Prospective of Agro-Waste Husks for Biogenic Synthesis of Polymeric-Based CeO2/NiO Nanocomposite Sensor for Determination of Mebeverine Hydrochloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Synthesized Nanoparticles
2.2. The Response Features of the Designed Sensors
2.3. Quantification of Mebeverine Hydrochloride
2.4. Method Validation
2.5. Quantification of the Drug in Tablets
3. Experimental
3.1. Materials and Reagents
3.2. Instrumentation
3.3. Eco-Friendly Synthesis of Nanomaterials
3.3.1. Preparation of Wheat (Triticum aestivum) and Rice (Oryza sativa) Husk Extracts
3.3.2. Synthesis of CeO2NPs and NiO Nanoparticles Using Husk Extracts
3.4. Preparation of Analytical Solutions
3.5. Preparation of Electroactive Material
3.6. Sensor Preparation
3.7. Calibration Plots
3.8. Optimization of Analytical Conditions
3.9. Analytical Determination of MB in Dosage Form
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Whitesides, G.M. Nanoscience, nanotechnology, and chemistry. Small 2005, 1, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, H.; Mohammadi, S.; Li, X.; Fu, G.; Li, X. Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis. TrAC Trends Anal. Chem. 2022, 29, 116806. [Google Scholar] [CrossRef]
- Dong, T.; Gu, Y.; Liu, T.; Pecht, M. Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications. Sens. Actuators A Phys. 2021, 326, 112720. [Google Scholar] [CrossRef]
- Alterary, S.S.; El-Tohamy, M.F.; Mostafa, G.A.; Alrabiah, H. Atropine-phosphotungestate polymeric-based metal oxide nanoparticles for potentiometric detection in pharmaceutical dosage forms. Nanomaterials 2022, 12, 2313. [Google Scholar] [CrossRef]
- Ramesh, R.; Yamini, V.; Sundaram, S.J.; Khan, F.L.; Kaviyarasu, K. Investigation of structural and optical properties of NiO nanoparticles mediated by Plectranthus amboinicus leaf extract. Mater Today Proc. 2021, 36, 268–272. [Google Scholar] [CrossRef]
- Khodair, Z.T.; Ibrahim, N.M.; Kadhim, T.J.; Mohammad, A.M. Synthesis and characterization of nickel oxide (NiO) nanoparticles using an environmentally friendly method, and their biomedical applications. Chem. Phys. Lett. 2022, 797, 139564. [Google Scholar] [CrossRef]
- Nastulyavichus, A.; Shahov, P.; Khaertdinova, L.; Tolordava, E.; Saraeva, I.; Yushina, Y.; Rudenko, A.; Ionin, A.; Khmelnitskiy, R.; Khmelenin, D.; et al. Bactericidal impact of nickel-oxide nanoparticles on foodborne pathogens: Complementary microbiological and IR-spectroscopic insights. Appl. Surface Sci. 2021, 558, 149857. [Google Scholar] [CrossRef]
- Iqbal, A.; Haq, A.U.; Cerron-Calle, G.A.; Naqvi, S.A.; Westerhoff, P.; Garcia-Segura, S. Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via Capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides. Catalysts 2021, 11, 806. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, L.; Zhao, X.; Zhao, S.; Gu, X.; Du, W.; Wei, H.; Ji, R.; Zhao, L. Metabolomics reveals the “invisible” responses of spinach plants exposed to CeO2 nanoparticles. Environ. Sci. Technol. 2019, 53, 6007–6017. [Google Scholar] [CrossRef]
- Singh, K.R.; Nayak, V.; Singh, J.; Singh, A.K.; Singh, R.P. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv. 2021, 11, 24722–24746. [Google Scholar] [CrossRef]
- Foroutan, Z.; Afshari, A.R.; Sabouri, Z.; Mostafapour, A.; Far, B.F.; Jalili-Nik, M.; Darroudi, M. Plant-based synthesis of cerium oxide nanoparticles as a drug delivery system in improving the anticancer effects of free temozolomide in glioblastoma (U87) cells. Ceram. Int. 2022, 48, 30441–30450. [Google Scholar] [CrossRef]
- Oraby, H.F. Maize silk biogenic nanoceria (CeO2NPs) enhanced sequential injection-chemiluminescence detection of ferulic, sinapic and p-coumaric in yellow maize kernels. Plants 2022, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Sindhu, R.; Sirohi, R.; Kumar, V.; Ahluwalia, V.; Binod, P.; Juneja, A.; Kumar, D.; Yan, B.; Sarsaiya, S.; et al. Agricultural waste biorefinery development towards circular bioeconomy. Renew. Sustain. Energy Rev. 2022, 158, 112122. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Yadav, M.; Dwibedi, V.; Sharma, S.; George, N. Biogenic silica nanoparticles from agro-waste: Properties, mechanism of extraction and applications in environmental sustainability. J. Environ. Chem. Eng. 2022, 10, 108550. [Google Scholar] [CrossRef]
- Altaf, S.; Zafar, R.; Zaman, W.Q.; Ahmad, S.; Yaqoob, K.; Syed, A.; Khan, A.J.; Bilal, M.; Arshad, M. Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis. Ecotoxicol. Environmen. Saf. 2021, 226, 112826. [Google Scholar] [CrossRef]
- Singh, G.; Dizaji, H.B.; Puttuswamy, H.; Sharma, S. Biogenic nanosilica synthesis employing agro-waste rice straw and its application study in photocatalytic degradation of cationic dye. Sustainability 2022, 14, 539. [Google Scholar] [CrossRef]
- Periakaruppan, R.; Li, J.; Mei, H.; Yu, Y.; Hu, S.; Chen, X.; Li, X.; Guo, G. Agro-waste mediated biopolymer for production of biogenic nano iron oxide with superparamagnetic power and antioxidant strength. J. Clean. Prod. 2021, 311, 127512. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Fei, L.; Liu, W.; Liu, X.; Xu, H.; Liu, Y. A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chem. 2022, 24, 675–700. [Google Scholar] [CrossRef]
- Annahazi, A.; Roka, R.; Rosztoczy, A.; Wittmann, T. Role of antispasmodics in the treatment of irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 6031–6043. [Google Scholar] [CrossRef]
- Naguib, I.A.; Abdelkawy, M. Development and validation of stability indicating HPLC and HPTLC methods for determination of sulpiride and mebeverine hydrochloride in combination. Eur. J. Med. Chem. 2010, 45, 3719–3725. [Google Scholar] [CrossRef] [PubMed]
- Haggag, R.S.; Shaalan, R.A.; Belal, T.S. Validated HPLC determination of the two fixed dose combinations (chlordiazepoxide hydrochloride and mebeverine hydrochloride; carvedilol and hydrochlorothiazide) in their tablets. J. AOAC Int. 2010, 93, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Derayea, S.M. An application of eosin Y for the selective spectrophotometric and spectrofluorimetric determination of mebeverine hydrochloride. Anal. Methods 2014, 6, 2270–2275. [Google Scholar] [CrossRef]
- Mahdi, A.; Abas, Z. Spectrophotometric Determination of mebeverine hydrochloride in pharmaceutical preparation via ion association reaction. J. Phys. Conf. Ser. 2018, 1032, 012064. [Google Scholar] [CrossRef]
- Naggar, A.H.; Kotb, A.; Gahlan, A.A.; Mahross, M.H.; El-Sayed, A.E.; Abdelwahab, A.A. Graphite studded with facile-synthesized Cu2O nanoparticle-based cubes as a novel electrochemical sensor for highly sensitive voltametric determination of mebeverine hydrochloride. Chemosensors 2021, 9, 35. [Google Scholar] [CrossRef]
- Nezhadali, A.; Bonakdar, G.A. Multivariate optimization of mebeverine analysis using molecularly imprinted polymer electrochemical sensor based on silver nanoparticles. J. Food Drug Anal. 2019, 27, 305–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, T.A.; Mohamed, G.G.; Omar, M.M.; Abdrabou, V.N. Improved determination of mebeverine hydrochloride in urine, serum and pharmaceutical preparations utilizing a modified carbon paste electrode. Int. J. Electrochem. Sci. 2015, 10, 2439–2454. [Google Scholar]
- Ibrahim, H.; Issa, Y.M.; Abu-Shawish, H.M. Potentiometric flow injection analysis of mebeverine hydrochloride in serum and urine. J. Pharm. Biomed. Anal. 2005, 36, 1053–1061. [Google Scholar] [CrossRef]
- Ali, M.S. Construction of membrane selective electrodes for determination of mebeverine hydrochloride drug. Diyala J. Pure Sci. 2014, 10, 76–78. [Google Scholar]
- Ricotta, V.; Yu, Y.; Clayton, N.; Chuang, Y.C.; Wang, Y.; Mueller, S.; Levon, K.; Simon, M.; Rafailovich, M. A chip-based potentiometric sensor for a Zika virus diagnostic using 3D surface molecular imprinting. Analyst 2019, 144, 4266–4280. [Google Scholar] [CrossRef]
- Mostafa, I.M.; Meng, C.; Dong, Z.; Lou, B.; Xu, G. Potentiometric sensors for the determination of pharmaceutical drugs. Anal. Sci. 2022, 38, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, R.; Biswas, A. Electrochemical mechanisms in potentiometric phosphate sensing using pure cobalt, molybdenum and their alloy for environmental applications. Electroanalysis 2021, 33, 421–430. [Google Scholar] [CrossRef]
- Alterary, S.S.; El-Tohamy, M.F. Advanced Functionalized CeO2/Al2O3 Nanocomposite sensor for determination of opioid medication tramadol hydrochloride in pharmaceutical formulations. Nanomaterials 2022, 12, 1373. [Google Scholar] [CrossRef] [PubMed]
- Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem. 2008, 80, 85–104. [Google Scholar] [CrossRef]
- Alarfaj, N.A.; El-Tohamy, M.F. New functionalized polymeric sensor based NiO/MgO nanocomposite for potentiometric determination of doxorubicin hydrochloride in commercial injections and human plasma. Polymers 2020, 12, 3066. [Google Scholar] [CrossRef]
- Kumar, E.; Selvarajan, P.; Muthuraj, D. Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Mater. Res. 2013, 16, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, M.; Li., X.; Wang, C.; Wang, R.; Wang, B.; Yan, H. MOF-derived NiO/CeO2 heterojunction: A photocatalyst for degrading pollutants and hydrogen evolution. J. Mater. Sci. 2020, 55, 15930–15944. [Google Scholar] [CrossRef]
- Vijaya Kumar, P.; Jafar Ahamed, A.; Karthikeyan, M. Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl. Sci. 2019, 1, 1083. [Google Scholar] [CrossRef] [Green Version]
- Hysek, S.; Podlena, M.; Bartsch, H.; Wenderdel, C.; Bohm, M. Effect of wheat husk surface pre-treatment on the properties of husk-based composite materials. Ind. Crops Prod. 2018, 125, 105–113. [Google Scholar] [CrossRef]
- Zhang, Z.; Kleinstreuer, C.; Donohue, J.F.; Kim, C.S. Comparison of micro-and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 2005, 36, 211–233. [Google Scholar] [CrossRef]
- Nascimento, A.C.K. Study of rice husk ash by infrared spectroscopy. Int. J. Sci. Eng. Investig. 2020, 9, 60–62. Available online: http://www.ijsei.com/papers/ijsei-910120-09.pdf (accessed on 15 November 2022).
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Ragupathy, P.; Kumar, M.R.; Mohan Kumar, R.; Jayavel, R. High electrochemical performance and enhanced electrocatalytic behavior of a hydrothermally synthesized highly crystalline heterostructure CeO2@NiO nanocomposite. Inorg. Chem. 2019, 58, 13843–13861. [Google Scholar] [CrossRef]
- Sen, S.K.; Barman, U.C.; Manir, M.S.; Mondal, P.; Dutta, S.; Paul, M.; Chowdhury, M.A.; Hakim, M.A. X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 025004. [Google Scholar] [CrossRef]
- Zareh, M.M. Plasticizers and their role in membrane selective electrodes. Recent Adv. Plast. 2012, 21, 113–124. [Google Scholar]
- Alarfaj, N.A.; El-Tohamy, M.F.; Oraby, H.F. A reduced graphene oxide/gold nanoparticles composite modified glassy carbon electrode as electrochemical sensor for calcium ions detection in bottled water. Int. J. Electrochem. Sci. 2020, 15, 5500–5511. [Google Scholar] [CrossRef]
- Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry, 3rd ed.; Ellis Horwood PTR Prentice Hall: New York, NY, USA, 1993. [Google Scholar]
- Lieu, Y.S.; Chang, Y.C.; Chen, H.H. Synthesis of silver nanoparticles by using rice husk extracts prepared with acid–alkali pretreatment extraction process. J. Cereal Sci. 2018, 82, 106–112. [Google Scholar] [CrossRef]
- Liu, M.; Jia, M.; Yifeng, E.; Li, D. A novel ion selective electrode based on reduced graphene oxide for potentiometric determination of sarafloxacin hydrochloride. Microchem. J. 2021, 170, 106678. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E.; Buhlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef]
Parameters | MB-PT Sensor | MB-PT-CeO2/NiO Nanocomposite Sensor |
---|---|---|
Slope (mV. decade −1) | −26.603 ± 0.3 | −29.429 ± 0.2 |
Intercept, mV | 256.31 | 347.86 |
Regression | EmV = (26.603 ± 0.3)log[MB] + 256.31 | EmV = (29.429 ± 0.2)log[MB] + 347.86 |
Correlation coefficient, r | 0.9993 | 0.9999 |
Linear range (mol L−1) | 1.0 × 10−5–1.0 × 10−2 | 1.0 × 10−8–1.0 × 10−2 |
LOD | 2.5 × 10−6 | 2.5 × 10−9 |
Response time/s | 60 | 35 |
Working pH range | 4–8 | 4–8 |
Lifetime/day | 25 | 60 |
Temperature (°C) | 25 | 25 |
Accuracy | 98.94 ± 0.7 | 99.78 ± 0.2 |
Interferents 1.0 × 10−3 (mol L−1) | ||
---|---|---|
Mg2+ | 1.3 × 10−3 | 5.2 × 10−4 |
Ca2+ | 5.6 × 10−3 | 4.9 × 10−5 |
Ti4+ | 4.2 × 10−3 | 1.2 × 10−5 |
Na+ | 3.3 × 10−3 | 6.3 × 10−4 |
Cu2+ | 1.1 × 10−3 | 2.4 × 10−4 |
K+ | 2.7 × 10−3 | 1.2 × 10−5 |
Cr3+ | 8.6 × 10−3 | 4.4 × 10−4 |
Al3+ | 2.3 × 10−3 | 7.1 × 10−4 |
Zn2+ | 4.7 × 10−3 | 2.5 × 10−4 |
Lactose | 2.4 × 10−3 | 3.9 × 10−4 |
Sucrose | 9.3 × 10−3 | 8.7 × 10−5 |
Histidine | 2.2 × 10−3 | 5.2 × 10−5 |
Glycine | 8.4 × 10−3 | 5.0 × 10−4 |
Magnesium stearate | 3.3 × 10−3 | 3.5 × 10−4 |
Talc | 1.5 × 10−3 | 2.4 × 10−4 |
Statistical analysis | MB-PT Sensor | MB-PT-CeO2/NiO Nanocomposite Sensor | ||||
Taken ** | Found ** | % Recovery | Taken ** | Found ** | % Recovery | |
5 4.3 4 3.3 3 2 | 5.00 4.24 3.96 3.23 2.98 1.97 | 100.0 98.60 99.00 97.87 99.33 98.50 | 8 7 6 5 4 3 2 | 7.97 6.99 6.01 4.97 3.98 2.97 1.99 | 99.62 99.85 100.17 99.40 99.50 99.00 99.50 | |
Mean ± SD | 98.88 ± 0.7 | 99.58 ± 0.4 | ||||
n | 6 | 7 | ||||
Variance | 0.49 | 0.16 | ||||
%SE * | 0.29 | 0.15 | ||||
%RSD | 0.71 | 0.40 |
Statistical analysis | MB-PT Sensor | MB-PT-CeO2/NiO Nanocomposite Sensor | ||||
Taken ** | Found ** | % Recovery | Taken ** | Found ** | % Recovery | |
5 4.3 4.05 4 3.3 3.05 3 2.3 2 | 4.96 4.24 4.05 3.95 3.24 3.05 2.97 2.26 1.97 | 99.20 98.60 100.00 98.75 98.18 100.00 99.00 98.26 98.50 | 8 7.3 7 6 5 4 3 2.3 2 | 7.99 7.28 6.98 5.00 4.97 3.99 3.00 2.29 2.00 | 99.87 99.73 99.71 100.00 99.40 99.75 100.00 99.57 100.00 | |
Mean ± SD | 98.94 ± 0.7 | 99.78 ± 0.2 | ||||
n | 9 | 9 | ||||
Variance | 0.49 | 0.04 | ||||
%SE * | 0.23 | 0.07 | ||||
%RSD | 0.71 | 0.20 |
Statistical analysis | MB-PT-CeO2/NiO Nanocomposite Sensor | |||||
Intra-Day Assay | Inter-Day Assay | |||||
Taken ** | Found ** | % Recovery | Taken ** | Found ** | % Recovery | |
5 | 4.96 | 99.20 | 8 | 8.00 | 100.00 | |
4 | 3.94 | 98.50 | 5 | 4.99 | 99.80 | |
2 | 1.97 | 98.50 | 2 | 2.01 | 100.50 | |
Mean ± SD | 98.73 ± 0.4 | 99.85 ± 0.2 | ||||
n | 3 | 3 | ||||
Variance | 0.16 | 0.04 | ||||
%SE * | 0.23 | 0.12 | ||||
%RSD | 0.41 | 0.20 |
Statistical analysis | MB-PT Sensor | MB-PT-CeO2/NiO Nanocomposite Sensor | ||||
Taken ** | Found ** | % Recovery | Taken ** | Found ** | % Recovery | |
5 4.3 4 3.3 3 2 | 4.98 4.24 3.97 3.24 2.96 1.96 | 99.60 98.60 99.25 98.18 98.67 98.00 | 8 7 6 5 4 2 | 7.98 6.99 5.96 4.97 4.00 1.98 | 99.75 99.85 99.33 99.40 100.00 99.00 | |
Mean ± SD n Variance %SE * %RSD t-test F-test | 98.72 ± 0.6 6 0.36 0.24 0.61 2.018 (2.228) *** 1.36 (5.05) *** | 99.56 ± 0.4 6 0.16 0.16 0.40 0.242 (2.228) *** 3.06 (5.05) *** | ||||
Reported method [28] | 99.48 ± 0.7 6 0.49 0.29 |
Analytical Techniques | Reagent | Linearity | LOD | Reference |
---|---|---|---|---|
Modified carbon paste electrode | Tricresylphosphate | 3.0 × 10−7–1.0 × 10−2 mol L−1 | 3.0 × 10−7 mol L−1 | [27] |
Polyvinylchloride electrode | Silicotungstic acid | 4.0 × 10−6–1.0 × 10−2 mol L−1 | ----- | [28] |
Liquid membrane electrode | Sodium tetraphenyl borate | 1.0 × 10−5–1.0 × 10−1 mol L−1 | 3.6 × 10−7 mol L−1 | [29] |
Modified coated wire sensor | Phosphotungstic acid CeO2/NiO nanocomposite | 1.0 × 10−8–1.0 × 10−2 mol L−1 | 2.5 × 10−9 mol L−1 | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, G.A.E.; El-Tohamy, M.F.; Alrabiah, H. Prospective of Agro-Waste Husks for Biogenic Synthesis of Polymeric-Based CeO2/NiO Nanocomposite Sensor for Determination of Mebeverine Hydrochloride. Molecules 2023, 28, 2095. https://doi.org/10.3390/molecules28052095
Mostafa GAE, El-Tohamy MF, Alrabiah H. Prospective of Agro-Waste Husks for Biogenic Synthesis of Polymeric-Based CeO2/NiO Nanocomposite Sensor for Determination of Mebeverine Hydrochloride. Molecules. 2023; 28(5):2095. https://doi.org/10.3390/molecules28052095
Chicago/Turabian StyleMostafa, Gamal A. E., Maha F. El-Tohamy, and Haitham Alrabiah. 2023. "Prospective of Agro-Waste Husks for Biogenic Synthesis of Polymeric-Based CeO2/NiO Nanocomposite Sensor for Determination of Mebeverine Hydrochloride" Molecules 28, no. 5: 2095. https://doi.org/10.3390/molecules28052095
APA StyleMostafa, G. A. E., El-Tohamy, M. F., & Alrabiah, H. (2023). Prospective of Agro-Waste Husks for Biogenic Synthesis of Polymeric-Based CeO2/NiO Nanocomposite Sensor for Determination of Mebeverine Hydrochloride. Molecules, 28(5), 2095. https://doi.org/10.3390/molecules28052095