Dudnik, A.S.; Li, T.I.N.G.; Manley, E.F.; Aldrich, T.J.; Guo, P.J.; Liao, H.C.; Chen, Z.H.; Chen, L.X.; Chang, R.P.H.; et al. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers. J. Am. Chem. Soc. 2016, 138, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, K.D.; Matsidik, R.; Prasad, S.K.K.; Connal, L.A.; Liu, A.C.Y.; Gann, E.; Thomsen, L.; Hodgkiss, J.M.; Sommer, M.; McNeill, C.R. Tuning the Molecular Weight of the Electron Accepting Polymer in All-Polymer Solar Cells: Impact on Morphology and Charge Generation. Adv. Funct. Mater. 2018, 28, 1707185. [Google Scholar] [CrossRef]
- Kang, H.; Uddin, M.A.; Lee, C.; Kim, K.H.; Nguyen, T.L.; Lee, W.; Li, Y.; Wang, C.; Woo, H.Y.; Kim, B.J. Determining the Role of Polymer Molecular Weight for High-Performance All-Polymer Solar Cells: Its Effect on Polymer Aggregation and Phase Separation. J. Am. Chem. Soc. 2015, 137, 2359–2365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Q.; Ye, L.; Zhang, H.; Hou, J.H. Green-solvent-processable organic solar cells. Mater. Today 2016, 19, 533–543. [Google Scholar] [CrossRef]
- Chang, W.H.; Gao, J.; Dou, L.T.; Chen, C.C.; Liu, Y.S.; Yang, Y. Side-Chain Tunability via Triple Component Random Copolymerization for Better Photovoltaic Polymers. Adv. Energy Mater. 2014, 4, 1300864. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, Y.; Wang, Z.Y.; Lu, Y.; Yao, Z.F.; Ding, Y.F.; Yu, Z.D.; Wang, J.Y.; Pei, J. Revealing the effect of oligo(ethylene glycol) side chains on n-doping process in FBDPPV-based polymers. J. Polym. Sci. 2022, 60, 538–547. [Google Scholar] [CrossRef]
- Beaujuge, P.M.; Amb, C.M.; Reynolds, J.R. Spectral Engineering in π-Conjugated Polymers with Intramolecular Donor-Acceptor Interactions. Acc Chem. Res. 2010, 43, 1396–1407. [Google Scholar] [CrossRef]
- Joshi, U.A.; Maggard, P.A. CuNb3O8: A p-Type Semiconducting Metal Oxide Photoelectrode. J. Phys. Chem. Let. 2012, 3, 1577–1581. [Google Scholar] [CrossRef]
- Chen, H.; Leng, W.; Xu, Y. Enhanced Visible-Light Photoactivity of CuWO4 through a Surface-Deposited CuO. J. Phys. Chem. C 2014, 118, 9982–9989. [Google Scholar] [CrossRef]
- Wen, X.-J.; Zhang, C.; Niu, C.-G.; Zhang, L.; Zeng, G.-M.; Zhang, X.-G. Highly enhanced visible light photocatalytic activity of CeO2 through fabricating a novel p–n junction BiOBr/CeO2. Cat. Commun. 2017, 90, 51–55. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef]
- Sun, C.K.; Qin, S.C.; Wang, R.; Chen, S.S.; Pan, F.; Qiu, B.B.; Shang, Z.Y.; Meng, L.; Zhang, C.F.; Xiao, M.; et al. High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. J. Am. Chem. Soc. 2020, 142, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Beaujuge, P.M.; Vasilyeva, S.V.; Liu, D.Y.; Ellinger, S.; McCarley, T.D.; Reynolds, J.R. Structure-Performance Correlations in Spray-Processable Green Dioxythiophene-Benzothiadiazole Donor-Acceptor Polymer Electrochromes. Chem. Mater. 2012, 24, 255–268. [Google Scholar] [CrossRef]
- Furukawa, Y. Electronic Absorption and Vibrational Spectroscopies of Conjugated Conducting Polymers. J. Phys. Chem. 1996, 100, 15644–15653. [Google Scholar] [CrossRef]
- Lo, C.K.; Shen, D.E.; Reynolds, J.R. Fine-Tuning the Color Hue of pi-Conjugated Black-to-Clear Electrochromic Random Copolymers. Macromolecules 2019, 52, 6773–6779. [Google Scholar] [CrossRef]
- Moser, M.; Hidalgo, T.C.; Surgailis, J.; Gladisch, J.; Ghosh, S.; Sheelamanthula, R.; Thiburce, Q.; Giovannitti, A.; Salleo, A.; Gasparini, N.; et al. Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Adv. Mater. 2020, 32, 2002748. [Google Scholar] [CrossRef]
- Moser, M.; Savagian, L.R.; Savva, A.; Matta, M.; Ponder, J.F.; Hidalgo, T.C.; Ohayon, D.; Hallani, R.; Reisjalali, M.; Troisi, A.; et al. Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance. Chem. Mater. 2020, 32, 6618–6628. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Ma, L.-K.; Xue, W.; Ma, R.; Zhang, J.; Ma, C.; Kim, H.K.; Yu, H.; Bai, F.; et al. Alkoxy substitution on IDT-Series and Y-Series non-fullerene acceptors yielding highly efficient organic solar cells. J. Phys. Chem. A 2021, 9, 7481–7490. [Google Scholar] [CrossRef]
- Liang, J.; Pan, M.; Wang, Z.; Zhang, J.; Bai, F.; Ma, R.; Ding, L.; Chen, Y.; Li, X.; Ade, H.; et al. Branched Alkoxy Side Chain Enables High-Performance Non-Fullerene Acceptors with High Open-Circuit Voltage and Highly Ordered Molecular Packing. Chem. Mater. 2022, 34, 2059–2068. [Google Scholar] [CrossRef]
- Harjani, J.R.; Liang, C.; Jessop, P.G. A synthesis of acetamidines. J. Org. Chem. 2011, 76, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Vallee, M.R.J.; Majkut, P.; Wilkening, I.; Weise, C.; Muller, G.; Hackenberger, C.P.R. Staudinger-Phosphonite reactions for the chemoselective transformation of azido-containing peptides and proteins. Org. Lett. 2011, 13, 5440–5443. [Google Scholar] [CrossRef]
- Wang, Y.F.; Parkin, S.R.; Watson, M.D. Benzodichalcogenophenes with perfluoroarene termini. Org. Lett. 2008, 10, 4421–4424. [Google Scholar] [CrossRef] [PubMed]
- Giovannitti, A.; Nielsen, C.B.; Rivnay, J.; Kirkus, M.; Harkin, D.J.; White, A.J.P.; Sirringhaus, H.; Malliaras, G.G.; McCulloch, I. Sodium and potassium ion selective conjugated polymers for optical ion detection in solution and solid state. Adv. Funct. Mater. 2016, 26, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Kolanji, K.; Postulka, L.; Wolf, B.; Lang, M.; Schollmeyer, D.; Baumgarten, M. Planar Benzo [1,2-b:4,5-b’]dithiophene derivatives decorated with nitronyl and imino nitroxides. J. Org. Chem. 2019, 84, 140–149. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Z.; Wei, W.; Jiang, Z.H. Fluorinated Benzothiadiazole-Based Conjugated Polymers for high-performance polymer solar cells without any processing additives or post-treatments. J. Am. Chem. Soc. 2013, 135, 17060–17068. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.; Wen, S.P.; Ma, P.F.; Wang, G.; Wang, C.H.; Li, H.Y.; Shen, L.; Guo, W.B.; Ruan, S.P. Enhanced photovoltaic performance of tetrazine-based small molecules with conjugated side chains. ACS Sustain. Chem. Eng. 2017, 5, 8684–8692. [Google Scholar] [CrossRef]
Polymer | GPC (kDa) | Thermal Stability (°C) | ||
---|---|---|---|---|
Mn [a] | Mw [b] | Ð | Td5% [c] | |
PBDT1-DTBF | 60.4 | 73.7 | 1.22 | 343 |
PBDT2-DTBF | 88.8 | 42.5 | 1.29 | 327 |
PBDT3-DTBF | 161.3 | 199.5 | 1.24 | 323 |
Solvent | PBDT1-DTBF | PBDT2-DTBF | PBDT3-DTBF |
---|---|---|---|
o-DCB | ++ | ++ | ++ |
CHCl3 | ++ | ++ | ++ |
Tol | - | ++ | + |
NMP | - | + | - |
DMF | - | + | + |
PC | - | - | - |
MeCN | - | + | + |
THF | + | + | + |
2-Me-THF | - | + | - |
CPME | - | - | - |
Ethanol | - | - | - |
d-limonene | - | - | - |
Polymer | (nm) | (nm) | λonset (nm) [a] | (eV) [b] |
---|---|---|---|---|
PBDT1-DTBF | 385, 469 | 393, 480 | 591 | 2.10 |
PBDT2-DTBF | 388, 477 | 396, 469 | 586 | 2.12 |
PBDT3-DTBF | 388, 472 | 397, 479 | 591 | 2.10 |
Polymer | Oxidation (V) | Energy Level (eV) | Energy Level (eV) [d] | ||||
---|---|---|---|---|---|---|---|
Eonset [a] | Eox,1 | Eox,2 | HOMO [b] | LUMO [c] | HOMO | LUMO | |
PBDT1-DTBF | 0.34 | 0.72 | 0.94 | −5.14 | −3.04 | −4.88 | −2.84 |
PBDT2-DTBF | 0.32 | 0.70 | 0.91 | −5.12 | −3.00 | −4.89 | −2.84 |
PBDT3-DTBF | 0.30 | 0.70 | 0.91 | −5.10 | −3.00 | −4.89 | −2.85 |
Active Layer [a] | Solvent | Weight Ratio [b] | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|---|
PBDT1-DTBF:IT-4F | THF | 1:1 | 0.74 | 0.12 | 30.38 | 0.03 |
PBDT2-DTBF:IT-4F | THF | 1:1 | 0.67 | 0.28 | 28.32 | 0.05 |
PBDT3-DTBF:IT-4F | THF | 1:1 | 0.72 | 0.16 | 28.69 | 0.03 |
Polymer | Solvent | λmax [a] (nm) | ΔT [b] (%) | (s) | (s) | ΔOD [c] | Q [d] (mC cm−2) | CE [e] (cm2 C−1) |
---|---|---|---|---|---|---|---|---|
PBDT1 | CB | 667 | 10 | 3.23 | 1.09 | 0.17 | 1.62 | 104.6 |
PBDT2 | CB | 663 | 4 | 6.87 | 4.18 | 0.02 | 0.57 | 81.2 |
PBDT3 | CB | 656 | 5 | 3.02 | 1.74 | 0.10 | 1.19 | 83.7 |
PBDT1 | THF | 662 | 69 | 4.78 | 7.21 | 0.81 | 2.52 | 322.0 |
PBDT2 | THF | 668 | 21 | 4.61 | 3.31 | 0.11 | 0.98 | 112.6 |
PBDT3 | THF | 663 | 23 | 4.61 | 2.85 | 0.12 | 1.02 | 118.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; Qi, S.; Xing, Z.; Li, S.; Wang, Q.; Chen, Z. Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers. Molecules 2023, 28, 2056. https://doi.org/10.3390/molecules28052056
Jia S, Qi S, Xing Z, Li S, Wang Q, Chen Z. Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers. Molecules. 2023; 28(5):2056. https://doi.org/10.3390/molecules28052056
Chicago/Turabian StyleJia, Songrui, Shiying Qi, Zhen Xing, Shiyi Li, Qilin Wang, and Zheng Chen. 2023. "Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers" Molecules 28, no. 5: 2056. https://doi.org/10.3390/molecules28052056
APA StyleJia, S., Qi, S., Xing, Z., Li, S., Wang, Q., & Chen, Z. (2023). Effects of Different Lengths of Oligo (Ethylene Glycol) Side Chains on the Electrochromic and Photovoltaic Properties of Benzothiadiazole-Based Donor-Acceptor Conjugated Polymers. Molecules, 28(5), 2056. https://doi.org/10.3390/molecules28052056